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Abstract

We propose a novel model based on the
von Mises-Fisher (vMF) distribution for co-
clustering high dimensional sparse matrices.
While existing vMF-based models are only
suitable for clustering along one dimension,
our model acts simultaneously on both di-
mensions of a data matrix. Thereby it has
the advantage of exploiting the inherent du-
ality between rows and columns. Setting our
model under the maximum likelihood (ML)
approach and the classification ML (CML)
approach, we derive two novel, hard and
soft, co-clustering algorithms. Empirical re-
sults on numerous synthetic and real-world
text datasets, demonstrate the effectiveness
of our approach, for modelling high dimen-
sional sparse data and co-clustering. Further-
more, thanks to our formulation, that per-
forms an implicitly adaptive dimensionality
reduction at each stage, our model alleviates
the problem of high concentration parame-
ters kappa’s, a well known difficulty in the
classical vMF-based models.

1 Introduction

In the case of sparse high dimensional data, such
as document-term and user-item matrices arising re-
spectively in text mining and collaborative filtering,
most of existing models such as Multinomial and Mul-
tivariate Gaussian mixture models, suffer from low
performances. The von Mises-Fisher (vMF) distribu-
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tion based models, dealing with directional data dis-
tributed on the surface of a unit hypersphere, may turn
out to be a wise choice. In fact, the mixture of vMF
distributions is one of the most appropriate model
for modelling and clustering high dimensional sparse
data, such as document-term matrices. In this con-
text, it has been empirically demonstrated that vMF-
based models performs better than several existing ap-
proaches, including multivariate Bernoulli, Multino-
mial and Gaussian mixture models, see for instance
[Zhong and Ghosh, 2005, Gopal and Yang, 2014].

The vMF distribution is a probability distribution on
a unit hypersphere and it belongs to the field of direc-
tional statistics [Mardia and Jupp, 2000]. In partic-
ular, it focuses on the directions of objects and mea-
sures the distance between them using cosine similar-
ity. Most of earlier works using the vMF distribution
focused on low dimensional data, i.e, using 2- or 3-
dimensional vMF distributions [McLachlan and Peel,
2004], due to difficulties related to the estimation of
the concentration parameter κ, that involves inversion
of ratios of Bessel functions. In the context of cluster-
ing and for high dimensionality, Banerjee et al. [2005]
proposed algorithms derived from a mixture of vMF
distributions. They used an EM-based solution to es-
timate the parameters of their model and proposed an
accurate approximation for estimating concentration
parameter κ for a high dimensional vMF distribution.
Since this contribution, different vMF-based models
for clustering high dimensional sparse data were pro-
posed. For instance Reisinger et al. [2010] proposed
a spherical topic model based on a mixture of vMF
distributions, which is inspired from Latent Dirichlet
Allocation (LDA). More recently, for clustering text
data, Gopal and Yang [2014] proposed a Bayesian for-
mulation and two vMF-based mixture models namely
hierarchical and temporal variants.

In this paper, we propose a novel model based on
the vMF distribution, for the analysis of high dimen-
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Figure 1: Left original data, Middle data reorganized
according to row partition, Right data reorganized ac-
cording to row and column partitions.

sional sparse data. Unlike existing vMF-based mod-
els, which focus only on clustering along one dimen-
sion, i.e, either row or column clustering, our model
acts simultaneously on both dimensions of a data ma-
trix. Intuitively, the model we propose can be viewed
as an extension of the mixture of vMF distributions
proposed by Banerjee et al. [2005] to the context of
co-clustering or simultaneous clustering of rows and
columns of a data matrix [Hartigan, 1972, Bock, 2003,
Madeira and Oliveira, 2004, Van Mechelen et al., 2004,
Banerjee et al., 2007, Rocci and Vichi, 2008, Wyse
and Friel, 2012, Govaert and Nadif, 2013]. Specifi-
cally, our model seeks a diagonal co-clustering, mean-
ing that rows and columns have the same number of
clusters and that after a proper reorganisation of rows
and columns we obtain a block diagonal structure, see
Figure 1.

Setting our model under the maximum likelihood
(ML) approach and the classification ML approach
(CML), we derive two novel co-clustering algorithms
a soft and hard variants, respectively. The proposed
model exhibits several advantages over existing vMF-
based models (i) it exploits the inherent duality be-
tween the rows and columns of a data matrix which
improves clustering performances, (ii) by intertwining
row clustering and column clustering at each stage,
the derived algorithms perform an implicitly adaptive
dimensionality reduction, which is imperative to han-
dle high dimensional sparse matrices. Furthermore, in
the case of large positives matrices, thanks to the di-
mensionality reduction, our formulation alleviates the
problem of high concentration parameters κ involved
in Bessel functions that induces over and under flows,
a well known difficulty in the classical vMF models
[Banerjee et al., 2005]. (iii) Far from adding complex-
ity, our model is more informative and produces mean-
ingful and directly interpretable clusters.

Notation.

- Matrices are denoted with boldface uppercase let-
ters, vectors with boldface lowercase letters and sets
by script style uppercase letters. The L2 norm is de-
noted by ‖.‖. The (d − 1) dimensional unit sphere
embedded in Rd is denoted by Sd−1.

- Data is represented by a matrix X = (xij) of size n×

d, xij ∈ R, the ith row of this matrix is represented
by a vector xi = (xi1, . . . , xid)

T , where T denotes
the transpose.

- The partition of the set of rows I into g clusters
can be represented by a classification matrix Z of
elements zih in {0, 1}g satisfying

∑g
h=1 zih = 1. The

notation z = (z1, . . . , zn)T , where zi ∈ {1, . . . , g}
represents the cluster label of i, is also used.

- Similarly the notations W = (wjh), wjh ∈ {0, 1}g
satisfying

∑g
h=1 wih = 1, and w = (w1, . . . , wd),

where wj ∈ {1, . . . , g} represents the cluster label
of j, is used to represent the partition of the set of
columns J .

- In the same way, the fuzzy classification matrix of
I is denoted by Z̃ = (z̃ih). Where z̃ih ∈ [0, 1], satis-
fying

∑g
h=1 z̃ih = 1, for all i in I.

2 Mixture of von Mises-Fisher
Distributions (movMFs)

Let xi ∈ Sd−1, the von Mises-Fisher probability den-
sity function is given by

f(xi|µ, κ) = cd(κ) expκµ
Txi , (1)

where µ is the mean direction or centroid parameter
and κ denotes the concentration parameter, such that
‖µ‖ = 1 and κ ≥ 0. The normalization term cd(κ)

is equal to cd(κ) = κ
d
2
−1

(2π)
d
2 I d

2
−1

(κ)
where Ir(κ) repre-

sents the modified Bessel function of the first kind and
order r. In the vMF distribution the parameter κ con-
trols the concentration of data points xi following (1),
around the mean direction µ. For more details on vMF
distribution, please refer to [Mardia and Jupp, 2000].

In the mixture model context, x1, . . . ,xn are supposed
to be generated from a mixture of g vMF distributions
with a set of unknown parameters Θ [Banerjee et al.,
2005]. The density function of this mixture takes the
following form:

f(xi|Θ) =
∑

h

αhfh(xi|µh, κh), (2)

where Θ = {µ1, . . . ,µg, α1, . . . , αg, κ1, . . . , κg}, µh
and κh represent the centroid and the concentration
parameters of the hth component, respectively. Each
parameter αh denotes the proportion of points xi gen-
erated from the hth component, such that

∑
h αh = 1

and αh > 0, ∀h ∈ {1, . . . , g}. The complete data like-
lihood of the observed data is given by:

L(µ,α, κ|X, z) =
∏

i

αzi(cd(κzi) expκzi
µT

zi
xi), (3)

where z is the latent variable which is assumed to be
known, i.e, zi = h if xi is generated from the hth com-
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ponent. Using the classification matrix Z, the corre-
sponding complete data log-likelihood takes the fol-
lowing form:

Lc(Θ|X,Z) =
∑

h

z.h logαh +
∑

h

z.h log cd(κh)

+
∑

i,h

zihκhµ
T
hxi (4)

where z.h denotes the cardinality of the hth cluster. As
the latent variable z is unknown in practice, Banerjee
et al. [2005] proposed to use the EM algorithm [Demp-
ster et al., 1977] to obtain the maximum likelihood es-
timates for the parameters Θ. Thus, the E-step finds
the conditional expectation of the missing variable z
given the current estimated parameters Θ(t) and the
observed data, which is given by [Neal and Hinton,

1998]: z̃ih = E(zih = 1|xi,Θ(t)) =
α

(t)
h fh(xi|µ(t)

h ,κ
(t)
h )

∑
l α

(t)
l fl(xi|µ(t)

l ,κ
(t)
l )

.

The M-step finds the new parameters Θ(t+1) by max-
imizing the expectation of the complete data log-
likelihood (4) subject to the constraints

∑
h αh = 1,

‖µh‖ = 1 and κh > 0 which leads, for all h, to the
update formulas described below:

α̂h =

∑
i z̃ih
n

, (5a)

µ̂h =
rh
‖rh‖

where rh =
∑

i

z̃ihxi (5b)

κ̂h ≈
r̄hd− r̄3

h

1− r̄2
h

where r̄h =
Id/2(κ̂h)

Id/2−1(κ̂h)
=
‖rh‖∑
i z̃ih

(5c)

Note that computing κ̂h from the latter equation im-
plies to inverse a ratio of Bessel functions, a problem
for which there is no closed-form solution. For han-
dling this difficulty, Banerjee et al. [2005] proposed the
efficient approximation (5c), which deals with high di-
mensional datasets.

Alternating the above E and M steps leads to the soft-
movMF algorithm proposed in [Banerjee et al., 2005].
Moreover, by setting the movMFs under the CML ap-
proach, Banerjee et al. [2005] derived the hard-movMF
algorithm, which consists in using the classification
variant of EM (CEM) [Celeux and Govaert, 1992] to
estimate the model parameters.

3 Diagonal Block Mixture of von
Mises-Fisher Distributions

In this section, we propose to extend the movMFs to
the context of co-clustering [Hartigan, 1972]. Follow-
ing the results of Dhillon and Modha [2001], which
state that the unit centroids produced by the spher-
ical k-means algorithm (a restricted version of both

soft- and hard-movMF) are localized in the features
space and tends towards orthonormality, we propose
to capture and exploit this structure during the clus-
tering process. More precisely, we assume some natu-
ral assumptions on the structure of centroids, i.e, or-
thonormality and homogeneity, at the beginning. For-
mally, we introduce a new parameter w (see Figure
2) that simultaneously guarantees the above assump-
tions and plays the role of a column partition. From
a co-clustering point of view, this is equivalent to as-
sume that rows and columns have the same number of
clusters and that each column cluster is associated or
describes a single row cluster. Which induces a block
diagonal structure illustrated in Figure 1.

3.1 Definition

Instead of the classical movMFs, which partitions only
the set of rows I, our model called dbmovMFs parti-
tions simultaneously the set of rows I and columns J .
Thereby it has the advantage of exploiting the dual-
ity between rows and columns of a data matrix. The
density function of dbmovMFs is given by:

f(xi|Θ) =
∑

h

αhfh(xi|µw
h , κ

w
h ,w), (6)

where Θ is now formed by µw
1 ,. . ., µw

g , α1, . . . , αg,
κw1 , . . . , κ

w
g and the column partition w, i.e, wj = h

if the jth column belongs to hth column cluster, that
is associated with hth row cluster. The superscript
w is used to denote the fact that the centroid and
the concentration parameters µw

h , κwh , respectively,
depend on the column partition w. It follows from
the orthonormality assumption that µw

h takes a
“diagonal” form, i.e, µhj = 0 if wjh = 0, and
from the homogeneity assumption follows that all
non-zero entries of µw

h are equal, i.e, µhj = µhh,
for all j such as wjh = 1. For instance, if we have
a mixture of 3 vMF distributions, i.e, g = 3 and
h, k = 1, 2, 3, each centroid µw

h ∈ Sd−1 takes this form:
µw
h = (µh1, . . . , µh1, µh2, . . . , µh2, µh3, . . . , µh3)T

where µhk is repeated w.h times; w.h denotes the
cardinality of the hth column cluster. In addition,
these centroids are constrained by taking µhk = 0
∀k 6= h. This constraint leads to the orthonormality
of centroid vectors.

Using the row and column classification matrices Z
and W, respectively, the complete data likelihood
L(W,µ,α, κ|X,Z) takes the following form:

∏

i

∏

h


αhcd(κh)×

∏

j

(expκhµhhxij )wjh



zih

The corresponding complete data log-likelihood is
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Figure 2: Graphical models of von-mises fisher mixture models, left movMFs, right dbmovMFs

given by:

Lc(Θ|X,Z) =
∑

h

z.h logαh +
∑

h

z.h log(cd(κh))

+
∑

i,h

zihκhµhh
∑

j

wjhxij

=
∑

h

z.h logαh +
∑

h

z.h log(cd(κh))

+
∑

i,h

zihκhµhhuih (7)

where uih =
∑
j wjhxij . This leads to

Lc(Θ|X,Z) =
∑

h

z.h logαh +
∑

h

z.h log(cd(κh))

+
∑

i,h

zihyih (8)

where yih = κhµhhuih, and in the same manner, we
can give another expression of Lc(Θ|X,Z) in terms of
column assignments as follows

∑

h

z.h logαh +
∑

h

z.h log(cd(κh)) +
∑

j,h

wjhtjh (9)

where tjh = κhµhhvhj , with vhj =
∑
i zihxij .

3.2 Connection with other models

Assuming that the column partition w is fixed, the db-
movMFs model can be viewed as a classical movMFs
[Banerjee et al., 2005] in which the mean directions
vectors µh are constrained to be of “diagonal” form
introduced above.

Furthermore, connections with the Gaussian mixture
model and the block Gaussian mixture model [Gov-
aert and Nadif, 2013, Nadif and Govaert, 2010] can be
established. More precisely, using the equivalence be-
tween the vMF and the Gaussian distributions [Mardia
and Jupp, 2000] and assuming that w is fixed, it can
be shown that dbmovMFs is equivalent to a mixture of
Gaussian distributions of spherical form, i.e, the vari-
ance of the hth cluster is given by σ2

h = ‖mw
h ‖/κh, mw

h

is the centroid of the corresponding Gaussian compo-
nent and µw

h = mw
h /‖mw

h ‖. The latter model, is also

equivalent to a diagonal version of the block Gaussian
mixture model [Govaert and Nadif, 2013], where each
Gaussian component is parameterized by the variance
σ2
h and mean vector mw

h .

3.3 Maximum Likelihood estimates

To obtain the maximum likelihood estimates for the
parameters Θ, we use the generalized EM algorithm
[Dempster et al., 1977, McLachlan and Krishnan,
2007]. The E-step is to compute the posterior proba-
bilities z̃ih ∝ αhfh(xi|Θ(t)). The M-step is obtained by
maximizing or increasing the expectation of the com-
plete data log-likelihood (8), subject to the constraints∑
h αh = 1, ‖µw

h ‖2 =
∑
j wjhµ

2
hh = 1, and κh > 0.

We obtain the following update formulas:

ŵjh ←
{

1, if h = arg maxh′ t̃jh′
0, otherwise.

(10a)

α̂h =

∑
i z̃ih
n

, (10b)

µ̂hh =
rwh
‖rwh ‖

= ± 1√∑
j ŵjh

where

rwh =
∑

i,j

z̃ihŵjhxij (10c)

κ̂h ≈
r̄wh d− (r̄wh )

3

1− (r̄wh )
2 where

r̄wh =
Id/2(κ̂h)

Id/2−1(κ̂h)
=

‖rwh ‖∑
i z̃ih

∑
j ŵjh

(10d)

where t̃jh = κhµhhṽhj , with ṽhj =
∑
i z̃ihxij , rwh is a d-

dimensional vector, such that rwhj = rwh if wjh = 1 and
rwhj = 0, otherwise. Alternating the above E and M
steps leads to our soft-dbmovMF algorithm described
in Algorithm 1.

Note that, unlike in the classical movMFs where it is
easy to verify that r̄h ≤ 1 (see equation 5c) given the
definition of r, it is not straightforward to verify that
r̄wh ≤ 1, without careful analysis. Such a result is im-
perative, to guarantee that the concentration parame-
ters are positive, i.e, κh > 0 , ∀h, specially when using
the approximation of equation (10). Hence, Proposi-
tion 1 provides theoretical guarantee about the fact

869



Aghiles Salah, Nicoleta Rogovschi, Mohamed Nadif

Algorithm 1 soft-dbmovMF (EMb).

Input: X (xi ∈ Sd−1), g the number of co-clusters.
Output: Z̃ and W,
Steps:
Initialization: Θ← Θ(0);
repeat

1. Expectation step of EM:
for i = 1 to n do

for h = 1 to g do

z̃ih ← αhfh(xi|µh,κh)∑
l αlfl(xi|µl,κl)

end for
end for
2. Maximization step of EM:
for j = 1 to d do

for h = 1 to g do
ṽhj ←

∑
i z̃ihxij ; t̃jh ← κhµhhṽhj

end for
for h = 1 to g do

ŵjh ←
{

1, if h = arg maxh′ t̃jh′
0, otherwise.

end for
end for
for h = 1 to g do

α̂h ←
∑

i z̃ih
n

µ̂hh ← ± 1√∑
j ŵjh

; rwh ←
∑
i,j z̃ihŵjhxij

r̄wh ←
‖rwh ‖∑

i z̃ih
∑

j ŵjh
; κ̂h ← r̄wh d−(r̄wh )3

1−(r̄wh )2

end for
until convergence

that 0 ≤ r̄wh ≤ 1, thereby it ensures that κ estimated
from equation (10) is always positive.

Proposition 1 Let r be a non-zero vector in Rd (i.e.,
r = (r1, . . . , rd)

T , such as d ≥ 2) which results from a
weighted sum of n d-dimensional unit vector, i.e, r =∑
i pixi, xi ∈ Rd and ‖xi‖ = 1 , ∀i ∈ {1, . . . , n} , n ≥

2, the weights pi ≥ 0, ∀i. Let rd be a vector in Rd, such
as all its components are equal to the sum of elements
of r (i.e, rd1 = · · · = rdd =

∑d
j=1 rj). Then 0 <

‖rd‖ ≤ d×∑i pi with equality only if all unit vectors
xi are equal/collinear.

The proof is available in supplementary material. By
replacing rd, d and pi in Proposition 1 with rwh ,

∑
j ŵjh

and z̃ih respectively, it is easy to verify 0 ≤ r̄wh ≤ 1.

3.4 Classification Maximum Likelihood
estimates

Setting our model dbmovMFs under the CML ap-
proach, that consists in maximizing the classifica-
tion likelihood instead of its expectation [Scott and
Symons, 1971, Symons, 1981, Celeux and Govaert,
1992], we derive a hard version of soft-dbmovMF called

CEMb. It can be obtained from Algorithm 1, by in-
corporating a C-step between the E and M steps as
follows zih = 1 if h = arg maxh′ z̃ih′ and zih = 0
otherwise, and replacing z̃ih by zih. The C-step of
CEMb, generates a completed sample (xi,zi) by allo-
cating each object xi to the cluster zi that maximizes
z̃ih. The corresponding M-step can be deduced from
the M-Step of EMb by replacing z̃ih by zih and thereby
t̃jh by tjh.

Regarding the clustering context, the main difference
between the ML and CML approaches is that, under
the ML approach, the partition z of the set of objects
into g clusters is deduced at convergence of EMb, by
assigning each object xi to the cluster that maximizes
the a posteriori probability z̃ih, while under the CML
approach the clustering process is taken into account
during parameters estimation. In this way, CEMb si-
multaneously estimates the parameters and the parti-
tion z. It is well known that the ML approach yields
more consistent estimate of the parameters thus often
provides better clustering than the classification ap-
proach, especially when the clusters are not well sepa-
rated. However, the CML approach exhibits some nice
properties generated by CEMb.

- CEMb is considerably more faster and scalable than
EMb, for instance, consider the update of the pa-
rameter ŵjh, under the ML approach (see, equation
10a) we need to go through all objects xi to compute
t̃jh, while with CEMb we only go through objects
whithin the hth cluster to compute tjh.

- CEMb allows to avoid numerical difficulties, i.e, over
and under flows, related to the computation of the
conditional probabilities z̃ih, especially in the case of
the vMF distribution where the normalization terms
cd(κh) involve Bessel functions and the concentra-
tion parameter κ acts as multiplier in the exponent.
More precisely, with CEMb there is no need for com-
puting the conditional probabilities z̃ih, the C-step
can be done equivalently by assigning each object
xi to the cluster maximising logαh+log fh(xi|Θ(t)).
Furthermore, this contributes to the efficiency, scal-
ability and memory-space saving of CEMb.

4 Experimental results

In this section, we shall provide extensive empirical
results to validate and illustrate the benefits of our
model dbmovMFs and the corresponding co-clustering
algorithms EMb and CEMb. To this end, we first
propose to validate the correctness of our model on
simulated datasets. In order to show the advantage
of dbmovMFs over one sided movMFs and the abil-
ity of our algorithms to deal with high dimensionality
and sparsity, we conduct extensive experiments on nu-
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merous real-world text datasets, in which we compare
our algorithms against different vMF-based clustering
methods denoted in our experiments as follows

- EM: the soft-movMF [Banerjee et al., 2005].

- CEM: the hard-movMF [Banerjee et al., 2005].

- Skmeans: the spherical k-means algorithm [Dhillon
and Modha, 2001], it is a simplified version of CEM
(hard-movMF), in which all clusters are assumed
to have equal proportions and equal concentration
parameters, i.e, κh = κ, αh = α, ∀h.

4.1 Simulated data sets

To validate the correctness of our model and imple-
mentations, we evaluate our model on several simu-
lated datasets corresponding to various particular sit-
uations, namely balanced co-clusters, unbalanced co-
clusters, clusters with equal concentration and with
different concentrations. Figure 3 illustrates these sit-
uations. We consider four different simulated datasets,
each of them consists of a sample of 5000 unit vec-
tors from a Diagonal Block Mixture of three 1000-
dimensional vMF distributions. The different simu-
lated datasets, i.e, sdata1,. . ., sdata4 are described in
more details in Table 1. In this table, α, κ and µ de-
note the true parameters while α̂, κ̂ and µ̂ denote their
estimated. As it is evident from this table, both EMb

and CEMb provide excellent performances even in sit-
uations where data exhibit unbalanced cluster sizes
and concentration parameters. We also note that the
estimations provided by EMb are slightly better than
those of CEMb in almost all situations.

(a) (b) (c) (d)

Figure 3: Simulated datasets reorganized according to row and
column partitions: (a) sdata1, (b) sdata2, (c) sdata3, (d) sdata4

4.2 Evaluation on real-world datasets

In the sequel, we aim at evaluating the performances
of our algorithms on several real-world datasets. As
a practical example we select the text mining do-
main and we concentrate on the challenging task of
document clustering using high dimensional sparse
document-term matrices. Hence, we selected six pop-
ular benchmark text datasets, CSTR used in [Li,
2005], CLASSIC41, WEBACE, the 20-newsgroups

1
http://www.dataminingresearch.com/

Table 2: Description of Datasets

Datasets
Characteristics

n d g Sparsity (%) Balance3

CSTR 475 1000 4 96.60 0.399
WEBACE 2340 1000 20 91.83 0.169
CLASSIC4 7094 5896 4 99.41 0.323
NG20 19949 43586 20 99.99 0.991
SPORTS 8580 14870 7 99.14 0.036
TDT2 9394 36771 30 99.64 0.028

data NG20, SPORTS used in [Zhong and Ghosh, 2005]
and TDT22. All these datasets are carefully selected
to represent various particular challenging situations
in clustering: balanced clusters, unbalanced clusters,
different number of clusters, i.e, raging from 4 to 30,
different sizes, i.e, small and large datasets, different
degrees of cluster overlap, i.e, well separated clusters
and poorly separated clusters. The characteristics of
the retained datasets are summarized in Table 2.

Note that, in the context of text document cluster-
ing, it has been empirically shown on numerous real-
world datasets, that the aforementioned baselines per-
form better than several existing clustering and co-
clustering algorithms including: k-means with the eu-
clidean distance, generative model using Gaussian,
Bernoulli and Multinomial distributions, spectral co-
clustering, and Latent Dirichlet Allocation (LDA).
Therefore, we do not include these approaches in our
comparisons. For more details see [Zhong and Ghosh,
2005, Gopal and Yang, 2014].

4.2.1 Evaluation measures

Evaluating clustering results is not a trivial task, how-
ever, when the true category labels are known, a com-
monly used approach to validate clustering results con-
sists in comparing the estimated partition with the
true one. To this end, several measures have been pro-
posed to asses the “similarity” between the estimated
clustering and the true clustering, in our experiments
we retain two widely used measures to asses the quality
of clustering, namely the Normalized Mutual Informa-
tion NMI [Strehl and Ghosh, 2003] and the Adjusted
Rand Index ARI [Hubert and Arabie, 1985, Milligan
and Cooper, 1986]. Further details can be found in the
supplementary material.

4.2.2 Performance comparison

In all our experiments we use the TF-IDF—proposed
in Scikit-learn [Pedregosa et al., 2011]—normalized
data representation. For each dataset we set g to the
real number of clusters, and in order for comparisons
to be consistent, all algorithms are initialized using

2
http://www.cad.zju.edu.cn/home/dengcai/

3
The balance coefficient is the ratio of the number of documents

in the smallest class to the number of documents in the largest class.
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Table 1: Comparison of true and estimated parameters using CEMb and EMb on different simulated dataset,
(α,κ,µ) denote the true parameters while (α̂,κ̂,µ̂) denote estimated parameters

Data Components
True Parameters

Algorithms
Parameter Estimation

α κ µhh α̂ |α− α̂| κ̂ |κ− κ̂| µT µ̂

sdata1

cluster1 0.34 500.00 1/
√

340
CEMb 0.339 0.001 501.38 1.38 1.00
EMb 0.339 0.001 499.87 0.13 1.00

cluster2 0.33 500.00 1/
√

330
CEMb 0.328 0.002 500.90 0.90 1.00
EMb 0.329 0.001 499.33 0.67 1.00

cluster3 0.33 500.00 1/
√

330
CEMb 0.333 0.003 500.56 0.56 1.00
EMb 0.332 0.002 500.42 0.42 1.00

sdata2

cluster1 0.70 320.00 1/
√

340
CEMb 0.691 0.009 320.72 0.72 1.00
EMb 0.700 0.00 319.62 0.38 1.00

cluster2 0.25 400.00 1/
√

330
CEMb 0.261 0.011 398.23 1.77 1.00
EMb 0.250 0.00 401.51 1.51 1.00

cluster3 0.05 500.00 1/
√

330
CEMb 0.048 0.002 497.75 2.25 1.00
EMb 0.050 0.00 499.28 0.72 1.00

sdata3

cluster1 0.34 320.00 1/
√

700
CEMb 0.345 0.005 319.82 0.18 0.998
EMb 0.345 0.005 319.83 0.17 1.00

cluster2 0.33 400.00 1/
√

250
CEMb 0.330 0.00 399.11 0.89 1.00
EMb 0.330 0.00 399.30 0.70 1.00

cluster3 0.33 500.00 1/
√
50

CEMb 0.325 0.005 487.82 12.18 0.980
EMb 0.325 0.005 500.40 0.40 1.00

sdata4

cluster1 0.70 320.00 1/
√

700
CEMb 0.697 0.003 320.20 0.20 1.00
EMb 0.702 0.002 320.10 0.10 1.00

cluster2 0.250 400.00 1/
√

250
CEMb 0.254 0.004 400.37 0.37 1.00
EMb 0.248 0.002 399.77 0.23 1.00

cluster3 0.05 500.00 1/
√
50

CEMb 0.049 0.001 498.10 1.90 1.00
EMb 0.05 0.00 501.12 1.12 1.00

the same row partition that results from ten iterations
of Skmeans started using a random initial point. For
our algorithms, we further initialize randomly the col-
umn partition. Each algorithm is run until there is
no significant increase of the likelihood with EMb and
EM or the complete data likelihood with CEMb and
CEM. Moreover, we conducted two sided paired t-tests
between each algorithm and EMb.

Tables 3 and 4, summarize the results of the different
methods in terms of NMI and ARI, over all datasets.
All results are averaged over thirty different starting
points, obtained using the initialization strategy de-
scribed above. Between brackets, we report the re-
sults corresponding to the trial with the highest cri-
terion. As it is evident from these tables, both EMb

and CEMb, exhibit better performances as opposed
to the other approaches. In fact, EMb and CEMb

achieve the best performances, in almost all situations,
except in terms of ARI on CLASSIC4 and NMI on
SPORTS, as statistical tests state, however, the dif-
ference is not significant. Again, we note only a slight
difference between EMb and CEMb, which is statisti-
cally not significant. Moreover, both tables show that
our algorithms provide high performances in terms of
both NMI and ARI, while the other movMFs-based
methods sometimes provide good NMI but low ARI
as this is the case on WEBACE, SPORTS and TDT2.
The reason is that, movMFs-based clustering meth-
ods have a tendency to merge small clusters and split
larger ones into comparably sized clusters (see, Ta-
ble 5), as it has been already emphasized in [Banerjee
et al., 2005]. In fact, unlike ARI, the NMI measure is
less sensitive to clusters merging and/or splitting. Our
dbmovMFs-based algorithms, however, thanks to the

centroids orthonormality assumption, avoid the above
difficulty, and are able to discover large as well as small
clusters. Thereby, dbmovMFs is more desirable when
dealing with unbalanced clusters as this is the case
with SPORTS, TDT2 and WEBACE datasets. For in-
stance, on SPORTS, the balance of clusters produced
by EMb (see, Table 5) is equal to 0.024 while the bal-
ance of clusters resulting from Skmeans is 0.453 which
is far from the true balance coefficient of SPORTS.

Another notable result, is that the Skmeans algorithm
which is based on a restricted version of movMFs
where all clusters share the same proportion and same
concentration parameter, yields better results than the
other movMFs-based algorithms, as it has been al-
ready emphasized by Gopal and Yang [2014]. The low
performance of EM and CEM as opposed to Skmeans,
is due to high concentration κh’s in the normalization
terms cd(κh)’s that involve Bessel functions. As it has
been highlighted by Banerjee et al. [2005], in the case
of large positive matrices, all the data points lie on the
first orthant of a d-dimensional hypersphere, thereby
the concentration of such data points is implicitly high
and increases exponentially with the dimensionality of
the hypersphere. As a result the concentration param-
eters of vMF distributions are high and increase ex-
ponentially with the dimensionality of the data. Once
again, dbmovMFs, thanks to its implicitly adaptive di-
mensionality reduction property, alleviates this issue.
In Figure 4, we reported the distribution of the con-
centration parameters estimated by dbmovMFs-based
algorithms and movMFs-based methods. We clearly
observe that EMb and CEMb lead to substantially
smaller concentration parameters than EM and CEM.
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Table 3: Comparison of Average: NMI and ARI on small text datatsets. Significance results of statistical tests against EMb are denoted
by * for significance at 1% level and by † for significance at 5% level.

CSTR CLASSIC4 WEBACE
NMI ARI NMI ARI NMI ARI

Skmeans
0.732±0.026 0.772±0.025 0.591±0.020 0.468±0.011 0.613±0.008 0.423±0.026

(0.759)† (0.807)* (0.595)* (0.476) (0.620)† (0.394)†
CEM

0.734±0.025 0.774±0.024 0.413±0.011 0.199±0.018 0.619±0.011 0.398±0.021
(0.759)† (0.807)* (0.410)* (0.194)* (0.623) (0.412)*

EM
0.741±0.026 0.777±0.026 0.406±0.013 0.190±0.015 0.614±0.014 0.385±0.034

(0.768) (0.808)* (0.403)* (0.184)* (0.623) (0.397)*

CEMb
0.754±0.024 0.804±0.022 0.660±0.003 0.467±0.003 0.623±0.011 0.479±0.038

(0.789) (0.830) (0.665) (0.473) (0.637) (0.519)

EMb
0.754±0.022 0.803±0.022 0.660±0.002 0.466±0.002 0.624±0.008 0.481±0.025

(0.792) (0.837) (0.668) (0.473) (0.639) (0.523)

Table 4: Comparison of Average: NMI and ARI on large datasets.

NG20 SPORTS TDT2
NMI ARI NMI ARI NMI ARI

Skmeans
0.542±0.013 0.375±0.016 0.614±0.044 0.405±0.053 0.790±0.012 0.492±0.031

(0.555)* (0.379)† (0.627)* (0.442)* (0.801)† (0.514)*

CEM
0.467±0.013 0.149±0.021 0.446±0.048 0.151±0.067 0.750±0.021 0.436±0.048

(0.484)* (0.150)* (0.455)* (0.177)* (0.769)* (0.466)*

EM
0.465±0.013 0.143±0.020 0.444±0.049 0.149±0.067 0.751±0.019 0.438±0.041

(0.481)* (0.141)* (0.453)* (0.174)* (0.771)* (0.489)*

CEMb
0.582±0.011 0.388±0.024 0.558±0.039 0.508±0.080 0.799 ±0.014 0.657±0.032

(0.594) (0.403) (0.608)† (0.602) (0.817) (0.719)

EMb
0.585±0.010 0.390±0.025 0.564±0.037 0.517±0.072 0.799±0.015 0.658±0.034

(0.601) (0.425) (0.617) (0.605) (0.821) (0.699)

Table 5: Sports dataset: confusion matrices crossing the row clusters obtained by both algorithms (rows) and the true row clusters
(columns). The column z.h indicates the cardinalities of clusters.

EMb (NMI = 0.617, ARI = 0.605) Skmeans (NMI = 0.627 , ARI = 0.442)
1 2 3 4 5 6 7 z.h 1 2 3 4 5 6 7 z.h

1 3338 219 41 27 487 48 82 4242 1705 1 0 1 1 0 0 1708
2 8 1008 0 0 16 0 0 1032 0 904 0 0 1 0 1 906
3 24 22 5 0 39 5 7 102 1 1 0 0 798 1 0 801
4 36 138 0 0 449 2 2 627 1326 0 0 0 6 0 0 1332
5 3 14 0 1 1345 1 10 1374 81 30 24 6 1171 5 4 1321
6 3 8 99 94 10 280 0 494 298 473 121 115 369 330 23 1729
7 0 1 0 0 0 0 708 709 1 1 0 0 0 0 781 783

5 Conclusion

We proposed dbmovMFs a novel generative mixture
model based on the vMF distribution, for co-clustering
high dimensional sparse data. Unlike existing vMF-
based mixture models, which focus only on cluster-
ing along one dimension, dbmovMFs acts simultane-
ously on both dimensions of a data matrix. Thereby,
dbmovMFs has the advantage of exploiting the clear
duality between the rows and columns of a data ma-
trix, which improves clustering performance. Setting
dbmovMFs under the ML and CML approaches we
derived two algorithms. Experiments conducted on
numerous synthetic and real-world datasets, provide
empirical evidence about the effectiveness of our algo-
rithms and the benefits of dbmovMFs for modelling
high dimensional sparse data. The proposed algo-
rithms leads to substantially better performances than
movMFs-based methods which are known to perform
better than several existing methods, in the context of
high dimensionality and sparsity. Moreover, thanks to
the dimensionality reduction characteristic of our for-
mulation, dbmovMFs alleviates the problem of high
concentration parameters κh’s, a well known difficulty
in vMF-based models.

The number of clusters remains one of the widely de-

bated topics in clustering. In our context, this work is
under investigation—due to the number of free param-
eters to be estimated—with information criteria such
as BIC [Schwarz et al., 1978].
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Figure 4: Distribution of concentration parameters.
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