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SUMMARY
We consider the problem of using scattered waves to recover an image of the medium in which
the waves propagate. We address the case of scalar waves whenthe sources and receivers are
sparse and irregularly spaced. Our approach is based on the single-scattering (Born) approxi-
mation and the generalized Radon transform. The key to handling sparse sources and receivers
is the development of a data-weighting scheme that compensates for nonuniform sampling. To
determine the appropriate weights, we formulate a criterion for measuring the optimality of
the point-spread function, and solve the resulting optimization problem using regularized least-
squares. Once the weights are determined, they can be used tocompute the point-spread func-
tion and thus determine resolution, and they can also be applied to the measured data to form
an image. Tests of our minimization scheme with different regularization parameters show that,
with appropriate weighting, individual scatterers can be resolved at sub-wavelength scales even
when data is noisy and the locations of both sources and receivers are uncertain. We show an
example in which the source-receiver geometry and frequency bandwidths correspond to seis-
mic imaging from multiple local earthquakes (passive seismic imaging). The example shows
that the weights determined by our method improve the resolution relative to reconstructions
with constant weights.
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1 INTRODUCTION

The analysis of records of scattered waves to recover imagesof the
medium through which they propagate is a subject of great interest
to many fields, including medical ultrasound imaging, radarimag-
ing, and seismology. In general, the scattered wave inverseprob-
lem is nonlinear, but in many cases we can reasonably approxi-
mate the relationship between the medium and the scattered field
by theBorn approximationor single-scatteringapproximation. In
this case the resulting linear operator is ageneralized Radon trans-
form (GRT) (e.g., Beylkin 1984; Beylkin 1985) which is a type
of Fourier integral operator(FIO) (e.g., Duistermaat 1995; Grigis
et al. 1994). An asymptotic inversion of the generalized Radon
transform can be derived using FIO theory (e.g., Duistermaat 1995;
Grigis et al. 1994). Just as for the classicalRadon transform(e.g.,
Nattereret al.2001), the inverse operator that maps scattered waves
to the wave speed is a filtered adjoint operator of the forwardoper-
ator. This method has the physical interpretation ofbackprojection.

The GRT approach reduces the inverse problem to one of in-
verting the Fourier-like transform from data generated andrecorded
at a certain set of points. When these points are uniformly sampled
on a cartesian grid, the application of GRT is relatively straightfor-
ward. There are many instances, however, where either by design
or physical necessity, the geometry is not so simple. For example,
in radar imaging (e.g., Borden 1999), data is usually collected on
a polar coordinate grid, and in magnetic resonance imaging (MRI)
(e.g., Lianget al.2000), the recorded data has a spiral sampling pat-

tern. In the case of passive seismic source (e.g., earthquake) imag-
ing with a regional array, both the source and receiver locations can
be sparse and highly irregular.

To handle observations made on a non-cartesian grid, one
can either interpolate to a cartesian grid, or attempt to handle
the Fourier inversion directly. In the latter approach, ultimately a
weight function needs to be chosen to compensate for the nonuni-
form sampling. In the literature of MRI, this weight function is re-
ferred to as asampling density compensation function.

In the last few decades there has been abundant research re-
lated to the direct inversion of the Fourier transform on an irregular
grid, much of it focused on theNonuniform Fast Fourier Transform
(NUFFT). The NUFFT arises not only in many inverse problems,
but also in signal processing and image processing. Severalstudies
(e.g., Greengardet al.2004; Duttet al. 1993; Nguyenet al. 1999;
O’Sullivan 1985; Fessleret al. 2003) review methods using inter-
polation and gridding techniques that can achieve fast calculation
of NUFFT with high accuracy, and other researchers (e.g., Jackson
et al. 1991; Pipeet al. 1999; Malik et al. 2005) studied the sam-
pling density weight function in the gridding method in MRI.By-
dderet al. (2007) evaluated different density weight functions for
the gridding method in MRI, and Samsonovet al.(2003) presented
a method to calculate the sampling density weight function by op-
timizing thepoint-spread functionbased on the gridding method.

Interpolation, gridding, and related techniques (e.g., Wang
2003; Wanget al. 2009) are known to work well when the data is
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densely sampled. However, in many seismic and radar imagingap-
plications, sources and receivers are sparsely located, and in these
cases, one can not apply NUFFT directly because the measured
data is not simply a Fourier transform of the unknown medium.
To convert the data to a Fourier transform, one must carry outad-
ditional steps of parameterizing the source-receiver geometry and
changing the variables of integration.

We can forego these additional steps by avoiding interpolation
and gridding altogether, and instead determining a weight function
that not only compensates for the nonuniform sampling but also ac-
counts for the Jacobian term from the change of variables. Inthis
paper, we use this approach to address situations in which sources
and receivers are sparsely located on an irregular grid. In particu-
lar, we derive a weight function that gives rise to an imagingsystem
with the best point-spread function. To do this, we base our work on
a mathematical model for the forward problem and then determine
an inversion formula using the results from FIO theory. We then
present an optimization method based on the notion ofgeneralized
functions(e.g., Friedlanderet al. 1998), and discuss the intrinsic
trade-off between resolution and stability. Finally, we show how
these different weight functions may be applied in source-receiver
geometries relevant to both active and passive source seismic imag-
ing.

2 PROBLEM FORMULATION

The propagation of waves that emanate from an impulsive point
source in an isotropic medium is governed, in the frequency do-
main, by the Helmholtz equation

∇2
xu(x, xs, ω) +

ω2

v2(x)
u(x, xs, ω) = −δ(x − xs), (1)

wherex ∈ R
3 is the position in space,xs ∈ R

3 is the source po-
sition,u is the displacement in frequency domain,ω is the angular
frequency,v(x) is the wave speed which depends on position, and
δ(x) denotes the 3-dimensional Dirac delta function.

We consider the case in which the wave speed is the sum of
two terms, a known smooth background speedc(x) and a pertur-
bation term that models scatterers or interfaces between different
media. We write

1

v2(x)
=

1

c2(x)
(1 + α(x)). (2)

and we refer toα(x) as the perturbation.
The fieldu(x, xs, ω) from a point-like source can be written

as the sum of an incident wave fieldG0(x, xs, ω) and a scattered
wave fieldus(x, xs, ω):

u(x,xs, ω) = G0(x, xs, ω) + us(x, xs, ω), (3)

whereG0(x,xs, ω) is the outgoing Green’s function. The Green’s
function satisfies (1) withv replaced by the known backgroundc.

We subtract the equation forG0 from (1), substitute (2), and
use Green’s method (e.g., Jackson 1998) to solve forus(x,xs, ω).
This results in the integral equation for the scattered field
us(x, xs, ω):

us(x, xs, ω) = ω2

Z

R3

α(y)

c2(y)
G0(x, y, ω)

×
`

G0(y, xs, ω) + us(y, xs, ω)
´

dy. (4)

Equation (4) is an integral equation that must be solved, rather
than simply a formula forus(x, xs, ω). For the inverse problem,
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Figure 1. Examples of single and multiple scattering.

where we knowc(y), G0(x,y, ω) and the values ofus(x, xs, ω)
at certain receivers, the right side of (4) contains a product of
two unknown quantities:us(x, xs, ω) in the scattering region and
α(x), which is the image of the medium we seek to determine. To
linearize the problem, we use the Born approximation to neglect
theus(x, xs, ω) term on the right side of (4). The Born approxi-
mation is valid when either the perturbationα(x) is small, or when
most of the received energy is due to single scattering (Fig.1). The
Born approximation is thus

us
B(x, xs, ω) = ω2

Z

R3

α(y)

c2(y)
G0(x,y, ω)G0(y, xs, ω)dy. (5)

Here the subscript ‘B’ stands for Born approximation.
In (5), we use the WKBJ approximation (e.g., Guilleminet al.

1977) forG0:

G0(x,y, ω) = A(y, x)eiωτ(y,x), (6)

whereτ (y, x) is the travel time for the wave propagating fromy
to x and can be computed by solving the Eikonal equation (e.g.,
Bleisteinet al. 2001).A(y, x) is the amplitude that satisfies the
first order transport equation (e.g., Bleisteinet al.2001).

In (5), we replaceG0 by (6) and replacex by xr since data
are collected only at locations of receivers (xr). We thus obtain an
expression for the recorded data:

us
D(xr, xs, ω) = ω2

Z

R3

α(y)

c2(y)
a(xs, y, xr)e

iωφ(xs,y,xr)dy,

(7)

where the subscript ‘D’ stands for data.a(xs, y, x) and
φ(xs, y, x) are defined by

a(xs, y, xr) = A(xs, y)A(y, xr), (8)

φ(xs, y, xr) = τ (xs, y) + τ (y, xr). (9)

2.1 Weighting Problem

The derivation of a inversion formula for the reconstruction prob-
lem in the ideal case where the data is known on a three dimensional
set can be found in the appendix. In the case where sourcesxs and
receiversxr are located on an irregular surface, we parametrize the
source-receiver geometry(xs, xr) by the two dimensional variable
σ = (σ1, σ2), and useσ to represent(xs, xr) in the remainder of
the paper. To form an image, we use an approximation of the inver-
sion formula (A.1)

IW (x) =
1

(2πc̄)3

X

σ

W (x,σ)

Z

c2(x)us
D(σ, ω)

a(x,σ)
e−iωφ(x,σ)dω

(10)

wherex is an image point,ω is angular frequency,IW (x) is the
image (subscript ‘W’ stands for weighted) ofα, W (x,σ) is the
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unknown weight function,̄c is the average of the background speed,
a is the amplitude (8), andφ is the total travel time (9). Here we
scale the problem by1/c̄3 because each functionφ in (A.13) is
roughly of order1/c̄ and we want to make the weight function a
reasonable size.

We substitute the forward model forus
D (7) into (10) to obtain

IW (x) =
1

(2πc̄)3

X

σ

W (x,σ)

Z

c2(x)

a(x,σ)
ω2

×

Z

R3

α(y)

c2(y)
a(y, σ)e−iω(φ(x,σ)−φ(y,σ))dydω. (11)

In (11), we make the approximations [see also (A.8) and (A.9)]

φ(x,σ) − φ(y, σ) ≈ ∇xφ(x,σ) · (x − y) (12)

a(x, σ) ≈ a(y, σ) (13)

and the change of variables

(ω, σ) 7→ k = ω∇xφ(x, σ), (14)

to obtain

IW (x) ≈

Z

R3

1

(2πc̄)3

X

σ

W (x,σ)

Z

ω2e−iω∇xφ(x,σ)·(x−y)dω

× α(y)dy (15)

=

Z

R3

KW (x, y)α(y)dy, (16)

where

KW (x,y) =
1

(2πc̄)3

X

σ

W (x,σ)

Z

ω2e−iω∇xφ(x,σ)·(x−y)dω

(17)

=
1

(2πc̄)3

X

xs,xr

W (x,xs, xr)

×

Z

ω2e−iω(∇xτ(xs,x)+∇xτ(x,xr))·(x−y)dω. (18)

Note that W (x,σ) = W (x,xs, xr). Both the travel times
τ (xs, x) and τ (x,xr) satisfy the Eikonal equation. The vec-
tors∇xτ (xs, x) and∇xτ (x,xr) have the same length, namely
1/c(x), and are tangential to the corresponding ray paths at the
pointx. The sum of these two vectors is a vector in the direction of
the bisector of the angle between the vectors, and its lengthin gen-
eral is between0 and2/c(x). Fig. 2 shows the bisector at one imag-
ing point from one source-receiver pair in a homogeneous medium.

Given any imaging pointx, in order to form an image ofα at
x, we would like to determineW (x,σ) or W (x,xs, xr) such that
KW (x,y) is as close as possible to the Dirac delta function. The
degree to whichKW (x, y) approximates a delta function is deter-
mined by the source-receiver geometry and the frequency band of
the data.

2.2 Weight Functions and Resolution

In the infinite band-width case, the set of bisectors at an imaging
point characterizes the resolution that can be achieved at that point.
In general, the directions in which most bisectors point will have
the best resolution, while those with few bisectors have poor reso-
lution. In the band-limited case (i.e., whenω is bounded), we define
thebisecting line segment

{ω(∇xτ (xs, x) + ∇xτ (x,xr)) : ω ranges over

the measured angular frequencies} (19)

∇xτ(xs,x)

θ

θ
x

∇xτ(xs,x) + ∇xτ(x,xr)

∇xτ(x,xr)

xr

xs

Figure 2. The bisector of one source-receiver pair in a homogeneous
medium at imaging pointx.

as the bisector scaled by frequency. The setΞx of points in the
union of all the bisecting line segments determines the resolution
of the backprojection. An example of a setΞx at one imaging point
is shown in Fig. 3.

A simple and intuitive choice forW is the constant weight
functionW (x,xs, xr) = 1. This is equivalent to calculating the
average of the backprojected data from all the source-receiver pairs
in reconstruction. A potential disadvantage of weighting each bi-
sector equally is suggested by the simple example ofΞx in Fig. 3,
in which all but one of the bisectors point in the horizontal direc-
tion. The point-spread function calculated with the constant weight
function at that imaging point (Fig. 4(a)) consists of vertical ridges,
which provide good resolution in the horizontal direction and al-
most no resolution in the vertical direction. In this case any infor-
mation provided by the backprojected data from the source-receiver
pair associated with the vertical bisector is overwhelmed by that
from the horizontal bisectors. However, if we assign a larger weight
value to the vertical bisector than to the horizontal one, the overall
resolution is improved (Fig. 4(b)).

Another implication of this example is that constant weight
functions can reduce the level of information when more observa-
tions are included in the inversion. Suppose initially we have only
one source-receiver pair that gives a vertical bisector. This will pro-
vide some resolution in the vertical direction, but no resolution in
the horizontal direction. If we add in source-receiver pairs with hor-
izontal bisectors with a constant weight function, we gain resolu-
tion in the horizontal direction but lose resolution in the vertical di-
rection. Because one would expect a reasonable weight function to
allow additional data to improve an image reconstruction, it would
appear that simple constant weights are not the best choice for ir-
regular and sparse geometries. In the next section we discuss a va-
riety of approaches to determining alternate weight functions.

3 DETERMINATION OF WEIGHT FUNCTIONS

3.1 Possible Approaches and Their Disadvantages

We investigated a number of approaches towards developing po-
tential weight functions, and begin with a brief summary of those
we found did not work well before extensively discussing one, the
test-function approach, that did.

• Backus-Gilbert method(Backuset al. 1968): The Backus-
Gilbert method is an inversion approach based on minimizingthe
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Figure 3. A 2-D example ofΞx with several near-horizontal bisectors and
only one vertical bisector. The horizontal axis isk1 and the vertical axis is
k2, wherek = (k1, k2)
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(a) Point-spread function with
constant weights. Horizontal axis
is z1 and vertical axis isz2 where
z = x − y in equation (18). The
units of point-spread function val-
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(b) Point-spread function with
non-constant weights. Axes are the
same as in 4(a).

Figure 4.

variance of the point-spread function. This method works well in
one dimensional problems but fails in higher dimensions dueto the
appearance of infinite variances in ridge-like terms that must be
added together in constructing the point-spread function.
• Interpolation and gridding-based methods: Interpolation and

gridding works well for applications such as MRI in which thesam-
pling is nonuniform but dense, but are less robust when data sam-
pling is sparse. Also, in order to use interpolation or gridding to
evaluate integrals such as (A.16)), the first step is to parameterize
the source-receiver geometry and compute (A.13), which is diffi-
cult in this case.
• The Voronoi diagram(e.g., Aurenhammer 1991): A Voronoi

diagram, named after Georgy Voronoi, can be used to decompose a
region into pieces based on distance to various points. For aprob-
lem in a bounded domain, a weight function can be derived from
a Voronoi diagram. However, our problem involves an unbounded
domain, and it is unclear what weights should be assigned to the
Voronoi cells on the boundary of the computational domain. More-
over, using weights derived from a Voronoi diagram also requires
first parameterizing the source-receiver geometry and computing
(A.13).

• Optimization using data as a constraint: The data constraint
approach expresses the desired perturbationα in terms of some ba-
sis, and minimizes theL2 norm ofα using the data as a constraint
(e.g., Asteret al.2005; Menke 1989). This method can be applied
to the sparse measurement environment, but this is a different ap-
proach to the inverse problem. A disadvantage of this methodlies
in its dependence on the size of the data set, which could be very
large. Moreover, any change in the data set requires that theentire
minimization procedure be carried out again. Another disadvan-
tage is that the size of the problem is determined by the number
of voxels in the mesh of the computational domain, and hence it
could be computationally expensive because a global solveris usu-
ally needed to compute the forward problem. Finally, this approach
provides no information about the resolution of the image.

3.2 The Test-Function Approach

In this section, we present an optimization method to determine a
weight functionW (x,xs, xr). An advantage of this method is that
it does not require the parametrization of the source-receiver geom-
etry or the computation of (A.13). Moreover, it does not depend on
the measured data itself, but only on the frequency band and the
locations of sources and receivers. Once the weight function is de-
termined with this method, the same weights can be applied tothe
inversion formula with any data set recorded with the same fre-
quency band using the same source-receiver geometry.

Our test-function approach finds the weight function that is
optimal in the sense that our point-spread function best approxi-
mates the Dirac delta function. To determine what “best” means,
recall that the delta function has the property

f(x) =

Z

δ(x − y)f(y)dy, (20)

for every smooth test functionf(x).
In this approach, we convolve a sequence of test functions

with our point-spread function. If we can determine a weightfunc-
tion so that each test function can be recovered, that weightfunction
should give a point-spread function close to a delta function. In par-
ticular, given any fixed image pointx, we choose non-overlapping
real test functionsχjkl(z) so that eachχjkl(z) is a smooth approx-
imation of the characteristic function supported on the(j, k, l)th

voxel. Note that other test functions can be chosen and the results
are not expected to be sensitive to the choice. First, we replacex−y

by z in the point-spread functionKW (x, y) and define

KW (z) =
1

(2πc̄)3

X

xs,xr

W (xs, xr)

×

Z

ω2e−iω(∇xτ(xs,x)+∇xτ(x,xr))·zdω (21)

where we drop thex dependence inW andKW because each cal-
culation is done withx fixed. We use the term “computational do-
main” to refer to the physical region of interest (denoted bythe
variabley) which is the same as the image region (denoted by the
variablex). The point-spread functionKW (z), however, depends
on z = x − y; we call the computational region inz the “z-
computational domain”. We wantKW (z) to have the same prop-
erty as delta function, and so require

Z

KW (z)χjkl(z)dz = χjkl(0). (22)

Because the sources and receivers are discrete, the weight
functionW at each imaging pointx is a vector whose dimension
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equals the number of source-receiver pairs. Here we use the term
weightsto refer to the elements of this vector, and note that the
weights are different for differentx.

To compute the left side of (22), whereKW is given by (21),
we can use a 3-Dnon-uniform fast Fourier transform(NUFFT)
(e.g., Greengardet al. 2004) to carry out thez integration, sam-
ple the result at the non-uniform locationsω(∇xτ (xs, x) +
∇xτ (x,xr)), and then carry out theω integration of (21). Alter-
natively, if we take the voxel size∆z less than a wavelength, we
can approximate the left side of (22) via the mean value theorem:

Z Z

ω2e−iω∇x(τ(xs,x)+τ(x,xr))·zdωχjkl(z)dz ≈

V

Z

ω2e−iω∇x(τ(xs,x)+τ(x,xr))·z̄jkldω. (23)

Here z̄jkl is the center point of the(j, k, l)th voxel andV repre-
sents the volume of each voxel. Taking small voxels significantly
decreases the computational cost of computing (21), at the expense
of increasing the size and ill-conditioning of the system ofequa-
tions (22).

Without loss of generality, we assumeχjkl(z̄jkl) = 1. With
(23), (22) becomes

1

(2πc̄)3

X

xs,xr

W (xs, xr)

Z

ω2e−iω∇x(τ(xs,x)+τ(x,xr))·z̄jkldω

=



1/V if z̄jkl = 0,
0 otherwise.

(24)

The equations defined in (24) can be written as a linear system
as follows. We enumerate the source-receiver pairs as(x

(n)
s , x

(n)
r )

for n = 1, . . . , N , and enumerate the voxels using the indexm =
1, . . . , M . Thus,m is an enumeration of the indicesj, k, l, and
there areM test functionsχm(z) for m = 1, . . . , M . The voxel
centers are denoted̄zm, and we assign the first voxel (pixel in 2-
D) at the origin, i.e.,̄z1 = 0 (an example of a mesh in a 2-Dz-
computational domain can be found in Fang (2008)). We multiply
both sides of themth equation by a positive constantλm. These
normalization parameters do not change the equations, but they will
play a role in the optimization scheme that we present later.In the
numerical simulations, we will chooseλ1 ≥ 1 andλm = 1 for
m ≥ 2 to emphasize the importance of the center peak of the point-
spread function. Letw be theN dimensional weight vector whose
elements areW (x

(n)
s , x

(n)
r ), and letA be theM -by-N matrix with

(m, n)th entryAmn defined to be

Amn =
λm

(2πc̄)3

Z

ω2e−iω∇x(τ(x
(n)
s ,x)+τ(x,x

(n)
r ))·z̄mdω (25)

Let r be theM -dimensional vector with components

rm = λmχm(z̄m) =



λm/V if z̄m = 0,
0 otherwise.

(26)

The normalized version of (24) becomes the linear systemAw =
r, which we then solve to find the weight functionw. However,
the matrixA is usually large, over-determined and ill-conditioned
due to the fact that the number of unknowns (given by the num-
ber of source-receiver pairs) is usually much less than the number
of knowns (given by the number of voxels or test functions), and
redundancy is also introduced by our use of small voxels. Conse-
quently, regularization is needed in order to obtain stablesolutions.
We use Tikhonov regularization (e.g., Asteret al.2005) and define
the functionalF

F(w) = λ2
0‖w‖2

2 + ‖Aw − r‖2
2, (27)

where‖ · ‖2 representsL2 norm, andλ0 is the Tikhonov regular-
ization parameter or damper. Note thatF(w) is always real. The
optimization scheme we use to compute the weight function isto
minimizeF(w), i.e.,

w = argminF(w). (28)

We can find an explicit formula for the solution of the regular-
ized minimization problem from thesingular value decomposition
(SVD) method (Demmel 1997). Using∗ for adjoint, we write the
SVD of A as

A = USV
∗, (29)

whereU andV areM -by-M andN -by-N unitary matrices, andS
is aM -by-N rectangular diagonal matrix whose diagonal elements
sn are the singular values ofA. Thus the solution to (28) is

w = V QU
∗
r, (30)

where

Q = (λ2
0I + S

∗
S)−1

S
∗. (31)

The matrixQ is aN -by-M rectangular diagonal matrix with main
diagonal entries

qn =
sn

s2
n + λ2

0

, (32)

for n = 1, . . . , N . We call the weights calculated from this method
the optimization weights. The optimization weights represent all
the components of the vector of theoptimization weight function
W at a certain imaging point.

Solving (28) does not guarantee that the optimization weight
function w is non-negative, by which we mean that both the real
and imaginary parts ofw are non-negative. For the correspond-
ing MRI problem, Samsonov et al. (2003) and Bydder et al (2007)
suspect that negative weights come from the instability of the inver-
sion and result in worse reconstruction than non-negative weights.
In our particular problem, the Tikhonov regularization parameter
λ0 controls the size of the optimization weights: a smallλ0 to
results in wildly fluctuating weights, while a largerλ0 will make
most weights positive. An ideal choice ofλ0 would improve both
the point-spread functions and the backprojection reconstruction.
In the next section we discuss numerical results that provide some
guidance on choosingλ0.

To summarize, our algorithm for calculating the optimization
weights as follows.

(i) List the source-receiver pairs(x(n)
s , x

(n)
r ), wheren is no

greater than the number of source-receiver pairs.
(ii) Choose an imaging pointx.
(iii) Create aJ-by-K-by-L mesh in thez-computational do-

main. The mesh can be chosen the same for different imaging
points. Write all the voxels in the mesh as an ordered list with the
first voxel centered at the origin. The center point ofmth voxel is
z̄m , wherem ≤ J × K × L.

(iv) Setλm = 1 for m ≥ 2, and chooseλ0 andλ1. Both pa-
rameters should be positive.

(v) Construct the matrix[Amn] by (25) frommth test function
andnth source-receiver pair.

(vi) Construct the vectorr by (26).
(vii) Find the singular value decomposition of the matrixA.
(viii) Construct the rectangular diagonal matrixQ by (32) from

the singular values ofA andλ0.
(ix) Calculate the optimization weightsw atx by (30).
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Figure 5. Geometry of sources (circles) and receivers (triangles). Black
square locates the computational domain for reconstruction experiments
done in section 3.4. Stars and squares indicate positions where point-spread
functions are computed in section 3.5.1. Bisecting line segments are shown
only at stars.

(x) Pick the next imaging point, go back to step (iii) and fol-
low the same procedure until the optimization weights have been
calculated for all the imaging points.

3.3 Numerical Simulations

We created an example with geometry typical of a passive seismic
imaging problem (Fig. 5) to illustrate the test-function technique.

For the sake of simplicity, we consider only two-dimensional
geometries (i.e., medium parametersv(x), c(x) and α(x) vary
only in thex1 andx3 directions, and the sources and receivers are
located in the planex2 = 0). Thusx = (x1, x3), y = (y1, y3),
z = (z1, z3) andk = (k1, k3). We also assume the background
wave speed is constant everywhere, i.e.,c(x) = c = c̄; we take
this constant to be5km/s. In the constant-speed case, ray paths are
straight lines and the calculation of the travel time, Green’s function
and∇xτ (x,y) are simple evaluations of

τ (x,y) =
‖x − y‖

c
, (33)

G0(x,y, ω) =
ei ω

c
‖x−y‖

4π‖x − y‖
, (34)

∇xτ (x,y) =
x − y

c‖x − y‖
. (35)

The wave is emitted by each source and recorded by all re-
ceivers, and no two sources emit waves at the same time (so that
waves from different sources do not interfere with each other).

We assume we start with real data and that the frequencyω
satisfiesω ∈ Ω = {ω|ωl ≤ |ω| ≤ ωh}, whereωh andωl are
the highest and lowest positive frequencies, respectively. For ap-
plications that use real signals, such as seismic imaging, applying
the Fourier transform to the time-domain measurements results in
both positive and negative frequency content. In this case,A is a
real matrix, because the imaginary part of the integrated function
in equation (25) is an odd function. Thus, in our case,A, w andr

are all real quantities. However,A, w andr might be complex for

applications that use analytic signals, such as radar imaging, where
recorded data is preprocessed by removing the negative frequency
content.

Equation (23) does not change if the signs ofzm andω are
simultaneously reversed. This symmetry, together with thefact that
we use both positive and negative frequencies, results in redundan-
cies in the set of equations (24). We avoid these redundancies, and
thus decrease the dimension ofA, by using only that half of the
z-computational domain with non-negative horizontal coordinates.
Details regarding the calculation ofA under these assumptions are
discussed in Fang (2008).

In choosing the normalization parameters, we assumeλ1 cor-
responds to the test function supported on the pixel that contains
the origin of thez-computational domain. If the number of test
functions is large,λ1 should be large. Otherwise, the solution to
our least squares problem tends to zero as the number of equations
in the problem becomes larger, since only the first entry ofr is
nonzero. This phenomenon can be seen from the QR factorization
of A. We chooseλ1 ≥ 1, andλm = 1 for m ≥ 2 so that point-
spread functions at different locations have almost the same center
height.

3.4 Regularization Experiments

The choice of regularization parameter or damperλ0 affects both
the resolution and stability of reconstructions. To evaluate the ef-
fects ofλ0, we created an example problem with a source-receiver
configuration (Fig. 5) meant to mimic the locally recorded earth-
quake imaging environment with irregular spacing of sources and
receivers [locations are based on a microearthquake network from
central California (e.g., Roeckeret al.2006)].

The objective is to reconstruct a point-like scatterer 10 m in
extent located aty0 = (4.3, 2.1). We assume a frequency band
from 5Hz to 50 Hz and -5 Hz to -50 Hz; consequently the smallest
wavelength is100m. We take the normalization parameterλ1 to be
20, and setλ0 to 1, 500, and finally 10,000.

We show plots of both the point-spread function and recon-
structions. For the reconstructions, the computational domain is the
square‖x−(4.3, 2.1)‖∞ ≤ 0.6 km (the black square shown in Fig.
5), and the mesh size is10 m. Hence we have1200×1200 imaging
points in the computational domain for the reconstructions.

For the plots of the point-spread function, thez-computational
domain is‖z‖∞ ≤ 0.6 km, again with mesh size10 m. How-
ever, because of the symmetry of (23) mentioned above, we carry
out computations only for the half of the region with non-negative
horizonal coordinates (i.e.,600 × 1200 points), and consequently
we have only600 × 1200 test functions. Because the mesh size
is smaller than the smallest wavelength, we are able to use the ap-
proximation (23).

Mathematically, the scatterer is defined as

α(y) =



1 if ‖y − y0‖∞ ≤ 5m,
0 otherwise,

(36)

where‖ · ‖∞ represents the infinity norm and is defined to be the
maximum absolute value of all elements of a vector. Note thatthe
scatterer size is less than the shortest wavelength (100m) in our
simulation.

The simulation data are calculated using equation (7) with
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α(x) defined by (36). As the background speed is constant,

a(xs, y, xr) =
1

16π2‖xs − y‖‖y − xr‖
, (37)

φ(xs, y, xr) =
‖xs − y‖ + ‖y − xr‖

c
. (38)

Since the size of the scatterer is relatively small, we use the follow-
ing approximation of the scattered wave:

us
D(xr, xs, ω) =

ω2

c2

Z

a(xs, y, xr)e
iωφ(xs,y,xr)α(y)dy,

≈ 10−4 ω2

c2
a(xs, y0, xr)e

iωφ(xs,y0,xr), (39)

where10−4 comes from the area of the point-like scatterer. Note
that this approximation is equivalent to setting

α(y) = 10−4δ(y − y0), (40)

which justifies calling it a point-like scatterer.
To simulate band-limited data, we setus

D(xr, xs, ω) to zero
outsideΩ = {ω|ωl ≤ |ω| ≤ ωh}, and take the inverse Fourier
transform ofus

D(xr, xs, ω) to recover the time-domain scattered
waveûs

D(xr, xs, t):

ûs
D(xr, xs, t) =

Z

Ω

e−iωtus
D(xr, xs, ω)dω, (41)

=
a(xs, y0, xr)

104c2

Z

Ω

ω2e−iω(t−φ(xs,y0,xr))dω.

(42)

Because we do not have zero frequency data, backprojection
by (A.16) cannot recover the actual image even when the sources
and receivers are equally spaced. Nevertheless, the correct locations
of discontinuities can be recovered (e.g., Bleisteinet al.2001), and
more information about a point scatterer can be recovered ifthe
image is scaled properly. If we useα(y) = Rδ(y − y0) in (10),
the image value at the scatterery0 is

IW (y0) =
1

(2πc̄)3

X

σ

W (y0, σ)

Z

Ω

c2(y0)

a(y0, σ)
ω2

×

Z

R3

Rδ(y − y0)

c2(y)
a(y, σ)e−iω(φ(y0,σ)−φ(y,σ))dydω

(43)

=
R

(2πc̄)3

X

σ

W (y0, σ)

Z

Ω

ω2dω. (44)

This suggests that the image value isR multiplied by the k-space
“volume” VK(y0), which is given by

VK(x) =
1

(2π)3

Z

dk

≈
1

(2πc̄)3

X

σ

W (x,σ)

Z

Ω

ω2dω. (45)

[To compare with the case of a continuum of sources and receivers,
see equations (A.17) and (A.18).] If we scale the image by dividing
it by the k-space “volume” (45), then we can recover the amplitude
R at the scatterer. The quantityR is exactly the center peak of the
point-spread function atx. Since we chooseλ1 large enough so
that the point-spread function at different locations in our compu-
tational domain has almost the same peak value, the scaling factor
VK(x) is almost constant everywhere. Note that scaling the point-
spread function changes neither the resolution nor the stability of
backprojection. Because our purpose here is to examine resolution
and stability, we ignore the scaling in our simulations.

Note that in all our simulations, the units on the horizonal and
vertical axes in the point-spread function plot, in the reconstructed
image, and in the half-maximum-value contour plot arekm. The
units of point-spread function values are1/km2. The imageI(x)
is dimensionless in our formulation. The units on the horizonal and
the vertical axes in the plots of bisecting line segments are1/km.
Because of our choice of scaling, the weight functionw is dimen-
sionless. Throughout the sections 3.4 and 3.5, we consider these
units as default units, unless explicitly stated otherwise.

3.4.1 Simulation Results

The results shown in columns2 through4 in Fig. 6 illustrate how
the regularization parameterλ0 affects reconstruction when opti-
mization weights are used. For comparison purposes, column1
shows results from assuming constant weights (i.e.,w = 1) scaled
so that the point-spread function has the same height as in the op-
timization weights case. Rowa in Fig. 6 shows the bisecting line
segments defined by (19) shaded according to the corresponding
weight. We plot only the positive frequency part; the corresponding
negative-frequency bisecting line segment simply has the opposite
sign. The constant weights case shown in column 1 is simply a plot
of all the bisecting line segments with the same grey scale value.
Columns 2-4 show the case of optimization weights with increas-
ing choices ofλ0. The distribution of bisecting line segments is the
same as for the constant weights, but many of the bisecting line seg-
ments have small weights and cannot be seen with this color scale.
This is particularly true forλ0 = 1, where weight values lie in a
wide range, roughly from -200 to 300. As expected, the size and
range of the weight values decreases as damping increases. In the
case ofλ0 = 10, 000 (column 4), the weight values are small and
most are positive. One phenomenon we see in Fig. 6(a4) is thatthe
directions with fewer bisectors have higher weight values and the
directions with more bisectors have smaller weight values.

Rowb shows the point-spread function at the scatterery0. The
point-spread function computed with constant weights (column 1)
has a high peak at the center, but is elongated in the verticaldirec-
tion, meaning that the reconstruction at this point has better resolu-
tion in the horizontal direction. There are many more bisecting line
segments pointing in the horizontal direction, and weighting each
direction equally degrades the resolution in the vertical direction.
By contrast, the point-spread functions calculated using the opti-
mization weights shown in columns 2-4 are much narrower in the
vertical direction than the one calculated using constant weights.
The similarity in the shape of the function for different choices of
λ0 indicate that resolution is not overly sensitive to the choice of
damper.

Row c shows reconstructions of the scatterer using simula-
tion data without noise. In most cases, the reconstruction is similar
to the point-spread function shown in rowb. Note that the point-
spread function is calculated using (18) and the image is calculated
using (10). They are related by equation (16) and should be almost
the same ifα(x) is a point-like scatterer. However, a difference be-
tween them arises as we pass from (11) to (15), namely that we have
made the approximations (12) and (13), which are good whenx is
close toy, but not when they are far apart. The reconstruction sim-
ulation result suggests these approximations work well with con-
stant weights, but require regularization when using optimization
weights. In particular, a choice ofλ0 = 1 shows a localized scat-
terer at the center, but the reconstruction is corrupted away from the
scatterer, because the errors made in using the approximations (12)
and (13) are significantly amplified by large magnitude weights.
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Figure 6. Bisecting line segments (first row), point-spread functions (second row), and reconstructions (three lower rows) for constant weight (column 1),
λ0 = 1 (column 2),λ0 = 500 (column 3), andλ0 = 10, 000 (column 4) using source-receiver configuration in the geometry shown in Fig. 5. The
reconstructions were done using data without noise (third row), with 10% Gaussian noise (fourth row), and with up-to-50-meter positioning error in the
source-receiver locations (fifth row). The computational domain in these reconstructions corresponds to the black square in the geometry in Fig. 5. For the
figures on the first row, the horizontal axis isk1, and the vertical axis isk3. The units on both axes are1/km. For the figures on the second row, the horizontal
axis isz1, and the vertical axis isz3. The units on both axes are km. For the figures on the third to fifth row, the horizontal axis isx1, and the vertical axis is
x3. The units on both axes are km.

The results in columns 3 and 4 show that these artifacts can be
eliminated by proper damping, and we can achieve a significantly
better reconstruction than when using constant weights.

Row d shows the reconstruction with 10% Gaussian noise
added to the simulation data. Although the reconstruction in each
case is noisier, and fails in the case of small damping (column
2), in general both the constant weights and properly dampedop-
timized weights are reasonably insensitive to noise at thislevel,
although again the reconstruction using properly regularized opti-
mized weights is superior.

Row e shows the reconstruction with random errors of up to
50 meters added to the locations of the sources and receivers(50
meters is the half minimum wavelength in this case). We note that
errors in the earthquake source location can easily give rise to 50-
meter positioning errors; for other applications such as radar, po-

sitioning errors of half a wavelength are difficult to avoid.For po-
sitioning errors larger than a wavelength, other methods such as
autofocus techniques (e.g., Jakowatzet al.1996) would need to be
applied to compensate for this type of error. Again, proper damp-
ing plays a significant role as the two cases with small damping
(columns 2 and 3) fail to locate the scatterer in the correct posi-
tion (the peak in theλ0 = 500 example is about 140 meters away
from the true location). Both the constant weight and large damping
results show a centralized peak in the correct position, with some
smaller amplitude side lobes, but that obtained from optimization
weights is more strongly localized.

As shown in (32), the main effect of the damper is to lessen
the influence of small singular values. An examination of thesin-
gular values forA (Figures 7(a) and 7(b)) shows that our pre-
ferred value ofλ0 = 10, 000 is greater than 90% of the singular
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Figure 7.

values. This suggests that a relatively small number of bisectors,
mostly those from source-receiver combinations whose bisector di-
rections are relatively sparse, are significantly affectedby the opti-
mization. Optimization weights from regularization parameters that
exceed the values of the largest singular value (λ0 = 120, 000 and
λ0 = 200, 000) are all positive and nearly constant. The result-
ing point-spread functions and reconstructions are not very differ-
ent from the results with constant weights. Becauseλ0 controls the
magnitude of our weight vectorw, the term‖w‖2

2 becomes domi-
nant in the minimization scheme whenλ0 is chosen this large.

The results of this test show that the choice ofλ0 depends
on the noise level in the data and the accuracy of the locations of
sources and receivers. There is no simple formula for choosingλ0,
but we see that asλ0 is increased, more of the optimization weights
tend to be positive. This suggests that we chooseλ0, so that most
of the optimization weight values are positive. In this paper, the
simulation results we show in the next section were calculated with
values ofλ0 chosen using this criterion.

3.5 Numerical Examples of Weights in Seismic Imaging

We carried out some numerical experiments to assess the improve-
ment of resolution at selected imaging points due to the use of the
weights obtained by our method. We show the results of one ex-
periment and simply summarize the results of others, which are
reported more fully in Fang (2008).

Table 1. List of parameters. The reconstructions used16 sources and16
receivers, and the wave speedc was5km/s.f is frequency.

|f | z-computational domain ∆z λ0 λ1

5Hz-50Hz ‖z‖∞ ≤ 0.6km 0.01km 104 20

3.5.1 Local/Regional Passive Source

We applied our test-function approach to the source-receiver ge-
ometry shown in Fig. 5. We calculate the point-spread functions
at 7 × 5 locations (indicated by stars and squares shown in Fig.
5) where adjacent imaging points are separated by1 km in both
horizontal and vertical directions.

Comparing the point-spread functions computed with constant
weights (Fig. 8) and with optimization weights (Fig. 9), we find
that the point-spread functions with the optimization weights are
sharper and more focused than the ones calculated with constant
weights, especially for the imaging points close to the center of our
computational domain.

We quantify the resolution at a pointx0 by the volume (or area
in 2-D) of the enclosed region determined by the half-maximum-
value contour of the point-spread function. This contour also pro-
vides not only a quantitative measure of the improvement butalso a
rough estimate of resolution in every direction. For example, for the
imaging point shown at the center, the half-maximum-value area
for constant weights is15102 m2, while that from the optimiza-
tion weights is1649 m2. At this point, the half-maximum-value
contour from optimization weights has an elliptical shape.The best
resolution, which is in the direction of the minor axis, is about 30
m , while the worst resolution, in the direction of the major axis, is
about70 m . As the minimum wavelength in this example is100
m, we obtain sub-wavelength resolution that is roughly consistent
with the resolution limit of one fourth the minimum wavelength
(e.g., Bleisteinet al.2001).

An understanding of the importance of the weights can be ob-
tained by simply plotting the bisecting line segments. Fig.11 shows
a plot of the bisecting line segments colored according to the opti-
mization weights. We see that in general, bisectors in areasof lower
density are assigned higher weights, while the redundant informa-
tion from regions of high density are assigned lower weights.

3.5.2 Summary of Other Experiments

We also tested our approach with regular source-receiver geome-
tries such as active source profile and cross-hole. In these cases
the bisecting line segments are more evenly distributed, the con-
stant weights work relatively well, and optimization weights don’t
improve resolution much. In such cases, computing optimization
weights may not be worth the extra effort.

We also tested this approach with the same geometry but dif-
ferent frequency content. The point-spread functions fromdiffer-
ent frequency content roughly have the same shape, but very dif-
ferent scale. To explain this phenomena, we consider the region
covered by the set of bisecting line segments. This region isa dis-
crete approximation to the data-collection manifold described in
the appendix [below (A.18)]. For a narrower and lower frequency
band, the region covered by the set of bisecting line segments is
a relatively small area, while for the higher and broader frequency
band, this region is larger. The larger region results in a better point-
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Figure 8. Plots of the point-spread functions using constant weights. The horizontal axis isz1 and the vertical axis isz3. The units on each axis are km. The
units of the point-spread function values are1/km2. The locations correspond to the7 × 5 different imaging points designated by the stars and squares in the
geometry in Fig. 5.

spread function. Consequently, to produce an image with better res-
olution, a broader frequency band should be used.

4 CONCLUSIONS

We have developed a method to handle imaging problems in which
the sensor geometry is irregular and sparse. Our analysis shows
that a plot of the bisecting line segments can be used as a guide
in the reconstruction process. If the bisecting-line-segment plot is
regular, then good images can be formed by simply adding data
from the various source-receiver pairs, and resolution in various
directions can be estimated from the plot. On the other hand,if the
plot of bisecting line segments is irregular and has gaps, then data
from different source-receiver pairs should be weighted differently.
In this case, our method produces weights that gives rise to the
“best” point-spread function; once the weights are obtained, they
can then used to weight the data properly to produce the “best”
image. In other words, this approach provides not only an image,
but also a point-spread function from which image resolution can
be determined.

In calculating the weights, we found that in order to gain sta-
bility with respect to noise and sensor-positioning errors, the reg-
ularization parameter should be chosen so that the optimization
weight values are mostly positive.

Our method can be used as a tool for planning an experiment:
given sensor positions and bandwidths, we can plot the correspond-
ing point-spread function and thus predict resolution in different di-
rections at desired locations. For example, our tests with sensors of
different bandwidths show that a broad frequency band is needed
to reconstruct small objects.

APPENDIX A: BACKPROJECTION RECONSTRUCTION

In this section, we briefly review a derivation (e.g., Bleistein et
al. 2001; Beylkin 1985) of a formula for inverting (7) in the ideal
case where the data is known on a three dimensional set of points
(ω,xs, xr). We parameterize the source-receiver geometry by the
two dimensional variableσ = (σ1, σ2), and useσ to represent
(xs, xr).

In the case of 3-D densely sampled data, we look for an inverse
to (7) in terms of a filtered adjoint:

I(x) =

Z Z

b(x,σ)us
D(σ, ω)e−iωφ(x,σ)dωdσ. (A.1)

Here I(x) is called the image ofα(x) and the expression for
b(x,σ) is determined below.

We can carry out theω integration in equation (A.1) to obtain

I(x) =

Z

b(x,σ)ûs
D(σ, φ(x,σ))dσ. (A.2)

This equation says the data from the source-receiver pairσ at time
t is first filtered byb(x, σ), then backprojected to (i.e., spread out
over) the surface{x|φ(x, σ) = t}. The imageI(x) is then the
superposition of all the backprojected data from all source-receiver
pairs. For this reason, this method is often referred to as the back-
projection method.

To determineb(x, σ), we analyze the relationship between the
imageI(x) and the actual perturbationα(x). To do this, we plug
(7) into (A.1) and change the order of integration. This results in

I(x) =

Z

K(x, y)α(y)dy, (A.3)

whereK(x, y) is thepoint-spread function

K(x, y) =

Z

ω2

c2(y)
a(y, σ)b(x,σ)e−iω(φ(x,σ)−φ(y,σ))dωdσ.

(A.4)
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Figure 9. Plots of point-spread functions using optimization weights. The units and symbols are the same as in Fig. 8.

To obtain an optimal image, we would like the right hand side
of the equation (A.3) to be a convolution ofα(x) with δ(x), which
we write as

δ(x − y) =
1

(2π)3

Z

R3

e−ik·(x−y)dk. (A.5)

We analyze (A.4) by the method of stationary phase (e.g.,
Duistermaat 1995; Grigiset al. 1994). The main contributions to
(A.4) come from the critical points, which are obtained fromdif-
ferentiating the phase of (A.4) with respect toω andσ. We find that
the critical conditions are

φ(x,σ) = φ(y, σ), (A.6)

ω∇σφ(x,σ) = ω∇σφ(y, σ). (A.7)

We assume here that there are solutions to (A.6) only whenx = y

(e.g., Bleisteinet al. 2001; Beylkin 1985). In the neighborhood of
x = y, we can use the following approximations in (A.4).

b(x, σ) ≈ b(y, σ). (A.8)

ω(φ(x,σ) − φ(y, σ)) ≈ ω∇xφ(x, σ) · (x − y). (A.9)

In (A.4) we replaceb(x,σ) by b(y, σ) and make the change
of variables

(ω,σ) 7→ k = ω∇xφ(x,σ) (A.10)

to get

K(x, y) ≈

Z

ω2(k)

c2(y)
a(y, σ(k))b(y, σ(k)) |J(k)| e−ik·(x−y)dk

(A.11)

whereJ(k) = det(∂(ω,σ)/∂k). Note that

1

J(k)
= det

„

∂k

∂(ω, σ)

«

, (A.12)

= ω2det

0

@

∇xφ(x,σ)
∂

∂σ1
∇xφ(x,σ)

∂
∂σ2

∇xφ(x,σ)

1

A , (A.13)

= ω2h(x, σ). (A.14)

Comparing (A.11) with (A.5), we see
that we should choose b(y, σ(k)) such that
ω2(k)c−2(y)a(y, σ(k))b(y, σ(k)) |J(k)| = (2π)−3. Thus
we have an explicit form forb(y, σ), namely

b(y, σ) =
c2(y) |h(y, σ)|

(2π)3a(y, σ)
. (A.15)

Using the above expression forb(y, σ) in equation (A.1), we
obtain the inverse formula to reconstructα(x), namely,

I(x) =

Z Z

c2(x) |h(x,σ)|

(2π)3a(x, σ)
us

D(σ, ω)e−iωφ(x,σ)dωdσ.

(A.16)

Because our data are band-limited and the source-receiver ge-
ometry is finite, the integration region of (A.11) is a bounded do-
mainΩx rather than all ofR3 space. As a result,α(x) cannot be
perfectly recovered. However, the point-spread functionK(x, y)
quantifies the degree to which our image faithfully represents the
trueα(x). Using (A.15) in equation (A.11), we get

K(x, y) =
1

(2π)3

Z

|h(x, σ)|

Z

ω2e−iω∇xφ(x,σ)·(x−y)dωdσ.

(A.17)

The degree to whichK(x, y) approximates a delta function is de-
termined by the source-receiver geometry and the frequencyband
of the data. In the continuum case, we can make change of variables
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Figure 10. Half-maximum-value contours of the point-spread functions calculated with optimization weights (the contours filledwith black) and constant
weights (the outer contours). The horizontal axis isz1 and the vertical axis isz3. The units on each axis are km. The7×5 different imaging points correspond
to both stars and squares in the geometry in Fig. 5. The numbershown outside the parenthesis is half-maximum-value area with optimization weights. The
number shown inside the parenthesis is half-maximum-valuearea with constant weights.

(A.10) and definez = x − y in (A.17). Thus we obtain

K(z) =
1

(2π)3

Z

Ωx

e−ik·zdk, (A.18)

where the data-collection manifoldΩx is the set ink-space, ob-
tained from the change of variables (A.10), that corresponds to the
bandwidth (set of frequenciesω) and survey geometry (set of bi-
sectors∇φ(x, σ) asσ ranges over the sources and receivers). If
the data-collection manifoldΩx is the whole spaceR3, then (A.18)
is a delta function, which justifies our choice forb(y, σ).
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