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SUMMARY

We consider the problem of using scattered waves to recomanage of the medium in which
the waves propagate. We address the case of scalar wavedhehssurces and receivers are
sparse and irregularly spaced. Our approach is based omtile-scattering (Born) approxi-
mation and the generalized Radon transform. The key to mansibarse sources and receivers
is the development of a data-weighting scheme that comges&a nonuniform sampling. To
determine the appropriate weights, we formulate a critefar measuring the optimality of
the point-spread function, and solve the resulting optittidn problem using regularized least-
squares. Once the weights are determined, they can be usethpute the point-spread func-
tion and thus determine resolution, and they can also beeapial the measured data to form
an image. Tests of our minimization scheme with differegutarization parameters show that,
with appropriate weighting, individual scatterers candmoived at sub-wavelength scales even
when data is noisy and the locations of both sources andversedre uncertain. We show an
example in which the source-receiver geometry and frequleandwidths correspond to seis-
mic imaging from multiple local earthquakes (passive s@ismaging). The example shows
that the weights determined by our method improve the réisoluelative to reconstructions
with constant weights.

Key words. imaging — backprojection — sparse measurements.

1 INTRODUCTION tern. In the case of passive seismic source (e.g., earthyjurakg-
) ) ing with a regional array, both the source and receiver ionatcan
The analysis of records of scattered waves to recover inzgas be sparse and highly irregular.

medium through which they propagate is a subject of greateést

to many fields, including medical ultrasound imaging, radzag-

ing, and seismology. In general, the scattered wave invanie-

lem is nonlinear, but in many cases we can reasonably approxi
mate the relationship between the medium and the scattexied fi
by theBorn approximatioror single-scatteringapproximation. In
this case the resulting linear operator igemeralized Radon trans-
form (GRT) (e.g., Beylkin 1984; Beylkin 1985) which is a type In the last few decades there has been abundant research re-
of Fourier integral operator(FIO) (e.g., Duistermaat 1995; Grigis  lated to the direct inversion of the Fourier transform onreggular

et al. 1994). An asymptotic inversion of the generalized Radon grid, much of it focused on thidonuniform Fast Fourier Transform

To handle observations made on a non-cartesian grid, one
can either interpolate to a cartesian grid, or attempt todlean
the Fourier inversion directly. In the latter approachinuittely a
weight function needs to be chosen to compensate for thentonu
form sampling. In the literature of MR, this weight funatids re-
ferred to as aampling density compensation function

transform can be derived using FIO theory (e.g., Duistetrhd95; (NUFFT). The NUFFT arises not only in many inverse problems,
Grigis et al. 1994). Just as for the classid@hdon transforn{e.g., but also in signal processing and image processing. Sesteidies
Nattereret al.2001), the inverse operator that maps scattered waves (€.9., Greengaret al. 2004; Duttet al. 1993; Nguyeret al. 1999;

to the wave speed is a filtered adjoint operator of the forvomet- O’Sullivan 1985; Fessleet al. 2003) review methods using inter-
ator. This method has the physical interpretatiobadkprojection polation and gridding techniques that can achieve fasutation

of NUFFT with high accuracy, and other researchers (e.gksim

et al. 1991; Pipeet al. 1999; Malik et al. 2005) studied the sam-
pling density weight function in the gridding method in MMy-
dderet al. (2007) evaluated different density weight functions for
the gridding method in MRI, and Samsoneial. (2003) presented
a method to calculate the sampling density weight functipop
timizing thepoint-spread functiotrased on the gridding method.

The GRT approach reduces the inverse problem to one of in-
verting the Fourier-like transform from data generatedracdrded
at a certain set of points. When these points are uniforntypéed
on a cartesian grid, the application of GRT is relativelyistintfor-
ward. There are many instances, however, where either bhgrdes
or physical necessity, the geometry is not so simple. Fomele,
in radar imaging (e.g., Borden 1999), data is usually ctéleéon
a polar coordinate grid, and in magnetic resonance imaditij( Interpolation, gridding, and related techniques (e.g.niva
(e.g., Lianget al.2000), the recorded data has a spiral sampling pat- 2003; Wanget al. 2009) are known to work well when the data is


https://core.ac.uk/display/357233841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Y.Fang, M. Cheney and S. Roecker

densely sampled. However, in many seismic and radar imaging
plications, sources and receivers are sparsely locatédnahese

Source Receiver Source Receiver Source Receiver

cases, one can not apply NUFFT directly because the measured

data is not simply a Fourier transform of the unknown medium.
To convert the data to a Fourier transform, one must carradut
ditional steps of parameterizing the source-receiver gggnand
changing the variables of integration.

We can forego these additional steps by avoiding interjpriat
and gridding altogether, and instead determining a weigittfon
that not only compensates for the nonuniform sampling laa at-
counts for the Jacobian term from the change of variablethin
paper, we use this approach to address situations in whiglce®
and receivers are sparsely located on an irregular gridattico-
lar, we derive a weight function that gives rise to an imagystem
with the best point-spread function. To do this, we base amrkwn
a mathematical model for the forward problem and then determ
an inversion formula using the results from FIO theory. Wenth
present an optimization method based on the notiqgeagralized
functions(e.qg., Friedlandeet al. 1998), and discuss the intrinsic
trade-off between resolution and stability. Finally, wenshhow
these different weight functions may be applied in souszeiver
geometries relevant to both active and passive source isdisag-

ing.

2 PROBLEM FORMULATION

The propagation of waves that emanate from an impulsivet poin
source in an isotropic medium is governed, in the frequermy d
main, by the Helmholtz equation

u]2
v? ()
wherez € R3 is the position in space;, € R? is the source po-
sition, u is the displacement in frequency domainis the angular

Viu(e, zs,w) + w(x, s, w) = —6(x —xs), (1)
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Figure 1. Examples of single and multiple scattering.

where we know(y), Go(x,y,w) and the values of’(z, ., w)

at certain receivers, the right side of (4) contains a prodic
two unknown quantitiesy®(x, s, w) in the scattering region and
a(x), which is the image of the medium we seek to determine. To
linearize the problem, we use the Born approximation to ewg|
theu®(x, z,,w) term on the right side of (4). The Born approxi-
mation is valid when either the perturbatiof) is small, or when
most of the received energy is due to single scattering (Jigrhe
Born approximation is thus

u%(w7a“57w) :w2/ %Go(w7y7w)G0(y7ws7w)dy' (5)
3 c*(y)
Here the subscript ‘B’ stands for Born approximation.
In (5), we use the WKBJ approximation (e.g., Guillereiral.
1977) forGo:

iwT(y,x)

Go(mvva) = A(yvm)e (6)

where(y, z) is the travel time for the wave propagating fragm
to  and can be computed by solving the Eikonal equation (e.g.,
Bleisteinet al. 2001). A(y, «) is the amplitude that satisfies the
first order transport equation (e.g., Bleisteiral. 2001).

In (5), we replace7, by (6) and replace: by ., since data
are collected only at locations of receivess.]. We thus obtain an

frequencyp(z) is the wave speed which depends on position, and expression for the recorded data:

d(x) denotes the 3-dimensional Dirac delta function.

We consider the case in which the wave speed is the sum of wp(z,, z,,w) = w? /
R

two terms, a known smooth background spegéed) and a pertur-
bation term that models scatterers or interfaces betwe@aratit
media. We write

1 1

@) %(1 + a(x)). 2

and we refer tex(x) as the perturbation.

The fieldu(x, z,w) from a point-like source can be written
as the sum of an incident wave figléh(x, ¢, w) and a scattered
wave fieldu® (x, s, w):

u(a:,a:s,w) = G()(ﬂ?,ﬂ?s,u)) + ’U,S(ﬂ?7:1337u))7

©)

whereGo(x, z,w) is the outgoing Green’s function. The Green’s
function satisfies (1) witl replaced by the known background

We subtract the equation f@¥, from (1), substitute (2), and
use Green'’s method (e.g., Jackson 1998) to solve¥gt, ., w).
This results in the integral equation for the scattered field

u’(z, xs,w):
a(y)

us(w7ws7w):w2/ 5
s ¢(y)
X (Go(y,as,w) +u’(y, s, w))dy.

Go(z,y,w)
4)

Equation (4) is an integral equation that must be solveterat
than simply a formula fow®(x, z,,w). For the inverse problem,

a(y)
s c2(y)

iW¢(w3¢y¢wT)dy

@)

where the subscript ‘D’ stands for datau(xzs,y,x) and
o(xzs,y, x) are defined by

a(xs,y,zr)e

®)
)

CL(ZDS, Y, ﬂ?r) = A(:‘DS? y)A(y7 337‘)7
(s, y, @) = 7(2s,9) + 7(y, @)

2.1 Weighting Problem

The derivation of a inversion formula for the reconstruetfrob-
lemin the ideal case where the data is known on a three diomsdsi
set can be found in the appendix. In the case where soutrcead
receiverse, are located on an irregular surface, we parametrize the
source-receiver geometfy s, «.-) by the two dimensional variable
o = (01, 02), and user to represenfxs, x,) in the remainder of
the paper. To form an image, we use an approximation of tre-nv
sion formula (A.1)

*(@)up(o,w)

@) — 2o [ L oiwb @) g
Iw(@) = (2@)3;”/( ’ )/ a(z, o) d
(10)

wherex is an image pointw is angular frequencylw (x) is the
image (subscript ‘W’ stands for weighted) of W («x, o) is the
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unknown weight functiory; is the average of the background speed,
a is the amplitude (8), and is the total travel time (9). Here we
scale the problem by /& because each functiaf in (A.13) is
roughly of orderl/¢ and we want to make the weight function a
reasonable size.

We substitute the forward model fai;, (7) into (10) to obtain

Iw(m):ﬁZW(m,g)/ & (@)

a(z,o)
a(y)
: /Rs (y)

In (11), we make the approximations [see also (A.8) and (A.9)

2
w

a(y,U)efi“’(‘za(m’”)7¢<y’”))dydw. 1y

d(x,0) = ¢(y,0) = Vadp(z,0) - (¥ —y) (12)
a(z,o) ~a(y,o) (13)

and the change of variables
(w7 U) = k = wv$¢(w7 U)7 (14)

to obtain

- 1 2 —iwVad(@,0)-(z—y)
x a(y)dy (15)
= |  Kw(z, y)a(y)dy, (16)

R
where

1 2 —iwVed(z,0) (z—y)
Kw(z,y) = Gra)? ;W(x,a)/w e Y dw
(17)

1
~ (2re)? EZZ_ Wz, zs,xr)

2 —iw(Vgr(x

wle @)t Var@en) @v) g, (18)

</

Note that W (zx, o) W(x,xs,z,). Both the travel times
7(xs,z) and 7(x,x,) satisfy the Eikonal equation. The vec-
tors Vo7 (xs, ) and V. 7(x, z,) have the same length, namely
1/c(x), and are tangential to the corresponding ray paths at the
pointx. The sum of these two vectors is a vector in the direction of
the bisector of the angle between the vectors, and its lenggan-
eral is betweef and2/c(x). Fig. 2 shows the bisector at one imag-
ing point from one source-receiver pair in a homogeneousurned

Given any imaging poink, in order to form an image af at
x, we would like to determin&V (x, o) or W (x, s, =) such that
Kw (x,y) is as close as possible to the Dirac delta function. The
degree to whictKw (z, y) approximates a delta function is deter-
mined by the source-receiver geometry and the frequenay ban
the data.

2.2 Weight Functionsand Resolution

In the infinite band-width case, the set of bisectors at arginta
point characterizes the resolution that can be achievdggpoint.
In general, the directions in which most bisectors point halve
the best resolution, while those with few bisectors have peso-
lution. In the band-limited case (i.e., wheris bounded), we define
thebisecting line segment

{w(Va1(xs, ) + Vor(x,2,)) : wranges over

the measured angular frequengies  (19)

AT / VaT (s, @)

4 VzT(ism) + VIT(‘tsmr)

N V,r(@,@r)

Figure 2. The bisector of one source-receiver pair in a homogeneous
medium at imaging point.

as the bisector scaled by frequency. The Zgtof points in the
union of all the bisecting line segments determines theluésa
of the backprojection. An example of a &} at one imaging point
is shown in Fig. 3.

A simple and intuitive choice fofV is the constant weight
function W (z, ., ) = 1. This is equivalent to calculating the
average of the backprojected data from all the sourcevexcpairs
in reconstruction. A potential disadvantage of weightiagte bi-
sector equally is suggested by the simple examplg,0in Fig. 3,
in which all but one of the bisectors point in the horizontaed-
tion. The point-spread function calculated with the comsteeight
function at that imaging point (Fig. 4(a)) consists of veatiridges,
which provide good resolution in the horizontal directiordeal-
most no resolution in the vertical direction. In this casyg anfior-
mation provided by the backprojected data from the sousceiver
pair associated with the vertical bisector is overwhelmedhat
from the horizontal bisectors. However, if we assign a lavgaight
value to the vertical bisector than to the horizontal one,averall
resolution is improved (Fig. 4(b)).

Another implication of this example is that constant weight
functions can reduce the level of information when more olzse
tions are included in the inversion. Suppose initially weehanly
one source-receiver pair that gives a vertical bisectds Wil pro-
vide some resolution in the vertical direction, but no rasoh in
the horizontal direction. If we add in source-receiver paiith hor-
izontal bisectors with a constant weight function, we gaisotu-
tion in the horizontal direction but lose resolution in thetical di-
rection. Because one would expect a reasonable weightidartct
allow additional data to improve an image reconstructibwoiuld
appear that simple constant weights are not the best chaide f
regular and sparse geometries. In the next section we discus-
riety of approaches to determining alternate weight fuomsti

3 DETERMINATION OF WEIGHT FUNCTIONS
3.1 Possible Approaches and Their Disadvantages

We investigated a number of approaches towards develofng p
tential weight functions, and begin with a brief summarytoige
we found did not work well before extensively discussing,ahe
test-function approach, that did.

e Backus-Gilbert methogBackuset al. 1968): The Backus-
Gilbert method is an inversion approach based on minimitieg
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Figure 3. A 2-D example of=, with several near-horizontal bisectors and
only one vertical bisector. The horizontal axiskis and the vertical axis is
ka2, wherek = (k1, k2)
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variance of the point-spread function. This method workd ime
one dimensional problems but fails in higher dimensionstduke
appearance of infinite variances in ridge-like terms thastnine
added together in constructing the point-spread function.

e Interpolation and gridding-based methodsterpolation and
gridding works well for applications such as MRI in which tgam-
pling is nonuniform but dense, but are less robust when data s
pling is sparse. Also, in order to use interpolation or griddto
evaluate integrals such as (A.16)), the first step is to perarize
the source-receiver geometry and compute (A.13), whichffis d
cult in this case.

e The Voronoi diagram(e.g., Aurenhammer 1991): A Voronoi
diagram, named after Georgy Voronoi, can be used to decampos
region into pieces based on distance to various points. poola
lem in a bounded domain, a weight function can be derived from
a Voronoi diagram. However, our problem involves an unbeand
domain, and it is unclear what weights should be assignebeto t
Voronoi cells on the boundary of the computational domaioréA
over, using weights derived from a Voronoi diagram also iregu
first parameterizing the source-receiver geometry and oting
(A.13).

e Optimization using data as a constrairfthe data constraint
approach expresses the desired perturbationterms of some ba-
sis, and minimizes thé&? norm of« using the data as a constraint
(e.g., Asteret al. 2005; Menke 1989). This method can be applied
to the sparse measurement environment, but this is a differe
proach to the inverse problem. A disadvantage of this meliesd
in its dependence on the size of the data set, which could tye ve
large. Moreover, any change in the data set requires tharttie
minimization procedure be carried out again. Another diaad
tage is that the size of the problem is determined by the numbe
of voxels in the mesh of the computational domain, and hence i
could be computationally expensive because a global sisvesu-
ally needed to compute the forward problem. Finally, thisrapch
provides no information about the resolution of the image.

3.2 TheTest-Function Approach

In this section, we present an optimization method to ddtesra
weight functionW (x, =, ). An advantage of this method is that
it does not require the parametrization of the source-vecgieom-
etry or the computation of (A.13). Moreover, it does not depen
the measured data itself, but only on the frequency band faed t
locations of sources and receivers. Once the weight fuméside-
termined with this method, the same weights can be appli¢iteto
inversion formula with any data set recorded with the saree fr
guency band using the same source-receiver geometry.

Our test-function approach finds the weight function that is
optimal in the sense that our point-spread function bestaxpp
mates the Dirac delta function. To determine what “best” msea
recall that the delta function has the property

f(z) = / 5(a — y) f(y)dy,

for every smooth test functiofi(x).

In this approach, we convolve a sequence of test functions
with our point-spread function. If we can determine a wefght-
tion so that each test function can be recovered, that whightion
should give a point-spread function close to a delta functiopar-
ticular, given any fixed image poiat, we choose non-overlapping
real test functiong;x: (z) so that eacly;x:(z) is a smooth approx-
imation of the characteristic function supported on thigk, [)™
voxel. Note that other test functions can be chosen and thatse
are not expected to be sensitive to the choice. First, wacepl—y
by z in the point-spread functioAKw (x, y) and define

! Z W(xs, xr)

L5, Lr

(27e)3
“ /wzefmvmws@)Ww(w,wm-zdw

(20)

Kw(z)

(21)

where we drop the: dependence ifl and Ky because each cal-
culation is done withe fixed. We use the term “computational do-
main” to refer to the physical region of interest (denotedthy
variabley) which is the same as the image region (denoted by the
variablez). The point-spread functioK'w (z), however, depends
on z x — y; we call the computational region ia the “z-
computational domain”. We warit'y (z) to have the same prop-
erty as delta function, and so require

/KW(Z)Xjkl(Z)dZ = X;k1(0).

Because the sources and receivers are discrete, the weight
function W at each imaging point is a vector whose dimension

(22)
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equals the number of source-receiver pairs. Here we usethe t
weightsto refer to the elements of this vector, and note that the
weights are different for different.

To compute the left side of (22), wheFéy is given by (21),
we can use a 3-on-uniform fast Fourier transfornfiNUFFT)
(e.g., Greengaret al. 2004) to carry out the: integration, sam-
ple the result at the non-uniform locations(VT(xs,x) +
V7(x,xz,)), and then carry out the integration of (21). Alter-
natively, if we take the voxel sizAz less than a wavelength, we
can approximate the left side of (22) via the mean value #vaor

/ /w2e*inm(T(ws’m)”(zv”))‘zdwxy‘kz(Z)dz

V/w267iwvm(T(%@HT(%%))'%Mdw_ (23)

~
~

Here z,, is the center point of th¢j, k, 1)™ voxel andV repre-
sents the volume of each voxel. Taking small voxels signifiga
decreases the computational cost of computing (21), atibense
of increasing the size and ill-conditioning of the systeneqtia-
tions (22).

Without loss of generality, we assumgy; (Z;x) = 1. With
(23), (22) becomes

w267iwvm(T(ms,m)+r(z,zT))~2jkl dw

ﬁz_grw(ws,@.)/
:{ 161/

if Zijkl = 0,

otherwise (24)

where|| - ||2 representd.? norm, and)\o is the Tikhonov regular-
ization parameter or damper. Note tifatw) is always real. The
optimization scheme we use to compute the weight functido is
minimize 7 (w), i.e.,

w = argminF (w). (28)

We can find an explicit formula for the solution of the regular
ized minimization problem from theingular value decomposition
(SVD) method (Demmel 1997). Usingfor adjoint, we write the
SVD of A as

A=USV"*, (29)

whereU andV areM-by-M andN-by-N unitary matrices, an§
is aM-by-N rectangular diagonal matrix whose diagonal elements
sy, are the singular values of. Thus the solution to (28) is

w=VQU"r, (30)

where

Q=(\I+8"S)"'s". (31)

The matrix@ is a N-by-M rectangular diagonal matrix with main
diagonal entries

Sn

qn =

forn =1,..., N. We call the weights calculated from this method
the optimization weightsThe optimization weights represent all

The equations defined in (24) can be written as a linear systemthe components of the vector of tlegtimization weight function

as follows. We enumerate the source-receiver pai(s:éf& mi”))

forn = 1,..., N, and enumerate the voxels using the index=

1,..., M. Thus,m is an enumeration of the indicesk, !, and
there areM test functionsy,.(z) for m = 1,..., M. The voxel
centers are denotegl,,, and we assign the first voxel (pixel in 2-
D) at the origin, i.e.zZ1 = 0 (an example of a mesh in a 2-B
computational domain can be found in Fang (2008)). We miultip
both sides of thenth equation by a positive constaif,. These
normalization parameters do not change the equationshéytill

play a role in the optimization scheme that we present latehe
numerical simulations, we will choosg;, > 1 and\,, = 1 for

m > 2to emphasize the importance of the center peak of the point-
spread function. Letv be theN dimensional weight vector whose
elements aréV (z{™, (™), and letA be theM -by-N matrix with
(m,n)" entry A,,.,, defined to be

)‘ —iw T m(n> x)+71(x z(n) -z
0 T
Letr be theM-dimensional vector with components
_ Am/V if 2, =0,
T'm = )\me(zm) = { no/ OchrWise (26)

The normalized version of (24) becomes the linear system =

r, which we then solve to find the weight functian. However,

the matrix A is usually large, over-determined and ill-conditioned
due to the fact that the number of unknowns (given by the num-
ber of source-receiver pairs) is usually much less than tineter

of knowns (given by the number of voxels or test functiongy a
redundancy is also introduced by our use of small voxels.s€on
quently, regularization is needed in order to obtain stabletions.

We use Tikhonov regularization (e.g., Astdral. 2005) and define
the functionalF”

F(w) = Agllwl + || Aw — |13, @7)

W at a certain imaging point.

Solving (28) does not guarantee that the optimization weigh

function w is non-negative, by which we mean that both the real
and imaginary parts ofv are non-negative. For the correspond-
ing MRI problem, Samsonov et al. (2003) and Bydder et al (2007
suspect that negative weights come from the instabilithefnver-
sion and result in worse reconstruction than non-negatwights.
In our particular problem, the Tikhonov regularization graeter
Ao controls the size of the optimization weights: a smagll to
results in wildly fluctuating weights, while a largas will make
most weights positive. An ideal choice 4§ would improve both
the point-spread functions and the backprojection recocton.
In the next section we discuss numerical results that peosame
guidance on choosingo.

To summarize, our algorithm for calculating the optimiaati
weights as follows.

(i) List the source-receiver pairge!™, ™), wheren is no
greater than the number of source-receiver pairs.

(i) Choose an imaging point.

(iii)y Create a.J-by-K-by-L mesh in thez-computational do-
main. The mesh can be chosen the same for different imaging
points. Write all the voxels in the mesh as an ordered lish Wit
first voxel centered at the origin. The center pointeah voxel is
Zm,Wherem < J x K x L.

(iv) Set\,, = 1for m > 2, and choose\, and \;. Both pa-
rameters should be positive.

(v) Construct the matrixA...] by (25) frommth test function
andnth source-receiver pair.

(vi) Construct the vector by (26).

(vii) Find the singular value decomposition of the matAx

(viii) Construct the rectangular diagonal matéxby (32) from
the singular values ol and \o.

(ix) Calculate the optimization weights at x by (30).
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Source-Receiver Geometry 1
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Figure 5. Geometry of sources (circles) and receivers (triangle&ckd
square locates the computational domain for reconstruatiperiments
done in section 3.4. Stars and squares indicate positiopsevgvint-spread
functions are computed in section 3.5.1. Bisecting linersags are shown
only at stars.

(x) Pick the next imaging point, go back to step (iii) and fol-
low the same procedure until the optimization weights hasenb
calculated for all the imaging points.

3.3 Numerical Simulations

We created an example with geometry typical of a passivenéeis
imaging problem (Fig. 5) to illustrate the test-functioohaique.

For the sake of simplicity, we consider only two-dimensiona
geometries (i.e., medium parameterge), c(x) and a(x) vary
only in thex; andzs directions, and the sources and receivers are
located in the plane, = 0). Thusz = (z1,z3), ¥y = (y1,¥3),

z = (z1,23) andk = (ki, ks3). We also assume the background
wave speed is constant everywhere, icér) = ¢ = ¢; we take

applications that use analytic signals, such as radar imgagihere
recorded data is preprocessed by removing the negativeeney
content.

Equation (23) does not change if the signszgf andw are
simultaneously reversed. This symmetry, together witHahethat
we use both positive and negative frequencies, resultslimaan-
cies in the set of equations (24). We avoid these redundsreng
thus decrease the dimension 4f by using only that half of the
z-computational domain with non-negative horizontal camates.
Details regarding the calculation & under these assumptions are
discussed in Fang (2008).

In choosing the normalization parameters, we asshNmeor-
responds to the test function supported on the pixel thatagu
the origin of thez-computational domain. If the number of test
functions is large\; should be large. Otherwise, the solution to
our least squares problem tends to zero as the number of@ugiat
in the problem becomes larger, since only the first entry: af
nonzero. This phenomenon can be seen from the QR factaorzati
of A. We choose\; > 1, and\,, = 1 for m > 2 so that point-
spread functions at different locations have almost theeszanter
height.

3.4 Regularization Experiments

The choice of regularization parameter or dampgmffects both
the resolution and stability of reconstructions. To eviduhe ef-
fects of \o, we created an example problem with a source-receiver
configuration (Fig. 5) meant to mimic the locally recordedtlea
guake imaging environment with irregular spacing of sosiraed
receivers [locations are based on a microearthquake riefinam
central California (e.g., Roecket al. 2006)].

The objective is to reconstruct a point-like scatterer 10nm i
extent located ayo = (4.3,2.1). We assume a frequency band
from 5Hz to 50 Hz and -5 Hz to -50 Hz; consequently the smallest
wavelength ist00m. We take the normalization paramelerto be
20, and set\o to 1, 500, and finally 10,000.

We show plots of both the point-spread function and recon-

this constant to békm/s. In the constant-speed case, ray paths are structions. For the reconstructions, the computationalaio is the

straight lines and the calculation of the travel time, Gie&mction
andV.7(x,y) are simple evaluations of

_ = -yl

T(x,y) = ——, (33)
o i llz—yll ,
oz, y,w) = pre P (34)
Vaer(z,y) = 9. (35)
cllz -yl

squarg|xz—(4.3,2.1)]| < 0.6 km (the black square shown in Fig.
5), and the mesh size 19 m. Hence we havé&200 x 1200 imaging
points in the computational domain for the reconstructions

For the plots of the point-spread function, theomputational
domain is||z]« < 0.6 km, again with mesh sizé0 m. How-
ever, because of the symmetry of (23) mentioned above, wg car
out computations only for the half of the region with non-aiteee
horizonal coordinates (i.e600 x 1200 points), and consequently
we have only600 x 1200 test functions. Because the mesh size

The wave is emitted by each source and recorded by all re- is sn.walle.r than the smallest wavelength, we are able to esaeph
ceivers, and no two sources emit waves at the same time (so tha Proximation (23).

waves from different sources do not interfere with eachthe
We assume we start with real data and that the frequency

satisfiesw € Q = {w|w; < |w| < wp}, wherew, andw; are
the highest and lowest positive frequencies, respectivay ap-
plications that use real signals, such as seismic imagpyiag
the Fourier transform to the time-domain measurementdtseisu
both positive and negative frequency content. In this cdsés a
real matrix, because the imaginary part of the integratedtfon

in equation (25) is an odd function. Thus, in our cadew andr
are all real quantities. Howeved, w andr might be complex for

Mathematically, the scatterer is defined as

o ={

where|| - || represents the infinity norm and is defined to be the
maximum absolute value of all elements of a vector. Note tteat
scatterer size is less than the shortest wavelength (100rayiri
simulation.

The simulation data are calculated using equation (7) with

if |y — yolloo < 5m,

otherwise (36)
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a(x) defined by (36). As the background speed is constant,

1
1672z — ylllly —

a(xs,y,Tr) (37)

)= lze myl+lly =@
c

d(Ts, Y, xr (38)

Since the size of the scatterer is relatively small, we usddtow-
ing approximation of the scattered wave:
w2 ;
(@ @ew) = 5 [ alenye e aty)dy,

2

74w % S ’ "
~ 10 EQ(CUs,yO,CUT-)eLW(b(wb Yo 1’7)7

39)

Note that in all our simulations, the units on the horizomal a
vertical axes in the point-spread function plot, in the restoucted
image, and in the half-maximum-value contour plot &fe. The
units of point-spread function values drgkm?. The imagel(x)
is dimensionless in our formulation. The units on the har@and
the vertical axes in the plots of bisecting line segmentsl @ken.
Because of our choice of scaling, the weight functiorns dimen-
sionless. Throughout the sections 3.4 and 3.5, we condidset
units as default units, unless explicitly stated otherwise

3.4.1 Simulation Results

The results shown in columristhrough4 in Fig. 6 illustrate how

74 . .
where10~" comes from the area of the point-like scatterer. Note 6 reqularization parametes affects reconstruction when opti-

that this approximation is equivalent to setting
a(y) = 107"6(y — o),

which justifies calling it a point-like scatterer.
To simulate band-limited data, we g€} (z,, z,,w) to zero
outside? = {w|w; < |w| < wp}, and take the inverse Fourier

(40)

transform ofuf (-, xs,w) to recover the time-domain scattered

waveip (r, s, t):

a%(w7-7ws,t):/eiMuE(wT,ws,w)dw, (41)
Q
_ a(wayoﬂwr-)/w2efw<tf¢<ws,yow))dw‘
104¢? Q
(42)

mization weights are used. For comparison purposes, collimn
shows results from assuming constant weights @ve= 1) scaled
so that the point-spread function has the same height agiogh
timization weights case. Roa in Fig. 6 shows the bisecting line
segments defined by (19) shaded according to the corresgpndi
weight. We plot only the positive frequency part; the coo@wling
negative-frequency bisecting line segment simply has iposite
sign. The constant weights case shown in column 1 is simplgta p
of all the hisecting line segments with the same grey scdlgeva
Columns 2-4 show the case of optimization weights with iasre
ing choices of\o. The distribution of bisecting line segments is the
same as for the constant weights, but many of the bisectiegig-
ments have small weights and cannot be seen with this cabe.sc
This is particularly true for\o = 1, where weight values lie in a

Because we do not have zero frequency data, backprojection,;iqe range, roughly from -200 to 300. As expected, the size an

by (A.16) cannot recover the actual image even when the esurc

and receivers are equally spaced. Nevertheless, the tlmrations
of discontinuities can be recovered (e.g., Bleistgial. 2001), and
more information about a point scatterer can be recoverékeif
image is scaled properly. If we us€y) = Ro(y — yo) in (10),
the image value at the scatteggris

1 CQ(yO) 2
Iw (yo) = @roe > W(yo,0) /Q o, )"
R(S(:'Q/ - yO) a(y7 o.)e*iw(¢(yo»ﬂ)*¢(y’0))dydw
R3 2(y)
(43)
— R 2
=GP ;W(yo,o)/ﬂw dw. (44)

This suggests that the image valueRismultiplied by the k-space
“volume” Vk (yo), which is given by

1
1 2
%W E W(:U,a')/ﬂw dw.

[To compare with the case of a continuum of sources and rexsgiv
see equations (A.17) and (A.18).] If we scale the image biglitig

it by the k-space “volume” (45), then we can recover the arugé
R at the scatterer. The quantifyis exactly the center peak of the
point-spread function at. Since we choose\; large enough so
that the point-spread function at different locations im compu-
tational domain has almost the same peak value, the scalatgrf

(45)

range of the weight values decreases as damping increasbe |
case ofAg = 10, 000 (column 4), the weight values are small and
most are positive. One phenomenon we see in Fig. 6(a4) isithat
directions with fewer bisectors have higher weight valued the
directions with more bisectors have smaller weight values.

Rowb shows the point-spread function at the scattgreThe
point-spread function computed with constant weightsufocwl 1)
has a high peak at the center, but is elongated in the vediicad-
tion, meaning that the reconstruction at this point hasbe¢solu-
tion in the horizontal direction. There are many more bisedine
segments pointing in the horizontal direction, and weightach
direction equally degrades the resolution in the verticadadion.

By contrast, the point-spread functions calculated usiegapti-
mization weights shown in columns 2-4 are much narrower én th
vertical direction than the one calculated using constagights.
The similarity in the shape of the function for different ates of

Ao indicate that resolution is not overly sensitive to the cbadf
damper.

Row ¢ shows reconstructions of the scatterer using simula-
tion data without noise. In most cases, the reconstructi@milar
to the point-spread function shown in rotx. Note that the point-
spread function is calculated using (18) and the image @itzted
using (10). They are related by equation (16) and shouldrhesl
the same itv(z) is a point-like scatterer. However, a difference be-
tween them arises as we pass from (11) to (15), namely thaawee h
made the approximations (12) and (13), which are good when
close toy, but not when they are far apart. The reconstruction sim-
ulation result suggests these approximations work weh win-
stant weights, but require regularization when using oigtition

Vi (x) is almost constant everywhere. Note that scaling the point- weights. In particular, a choice of, = 1 shows a localized scat-

spread function changes neither the resolution nor thelisyadf
backprojection. Because our purpose here is to examin@tieso
and stability, we ignore the scaling in our simulations.

terer at the center, but the reconstruction is corrupted e the
scatterer, because the errors made in using the approgimgti2)
and (13) are significantly amplified by large magnitude wtigh
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Figure 6. Bisecting line segments (first row), point-spread fundig¢second row), and reconstructions (three lower rows) daistant weight (column 1),

Ao = 1 (column 2),A\p = 500 (column 3), and\g =

10,000 (column 4) using source-receiver configuration in the geggmshown in Fig. 5. The

reconstructions were done using data without noise (thovd),rwith 10% Gaussian noise (fourth row), and with up-terBéter positioning error in the
source-receiver locations (fifth row). The computationandin in these reconstructions corresponds to the blackreqo the geometry in Fig. 5. For the
figures on the first row, the horizontal axiskis, and the vertical axis is3. The units on both axes at¢km. For the figures on the second row, the horizontal
axis isz1, and the vertical axis is3. The units on both axes are km. For the figures on the thirdttorfifv, the horizontal axis is1, and the vertical axis is

3. The units on both axes are km.

The results in columns 3 and 4 show that these artifacts can besitioning errors of half a wavelength are difficult to avokr po-

eliminated by proper damping, and we can achieve a signtfican
better reconstruction than when using constant weights.

Row d shows the reconstruction with 10% Gaussian noise
added to the simulation data. Although the reconstructioeach
case is noisier, and fails in the case of small damping (colum
2), in general both the constant weights and properly danoped
timized weights are reasonably insensitive to noise at Ithisl,
although again the reconstruction using properly regedakiopti-
mized weights is superior.

Row e shows the reconstruction with random errors of up to
50 meters added to the locations of the sources and recéb@rs
meters is the half minimum wavelength in this case). We rtudé t
errors in the earthquake source location can easily gieetoi$0-
meter positioning errors; for other applications such asrapo-

sitioning errors larger than a wavelength, other methoah s1s
autofocus techniques (e.g., Jakowetal. 1996) would need to be
applied to compensate for this type of error. Again, progenp-
ing plays a significant role as the two cases with small dagpin
(columns 2 and 3) fail to locate the scatterer in the corresi-p
tion (the peak in the,, = 500 example is about 140 meters away
from the true location). Both the constant weight and lamy@ping
results show a centralized peak in the correct positiorh sitme
smaller amplitude side lobes, but that obtained from optitidn
weights is more strongly localized.

As shown in (32), the main effect of the damper is to lessen
the influence of small singular values. An examination ofghme
gular values forA (Figures 7(a) and 7(b)) shows that our pre-
ferred value of\g = 10,000 is greater than 90% of the singular
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The Singular Values of Matrix A at y;=(4.3, 2.1)

O Singular Value|
— = —2,=200000

Singular Value: s,

L B
50 100 150

R

)
200 250

(a) Singular values of matriA at yo. The horizontal lines correspond to th
regularization parametersy = 1, Ao = 500, \g = 10,000, \g = 120, 000
and\p = 200, 000. The)g = 1 line and the\p = 500 line are indistinguish-
able from the horizontal axis.

Logarithm of the Singular Values of Mairix A at y,=(4.3, 2.1)

~——

~ — Logarithm of A ;=500

L6l = =~ Logarithm o =1

50
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— — — Logarithm of ;=200000
3 || - - togaritm of A=120000
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@
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I
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I I
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Index: n

(b) Logarithm of the singular values of matrid at yo. Meaning of symbols
same as above.

Figure7.

values. This suggests that a relatively small number ofchiss,
mostly those from source-receiver combinations whosectuseli-
rections are relatively sparse, are significantly affettgthe opti-
mization. Optimization weights from regularization paeters that
exceed the values of the largest singular valug= 120, 000 and

Ao = 200,000) are all positive and nearly constant. The result-
ing point-spread functions and reconstructions are not difer-
ent from the results with constant weights. BecalMseontrols the
magnitude of our weight vectap, the term||w||3 becomes domi-
nant in the minimization scheme whap is chosen this large.

The results of this test show that the choice)\af depends
on the noise level in the data and the accuracy of the locatén
sources and receivers. There is no simple formula for chgosj,
but we see that ak, is increased, more of the optimization weights
tend to be positive. This suggests that we cholgeso that most
of the optimization weight values are positive. In this papee
simulation results we show in the next section were caledlatith
values of\o chosen using this criterion.

3.5 Numerical Examples of Weightsin Seismic Imaging

We carried out some numerical experiments to assess thevewr
ment of resolution at selected imaging points due to the Gifeeo
weights obtained by our method. We show the results of one ex-
periment and simply summarize the results of others, whieh a
reported more fully in Fang (2008).

e

Table 1. List of parameters. The reconstructions udédsources and 6
receivers, and the wave speedas5km/s. f is frequency.

[f] Ao A1

5Hz-50Hz

z-computational domain Az

l|z]loo < 0.6km 0.01km 10* 20

3.5.1 Local/Regional Passive Source

We applied our test-function approach to the source-recaje-
ometry shown in Fig. 5. We calculate the point-spread fomsti
at 7 x 5 locations (indicated by stars and squares shown in Fig.
5) where adjacent imaging points are separated lyn in both
horizontal and vertical directions.

Comparing the point-spread functions computed with canista
weights (Fig. 8) and with optimization weights (Fig. 9), wadi
that the point-spread functions with the optimization vixsgare
sharper and more focused than the ones calculated witharanst
weights, especially for the imaging points close to theeeot our
computational domain.

We quantify the resolution at a poiat, by the volume (or area
in 2-D) of the enclosed region determined by the half-maxmu
value contour of the point-spread function. This contogpgiro-
vides not only a quantitative measure of the improvemenalsata
rough estimate of resolution in every direction. For examfar the
imaging point shown at the center, the half-maximum-valieaa
for constant weights 45102 m?, while that from the optimiza-
tion weights is1649 m?. At this point, the half-maximum-value
contour from optimization weights has an elliptical shafiee best
resolution, which is in the direction of the minor axis, i9ab30
m , while the worst resolution, in the direction of the majgisais
about70 m . As the minimum wavelength in this examplelig0
m, we obtain sub-wavelength resolution that is roughly =test
with the resolution limit of one fourth the minimum wavele¢hg
(e.g., Bleisteiret al.2001).

An understanding of the importance of the weights can be ob-
tained by simply plotting the bisecting line segments. Elgshows
a plot of the bisecting line segments colored according eoofhti-
mization weights. We see that in general, bisectors in aEasver
density are assigned higher weights, while the redundéotnma-
tion from regions of high density are assigned lower weights

3.5.2 Summary of Other Experiments

We also tested our approach with regular source-receivemge
tries such as active source profile and cross-hole. In thasesc
the bisecting line segments are more evenly distributes ctin-
stant weights work relatively well, and optimization welgldon’t
improve resolution much. In such cases, computing optiticiza
weights may not be worth the extra effort.

We also tested this approach with the same geometry but dif-
ferent frequency content. The point-spread functions frbffer-
ent frequency content roughly have the same shape, but Vfery d
ferent scale. To explain this phenomena, we consider thierreg
covered by the set of bisecting line segments. This regiandis-
crete approximation to the data-collection manifold diesct in
the appendix [below (A.18)]. For a narrower and lower fretpye
band, the region covered by the set of bisecting line segrient
a relatively small area, while for the higher and broadeqdency
band, this region is larger. The larger region results inteebpoint-
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Figure 8. Plots of the point-spread functions using constant weigftte horizontal axis iz; and the vertical axis is3. The units on each axis are km. The
units of the point-spread function values agkm?. The locations correspond to tfiex 5 different imaging points designated by the stars and squariae
geometry in Fig. 5.

spread function. Consequently, to produce an image wite bets- APPENDIX A: BACKPROJECTION RECONSTRUCTION

olution, a broader frequency band should be used. . . . . S .
q y In this section, we briefly review a derivation (e.g., Bleistet

al. 2001; Beylkin 1985) of a formula for inverting (7) in the idea
case where the data is known on a three dimensional set dfspoin
(w,xs, ). We parameterize the source-receiver geometry by the
two dimensional variable = (01, 02), and useo to represent
(s, xr).
4 CONCLUSIONS In the case of 3-D densely sampled data, we look for an inverse
We have developed a method to handle imaging problems irtwhic 0 (7) in terms of a filtered adjoint:

the sensor geometry is irregular and sparse. Our analysisssh _ s —iwd(m,0)
that a plot of the bisecting line segments can be used as & guid I(x) = b(@, o)up(o,w)e dwdor. (A1)

in the reconstruction process. If the bisecting-line-seghplot is Here I(z) is called the image ofv(z) and the expression for
regular, then good images can be formed by simply adding data b(z, o) is determined below.

from the various source-receiver pairs, and resolutionairious We can carry out the integration in equation (A.1) to obtain
directions can be estimated from the plot. On the other hitite

plot of bisecting line segments is irregular and has gags) tata I(z) = /b(:c,a)af;, (o,¢(x,0))do. (A.2)

from different source-receiver pairs should be weightd@dintly.

In this case, our method produces weights that gives riskeo t  This equation says the data from the source-receiveropatrtime
“best” point-spread function; once the weights are obthirbey t is first filtered byb(z, o), then backprojected to (i.e., spread out
can then used to weight the data properly to produce the™best Over) the surfacqxz|¢(x, o) = t}. The imagel(z) is then the
image. In other words, this approach provides not only argema  Superposition of all the backprojected data from all sowezeiver

be determined. projection method.

In calculating the weights, we found that in order to gain sta 10 determiné(z, o), we analyze the relationship between the
bility with respect to noise and sensor-positioning errthie reg-  imagel(z) and the actual perturbation(z). To do this, we plug
ularization parameter should be chosen so that the optiimiza  (7) into (A.1) and change the order of integration. This Hasin
weight values are mostly positive. .

Our method can be used as a tool for planning an experiment: l(z) = | K(@,y)aly)dy, (A-3)
given sensor positions and bandwidths, we can plot thesporel-  \yheref(x, y) is thepoint-spread function
ing point-spread function and thus predict resolution ffedent di- 5
rections at desired locations. For example, our tests weitlsars of K(z,y) = / 2“"_a(y7 o)b(z, a)e—iw(¢(z,a)—¢('y,0))dwdo-.
different bandwidths show that a broad frequency band isede (v)

to reconstruct small objects. (A.4)
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Figure 9. Plots of point-spread functions using optimization wedgfithe units and symbols are the same as in Fig. 8.

To obtain an optimal image, we would like the right hand side whereJ (k) = det(d(w, o)/0k). Note that
of the equation (A.3) to be a convolution @fx) with 6 (x), which

. 1 ok
we write as TR det (8(w U)) , (A.12)
1 —ik-(z—y) Vao(z,0)
(5(13 — ’y) = W ‘/Rg e dk. (A5) — wzdet ( 60‘1V ¢($, ) ) s (Als)
302 5= Vazo(x, 0 )
We analyze (A.4) by the method of stationary phase (e.g., _ wzh(w,a). (A.14)
Duistermaat 1995; Grigist al. 1994). The main contributions to
(A.4) come from the critical points, which are obtained frdif Comparing (A.11) with (A.5), we see
ferentiating the phase of (A.4) with respectd@ndo . We find that that we should choose b(y,o(k)) such that
the critical conditions are Wk (yaly, o(k)b(y,o (k) |J(k)] = (2r)~%. Thus
we have an explicit form fob(y, o), namely
o(x,0) = ,O), A.6
( )_¢>(y ) (A-6) by, o) = © Ay )3|h( o)l (A15)
wvaqb(cc,a) - wv0¢(yaa)' (A7) ( ) ( )

Using the above expression fofy, o) in equation (A.1), we

We assume here that there are solutions to (A.6) only wheny obtain the inverse formula to reconstrudtz), namely,

(e.g., Bleisteiret al. 2001; Beylkin 1985). In the neighborhood of

x = y, we can use the following approximations in (A.4). // |h z,0 | (0, w)e 0D duoder
(2m)3 ’ '
b(z,0) ~ by, o). (A.8) (A.16)
w(d(x,0) — d(y,0)) ®wVad(x,0) (T —1y). (A.9) Because our data are band-limited and the source-recesver g

ometry is finite, the integration region of (A.11) is a bouddin-
main Q. rather than all ofR® space. As a resulty(z) cannot be

In (A.4) we replaceé(x, o) by b(y, o) and make the change )
perfectly recovered. However, the point-spread functiofe, y)

of variables ” ) X -
guantifies the degree to which our image faithfully représéine
t . Usi A.15) i ti A.11 t
(@,0) = k = wVad(z, 0) (A.10) rue o(x) Usmg (A.15) in equation ( ), we ge
K(z,y) = /|h z, 0 |/ 2gmwVad(@o)(@Y) g, e
to get 27r

(A.17)

w?(k) —ik-(z—y) The degree to whicli (x, y) approximates a delta function is de-
K(@,y)~ / 2(y) a(y,o(k)b(y,o(k))|J(k)|e dk termined by the source-receiver geometry and the frequieacy
(A.11) of the data. In the continuum case, we can make change oblesia
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Figure 10. Half-maximum-value contours of the point-spread fundi@alculated with optimization weights (the contours filleith black) and constant
weights (the outer contours). The horizontal axisiind the vertical axis is3. The units on each axis are km. The 5 different imaging points correspond
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(A.10) and definez = = — y in (A.17). Thus we obtain

1 —ik-z
= dk
(2n)? / ‘ ’

where the data-collection manifold,, is the set ink-space, ob-
tained from the change of variables (A.10), that correspdndhe
bandwidth (set of frequencies) and survey geometry (set of bi-

K(z) (A.18)
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