
Optimal Control of Robotic Systems with Logical Constraints:
Application to UAV Path Planning

Shangming Wei, Miloš Žefran, and Raymond A. DeCarlo

Abstract— Optimal control of robotic systems with
logical constraints is an instance of a hybrid optimal
control problem. It has been traditionally treated as
a mixed-integer programming problem (MIP) which
is of combinatorial complexity. This paper proposes a
new approach for transforming logical constraints into
inequality and equality constraints involving only contin-
uous variables. In this way the hybrid optimal control
problem is converted to a smooth optimal control prob-
lem that can in turn be solved using traditional nonlinear
programming methods, thereby dramatically reducing
the computational complexity of finding the solution.
We illustrate the techniques by solving an optimal path
planning problem for multiple unmanned aerial vehicles
(UAVs) with collision avoidance. Simulation results are
given to show the effectiveness of the approach.

I. INTRODUCTION

Because many robotic systems are characterized by
a combination of continuous and discrete (symbolic)
variables, they can be modeled as hybrid systems. Dif-
ferential equations typically describe the lower level be-
havior, whereas logical/Boolean formulas describe the
effect of valves, switches, gears, and logical controllers,
as well as reasoning and planning operations, constraint
enforcement, and conflict resolution that occur at the
higher or supervisory level.

A number of frameworks have been proposed to
model and control hybrid systems described by inter-
acting continuous dynamics and logic rules (see [1]–
[4] among many other) while other researchers con-
sider the optimal control of hybrid systems (e.g. [5]–
[7]). A common approach for solving hybrid optimal
control problems is to formulate them as a mixed
integer programming (MIP) problems. For instance,

The first two authors have been supported in part by NSF grants
IIS-0093581, CCR-0330342, and CMS-0600658.

S. Wei and M. Žefran are with the Department of Electrical and
Computer Engineering, University of Illinois at Chicago, Chicago,
IL 60607, USA. Email: {swei3,mzefran}@uic.edu.

R. A. DeCarlo is with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, USA.
Email: decarlo@ecn.purdue.edu.

in [7], propositional logic is transformed into lin-
ear inequalities involving real and integer variables.
Then the optimization of the resulting mixed logical
dynamical (MLD) system is solved through mixed
integer quadratic programming (MIQP). Although the
performance of this approach is satisfactory, in general
it does not scale well as the solution time increases
exponentially with the number of integer variables.

The authors of [8]–[10] converted collision avoid-
ance constraints which are or-constraints into mixed
integer linear constraints. But the resulting mixed in-
teger linear programming (MILP) still suffers from
combinatorial complexity. Although there has been a
dramatic increase in the quantity and quality of soft-
ware designed to solve MIPs or MILPs in recent years,
the fundamental limitations of the methodology remain.

An extension of the embedding technique of [11] was
developed in [12] to transform hybrid optimal control
problems into traditional smooth optimal control prob-
lems. The solution methodology relies on traditional
nonlinear programming techniques such as sequential
quadratic programming (SQP); thus the computational
complexity is dramatically reduced over other ap-
proaches. The approach is applicable to hybrid systems
that exhibit autonomous and controlled switches, both
resulting in discontinuous jumps in the vector fields
governing the evolution of the continuous dynamics
of the system. In other words, the discrete aspect of
the system arises only from switches in the dynamic
equations. However, there is no discussion in [12] about
how to deal with the logical/discrete components which
also appear as constraints.

This paper presents a new method to numerically
solve hybrid optimal control problems with logical
constraints. Specifically, we transform logical expres-
sions in the constraints into inequality and equality
constraints involving only continuous variables. The
resulting optimal control problems can then be solved
utilizing standard nonlinear programming methods such
as sequential quadratic programming (SQP); MIP meth-
ods are not necessary. The approach is demonstrated

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 176

on the application to optimal path planning problem of
multiple autonomous vehicles with collision avoidance.
Model predictive control (MPC) solutions to the exam-
ple are computed and simulation results are presented
to show the effectiveness of the approach.

II. METHODOLOGY

The robotic systems considered in this paper can be
modeled by a set of differential equations:

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (1)

where x(t) ∈ Rp is the system’s state at time t,
u(t) ∈ Rr is the control input constrained to a convex
and compact set Ω, and f : Rp × Rr → Rp is a
real vector-valued function of class C1. We assume
that u(t) is a measurable function on the interval
[t0, tf] that has to be chosen so that the appropriate
boundary conditions are satisfied. Formally, the initial
and terminal constraints are described by requirements
(t0, x(t0)) ∈ T0×B0 and (tf , x(tf)) ∈ Tf ×Bf , where
the endpoint constraint set B = T0 × B0 × Tf × Bf is
contained in a compact set in R2p+2.

As mentioned in Section I, the focus of this paper
are systems that must also satisfy a set of logical
constraints that are frequently an integral part of a
robotic system. Logical constraints are utilized to rep-
resent symbolic behavior such as planning and rea-
soning rules, obstacle avoidance, no-fly zones, safety
requirements, etc. Since every Boolean expression can
be converted into conjunctive normal form (CNF) [13],
any logical constraint can in general be expressed as a
CNF formula:

D1 ∧D2 ∧ . . . ∧Dn (2)

where Di = P 1
i ∨ P 2

i ∨ . . . ∨ Pmi

i and P j
i is either

Xj
i or ¬Xj

i , with Xj
i being a literal that is either True

or False. We use Xj
i to represent statements such as

”position x ≤ 2” or ”velocity in y direction vy ≥ 0”.
So P j

i is of the form

P j
i , [gj

i (x(t)) ≤ 0] (3)

where gj
i : Rp → R is a C1 function.

We define the cost functional of the system

J = Φ(t0, x0, tf , xf) +
∫ tf

t0

L(x(t), u(t))dt (4)

where Φ is a real-valued C1 function defined on a
neighborhood of B, and L : Rp × Rr → R is of class
C1.

The optimal control problem with logical constraints
is defined as:

min
u
J

subject to the constraints: (i) x(·) satisfies Eq. (1); (ii)
(t0, x(t0), tf , x(tf)) ∈ B; (iii) for each t ∈ [t0, tf],
u(t) ∈ Ω; (iv) the logical formula Eq. (2) is satisfied.

To solve this problem, we need to transform the
constraint (iv) into equality or inequality constraints.
Furthermore, we don’t want to use any Boolean vari-
ables in order to avoid combinatorial complexity of
integer programming. Satisfying the conjunction is easy
as D1 ∧ D2 ∧ . . . ∧ Dn = is simply equivalent to
∀i ∈ [1, . . . , n] : Di. Therefore, we have the following
constraints:

∀i ∈ [1, . . . , n] : P 1
i ∨ P 2

i ∨ . . . ∨ Pmi

i . (5)

To translate the disjunctions into inequality con-
straints, we associate with each P j

i a continuous vari-
able αj

i ∈ [0, 1]. Then we have the following equivalent
expression of Eq. (5)

∀i ∈ [1, . . . , n] : αj
i · g

j
i (x(t)) ≤ 0,

and 0 ≤ αj
i ≤ 1,

and
∑

j

αj
i = 1.

(6)

Note that when αj
i = 0, the constraint gj

i (x(t)) ≤ 0
is not satisfied, and when 0 < αj

i ≤ 1, αj
i ·g

j
i (x(t)) ≤ 0

is the same as gj
i (x(t)) ≤ 0, which means that the

constraint is enforced. The last constraint of Eq. (6)
makes sure that at least one of P j

i holds.
After replacing the logical constraints with the in-

equality and equality constraints in Eq. (6), we obtain
the following optimal control problem:

min
u
J

subject to the constraints: (i) x(·) satisfies Eq. (1); (ii)
(t0, x(t0), tf , x(tf)) ∈ B; (iii) for each t ∈ [t0, tf],
u(t) ∈ Ω; (iv) for i = 1, . . . , n and j = 1, . . . ,mi,
αj

i ∈ [0, 1]; (v) for i = 1, . . . , n,
∑

j α
j
i = 1; (vi) for

each t ∈ [t0, tf], i = 1, . . . , n, and j = 1, . . . ,mi,
αj

i · g
j
i (x(t)) ≤ 0. We can see that the combinatorial

aspect of the original problem is effectively eliminated.
The resulting problem is a smooth problem which
can be solved using traditional nonlinear programming
techniques. Thus the overall computational complexity
is dramatically reduced [14], [15].

177

III. MULTIPLE UAVS PATH PLANNING PROBLEM

In this section we illustrate the approach by applying
it to a multiple UAVs path planning example. The
problem studied here is to find an energy-optimal path
for a single or a group of autonomous vehicles on
a two-dimensional plane. Each vehicle is required to
move from an initial state to a target state without
colliding with the obstacles or other vehicles. In order
to establish the effectiveness of our methodology, the
problem is the same as the one addressed in [8]. Logical
constraints are the consequence of the obstacle and col-
lision avoidance requirements. Using the methodology
proposed in Section II, we solve the problem utilizing
traditional nonlinear programming techniques, making
our approach an alternative to that of [8] where mixed
integer/linear programming (MILP) is needed.

We describe the case of a single vehicle first and
then discuss how the solution methodology generalizes
to multiple vehicles.

A. Model

A vehicle is modeled as a point moving on the
horizontal plane. We choose the state vector s and the
control input vector u as

s = [x, y, vx, vy]T ,

u = [ax, ay]T

where (x, y) is the position of the vehicle, vx and vy are
its velocity in the x and y direction respectively, and
ax and ay are its acceleration in the x and y direction
respectively.

A variation of direct collocation [16] is used to
numerically solve the optimal control problem. In this
case, u(t) and s(t) are chosen from finite-dimensional
spaces. Given basis functions {φj}N

j=0 and {ψj}M
j=0,

si =
N∑

j=0

σj
iφ

j(t), σj
i ∈ R, i = 1, . . . , n,

ui =
M∑

j=0

µj
iψ

j(t), µj
i ∈ R, i = 1, . . . ,m.

Since in general s(t) can be nonsmooth, the basis
functions {φj}N

j=0 are chosen to be nonsmooth. Simi-
larly, since the control u(t) can be discontinuous, the
basis functions {ψj}M

j=0 are chosen to be discontinuous.
Partition the time interval [0, T] into N subintervals
with the endpoints 0 = t0 < t1 < . . . < tN−1 <
tN = T .

The state trajectory is approximated by a piecewise-
linear function:

ŝi(t) = si(tj) +
t− tj

tj+1 − tj
(si(tj+1)− si(tj)) ,

tj ≤ t < tj+1, i = 1, . . . , n.

This approximation corresponds to σj
i = si(tj) and the

triangular basis functions:

φj(t) =

t−tj−1

tj−tj−1
tj−1 ≤ t < tj ,

tj+1−t
tj+1−tj

tj ≤ t < tj+1,

0 otherwise.

The control input is chosen to be piecewise constant
so that

ûi(t) = ui(tj), tj ≤ t < tj+1, i = 1, . . . ,m.

This approximation corresponds to µj
i = ui(tj) and the

square basis functions:

ψj(t) =

{
1 tj ≤ t < tj+1,

0 otherwise.

Note that the above choice of basis functions implies
M = N − 1.

The system equations are enforced at the midpoints:
˙̂s(t)− f(ŝ(t), û(t)) = 0,

for t =
tj + tj+1

2
, j = 0, . . . , N − 1.

(7)

For our problem, this results in the following dy-
namic equations:
xi+1

yi+1

vx,i+1

vy,i+1

 =

1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

xi

yi

vx,i

vy,i

 +

h2

2 0
0 h2

2
h 0
0 h

[
ax,i

ay,i

]

for i = 0, . . . , N − 1. We can rewrite these equations
as

si+1 = Asi +Bui, i = 0, . . . , N − 1 (8)

where si = [xi, yi, vx,i, vy,i]T is the state vector at
ti, and ui = [ax,i, ay,i]T is the piecewise constant
acceleration (input) vector on [ti, ti+1].

The objective is to find a path which uses the least
energy and at the end of the horizon T we want to move
the vehicle as close to the target state as possible. With
the chosen representation of s and u, the integral cost
function is replaced with a finite sum. Therefore, the
desired performance index is

J =
N−1∑
i=0

c1 ‖ui‖2 + c2 ‖sN − sf‖2 (9)

178

where c1 and c2 are constant positive weights, sN is
the state at the end of the horizon, and sf is the target
state.

B. Obstacle Avoidance

In this paper we assume that there are a set of station-
ary rectangular obstacles in the environment, but the
approach is quite general and can handle any obstacle
described by Eqs. (2)-(3). Each rectangular obstacle is
described by its lower left corner (xmin, ymin) and its
upper right corner (xmax, ymax). Obstacle avoidance
means that at every endpoint of the subintervals, the
position of the vehicle (xi, yi) must be in the area
outside of the obstacle. This leads to the following
logical constraints:

∀i ∈ [1, . . . , N] : xi − xmin ≤ 0,

or xmax − xi ≤ 0,

or yi − ymin ≤ 0,

or ymax − yi ≤ 0.

(10)

The constraints are not enforced at the initial point t0
because the initial positions are fixed. Note also that
the constraints are not enforced between the endpoints
of this discretized system, so small penetration into
obstacles are possible. Therefore, in practice the obsta-
cle regions should be appropriately enlarged to provide
sufficient safety margin.

The techniques in Section II are used to deal with the
obstacle avoidance constraints. Introduce new variables
αj

i ∈ [0, 1], for i = 1, . . . , N, j = 1, . . . , 4, that satisfy

4∑
j=1

αj
i = 1. (11)

Then the constraints (10) can be replaced by the
following constraints:

∀i ∈ [1, . . . , N] : α1
i (xi − xmin) ≤ 0,

and α2
i (xmax − xi) ≤ 0,

and α3
i (yi − ymin) ≤ 0,

and α4
i (ymax − yi) ≤ 0,

and 0 ≤ αj
i ≤ 1, j = 1, 2, 3, 4,

and
4∑

j=1

αj
i = 1.

(12)

At the ith endpoint ti, if the jth constraint in Eq.
(10) is not satisfied, the corresponding αj

i equals 0,
otherwise αj

i satisfies 0 < αj
i ≤ 1. The constraint (11)

ensures that at least one of the constraints in Eq. (10)

is satisfied, which means that the vehicle stays outside
of the rectangular obstacle.

Besides the obstacle avoidance constraints, there are
other constraints such as the bounds on the control
inputs:

∀i ∈ [0, . . . , N − 1] : Umin ≤ ui ≤ Umax,

where Umin and Umax are constant vectors.
The resulting optimal control problem is as follows:

min
ui

N−1∑
i=0

c1 ‖ui‖2 + c2 ‖sN − sf‖2

subject to ∀i ∈ [1, . . . , N] :

(i) si = Asi−1 +Bui−1,

(ii) Umin ≤ ui−1 ≤ Umax,

(iii) α1
i (xi − xmin) ≤ 0,

(iv) α2
i (xmax − xi) ≤ 0,

(v) α3
i (yi − ymin) ≤ 0,

(vi) α4
i (ymax − yi) ≤ 0,

(vii) 0 ≤ αj
i ≤ 1, j = 1, . . . , 4,

(viii)
4∑

j=1

αj
i = 1.

(13)

Note that there is no combinatorial aspect in this
optimization problem. Hence it can be readily solved
by a nonlinear programming solver.

C. Multiple Vehicles

The optimal control problem of Eq. (13) can be
easily extended to the multi-vehicle case by modifying
the cost function and the constraints to include all
vehicles.

The additional constraint that needs to be dealt with
in the multi-vehicle case is collision avoidance between
the vehicles. In this paper we require that at each
endpoint every pair of vehicles is a safe distance apart
in the x or y direction, but the approach can easily be
adapted to other safety constraints. Suppose thus that
the positions of vehicles p and q at the ith endpoint
ti are (xp,i, yp,i) and (xq,i, yq,i), respectively. Denote
the safety distance in x and y directions as dx and dy,
respectively. Then the constraints are

∀q > p,∀i ∈ [1, . . . , N] :

|xp,i − xq,i| ≥ dx,

or |yp,i − yq,i| ≥ dy.

(14)

179

The condition q > p is to avoid duplication of the
constraints. Eq. (14) is equivalent to

∀q > p,∀i ∈ [1, . . . , N] :

xp,i − xq,i ≥ dx,

or xq,i − xp,i ≥ dx,

or yp,i − yq,i ≥ dy,

or yq,i − yp,i ≥ dy.

(15)

These constraints can be treated in the same way
as the obstacle avoidance constraints. After introducing
new variables βj

p,q,i ∈ [0, 1], for i = 1, . . . , N, j =
1, . . . , 4, that satisfy

4∑
j=1

βj
p,q,i = 1,

we obtain the following constraints:

∀q > p,∀i ∈ [1, . . . , N] :

β1
p,q,i(xp,i − xq,i − dx) ≥ 0,

and β2
p,q,i(xq,i − xp,i − dx) ≥ 0,

and β3
p,q,i(yp,i − yq,i − dy) ≥ 0,

and β4
p,q,i(yq,i − yp,i − dy) ≥ 0,

and 0 ≤ βj
p,q,i ≤ 1, j = 1, 2, 3, 4,

and
4∑

j=1

βj
p,q,i = 1.

(16)

Again, the last constraint of (16) ensures that at least
one of the constraints of (15) is satisfied. Therefore, the
vehicles p and q are guaranteed to be a safe distance
apart.

D. Model Predictive Control

Model predictive control (MPC) has been a popular
approach for tracking control of system with constraints
(see e.g. [17], [18]). The basic idea of MPC is to solve
a finite horizon constrained optimal control problem
online at each time step. Only the first control input
of the optimal sequence is implemented, and then the
optimization is repeated starting from the reached state.
Because of the re-planning, the MPC approach can
account for external disturbances and modeling errors.

The MPC scheme is adopted to turn the path plan-
ning approach into a control strategy. The procedure
(for one vehicle case)is as follows:

1) Let h be the interval length h, N the horizon
length, and let k = 1.

2) Solve the optimization problem (13) over the
horizon [tk−1, tk−1 + Nh] with the initial state

Fig. 1. Trajectory of the vehicle in Setting 1.

sk−1 and obtain the (look ahead) control se-
quence {uk, . . . , uk +N}.

3) Apply the control input uk−1 for the time interval
[tk−1, tk−1 +h] to the system to compute sk, the
initial condition for the next iteration.

4) Let tk = tk−1 + h, increment k and repeat steps
2 and 3 until the goal is reached.

In the MPC approach, the arrival time of the vehicles
is no longer fixed. The optimization is repeatedly
applied over a moving time window of length N · h
(h is a predefined small time step, for example, 0.1s)
until the goal is reached. Within each iteration, a short
locally optimal segment of trajectory is designed to
move towards the goal, but not necessarily reach it.
In this way, we obtain a series of short trajectories
instead of one long trajectory, and the computation load
is greatly reduced.

E. Simulation Results

We implemented the path planning example using
the NAG C Library from Numerical Algorithms Group.
Fig. 1 and Fig. 2 show the simulation results under
two settings. For both settings, there is one vehicle
and the number of the obstacles is 10. In Setting
1, the initial state is [0, 0, 0, 0]T , and the target state
is [12, 9.1, 0, 0]T . In Setting 2, the initial state is
[15, 9, 0, 0]T , and the target state is [−0.5,−6, 0, 0]T .
The discretization step h is 0.1s for both cases. The
vehicle reaches the target state at 8.7s in Setting 1, and
at 8.5s in Setting 2. The computation times for Setting
1 and Setting 2 are 937s and 1232s respectively.

From the results we can see that the performance
of the proposed approach is satisfactory. All the con-

180

Fig. 2. Trajectory of the vehicle in Setting 2.

straints, especially the obstacle avoidance constraints,
are enforced without using mixed integer programming
(MIP) and our computation time is comparable to
the times reported in [8]. However, there are many
systems in which some items of dynamic equations,
performance index or constraints are not linear so that
MIP as opposed to MILP has to be used, thereby
significantly increasing the computational time. For
these cases, our approach has significant advantages
over the approaches using MIP.

The simulation results with a single UAV demon-
strate that our approach compares favorably to the
approach in [8] in cases where both of them are
applicable, and is in addition applicable to a much
broader class of problems. However, as was the case
there, due to the long computation times we did not
evaluate our method in a multiple UAV scenario.

IV. CONCLUSIONS

This paper presents a new method for converting
logical constraints in an optimal control problem into
inequality and equality constraints involving only con-
tinuous variables. The resulting problem can be solved
using traditional nonlinear programming techniques, in
contrast to many current approaches whose formula-
tions involve mixed integer programming (MIP). The
proposed approach dramatically reduces the compu-
tation complexity, thus making optimal control (and
model predictive control) more appealing for hybrid
systems. We demonstrate the techniques by applying
them to an UAV path planning example. Simulation
results are quite encouraging and show the potential of
the approach.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, and T. A. Henzinger,
“The algorithmic analysis of hybrid systems,” Theoretical
Computer Science, vol. 138, no. 1, p. 3, 1995.

[2] E. Klavins and D. E. Koditschek, “A formalism for the
composition of concurrent robot behaviors,” Proceedings / 4,
pp. 3395–3402, 2000.

[3] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified
framework for hybrid control: model and optimal control
theory,” IEEE Trans. Automat. Control, vol. 43, no. 1, pp.
31–45, 1998.

[4] J. Lygeros, D. N. Godbole, and S. Sastry, “A game-theoretic
approach to hybrid system design,” Lecture notes in computer
science, vol. 1066, p. 1, 1996.

[5] C. G. Cassandras, D. L. Pepyne, and Y. Wardi, “Optimal
control of a class of hybrid systems,” IEEE Trans. Automat.
Control, vol. 46, no. 3, pp. 398–415, 2001.

[6] S. Hedlund and A. Rantzer, “Optimal control of hybrid
systems,” in The 38th IEEE Conference on Decision and
Control (CDC), Dec 7-Dec 10 1999, ser. Proceedings of the
IEEE Conference on Decision and Control, vol. 4. Phoenix,
AZ, USA: IEEE, Piscataway, NJ, USA, 1999, pp. 3972–3977.

[7] A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica J. IFAC, vol. 35,
no. 3, pp. 407–427, 1999.

[8] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed
integer programming for multi-vehicle path planning,” in
European control conference; ECC 2001, Sep 2001, pp. 2603–
2608.

[9] J. Bellingham, A. Richards, and J. P. How, “Receding horizon
control of autonomous aerial vehicles,” Proceedings of the
American Control Conference, vol. 5, pp. 3741–3746, 2002.

[10] L. Pallottino, E. Feron, and A. Bicchi, “Conflict resolution
problems for air traffic management systems solved with
mixed integer programming,” Intelligent Transportation Sys-
tems, IEEE Transactions on, vol. 3, no. 1, pp. 3–11, Mar
2002.

[11] S. C. Bengea and R. A. DeCarlo, “Optimal control of switch-
ing systems,” Automatica, vol. 41, no. 1, pp. 11–27, 2005.

[12] S. Wei, K. Uthaichana, M. Žefran, R. A. DeCarlo, and
S. Bengea, “Applications of numerical optimal control to non-
linear hybrid systems,” Nonlinear Analysis: Hybrid Systems,
vol. 1, no. 2, pp. 264–279, 2007.

[13] T. M. Cavalier, P. M. Pardalos, and A. L. Soyster, “Modeling
and integer programming techniques applied to propositional
calculus,” Computers and Operations Research, vol. 17, no. 6,
pp. 561–570, 1990.

[14] G. Nemhauser and L. Wolsey, Integer and combinatorial
optimization. New York, NY, USA: Wiley-Interscience, 1988.

[15] C. Floudas, Nonlinear and Mixed-Integer Optimization: Fun-
damentals and Applications. New York, NY, USA: Oxford
University Press, 1995.

[16] O. von Stryk, “Numerical solution of optimal control prob-
lems by direct collocation,” Optimal control (Freiburg, 1991),
International Series of Numerical Mathematics, vol. 111, pp.
129–143, 1993.

[17] E. F. Camacho and C. Bordons, Model Predictive Control.
Springer Verlag, 2004.

[18] D. Gu and H. Hu, “Model predictive control for simultaneous
robot tracking and regulation,” in International Conference
on Intelligent Mechatronics and Automation, Chengdu, China,
2004, pp. 212–217.

181

