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Abstract. In this paper, we propose a new image instance segmentation
method that segments individual glands (instances) in colon histology
images. This is a task called instance segmentation that has recently
become increasingly important. The problem is challenging since not
only do the glands need to be segmented from the complex background,
they are also required to be individually identified. Here we leverage the
idea of image-to-image prediction in recent deep learning by building a
framework that automatically exploits and fuses complex multichannel
information, regional and boundary patterns, with side supervision (deep
supervision on side responses) in gland histology images. Our proposed
system, deep multichannel side supervision (DMCS), alleviates heavy
feature design due to the use of convolutional neural networks guided by
side supervision. Compared to methods reported in the 2015 MICCAI
Gland Segmentation Challenge, we observe state-of-the-art results based
on a number of evaluation metrics.
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1 Introduction
Recent progress in deep learning technologies has led to explosive development
in machine learning and computer vision for building systems that have shown
substantial improvement in a wide range of applications such as image classifi-
cation [7, 10] and object detection [4]. The fully convolutional neural networks
(FCN) [8] enable end-to-end training and testing for image labeling; holistically-
nested edge detector (HED) [14] learns hierarchically embedded multi-scale edge
fields to account for the low-, mid-, and high- level information for contours and
object boundaries. FCN performs image-to-image training and testing, a factor
that has become crucial in attaining a powerful modeling and computational
capability of complex natural images and scenes.
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2 Yan Xu et. al

FCN family models [8, 14] are well-suited for image labeling/segmentation
in which each pixel is assigned a label from a pre-specified set. However, they
can not be directly applied to the problem where individual objects need to be
identified. This is a problem called instance segmentation. In image labeling,
two different objects are assigned with the same label so long as they belong
to the same class; in instance segmentation, objects belonging to the same class
also need to be identified individually, in addition to obtaining their class labels.
Recent work developed in computer vision [2] shows interesting results for in-
stance segmentation but a system like [2] is for segmenting individual objects
in natural scenes. With the proposal of fully convolutional network (FCN) [8],
the end-to-end learning strategy has strongly simplified the training and testing
process and achieved state-of-the-art results in solving the segmentation problem
back at the time. To refine the partitioning result of FCN, [6] and [15] integrate
Conditional Random Fields (CRF) with FCN. However, they are not able to
distinguish different objects leading to failure in instance segmentation problem.
DCAN [1] and U-net [9] are two instance aware neural networks based on FCN
with acceptant performance.

Fig. 1: Gland Haematoxylin and Eosin (H&E) stained slides and ground truth labels. Images in
the first row exemplify different glandular structures. Characteristics such as heterogeneousness and
anisochromasia can be observed in the image. The second row shows the ground truth. To achieve
better visual effects, each color represents an individual glandular structure.

The intrinsic properties of medical image pose plenty of challenges in instance
segmentation [3]. First of all, the objects are in heterogeneous shapes, which
make it difficult to use mathematical shape models to achieve the segmentation
task. Take colorectal cancer histology image as an example (Fig.1). When the
cytoplasm is filled with mucinogen granule the nucleus is extruded into a flat
shape whereas the nucleus appears as a round or oval body after secreting.
Second, variability of intra- and extra- cellular matrix is often the culprit leading
to anisochromasia. Therefore, the background of the medical image contains
more noise like intensity gradients, compared to natural images.

In this paper, we aim to developing a practical system for instance segmen-
tation in gland histology images. We engage multichannel learning [13], region
and boundary cues using convolutional neural networks with side supervision,
and solve the instance segmentation issue in the gland histology image. Our algo-
rithm is evaluated on the dataset provided by MICCAI 2015 Gland Segmentation
Challenge Contest [11, 12] and achieves state-of-the-art performance.
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2 Method
2.1 HED-Side Convolution (HED-SC)

The task of pathology image analysis is challenging yet crucial. The booming
development of machine learning provides pathology slide image analysis with
copious algorithms and tools. Although FCN has been shown to be excellent
[8], due to the loss of boundary information during downsampling, FCN fails
to distinguish instances in certain class. To conquer this challenge, HED learns
rich hierarchical representations under the guidance of deep supervision with
each layer capable of carrying out an edge map at a certain scale. Thus the
HED model is naturally multi-scale. Combining the side-outputs together, the
weighted-fusion layer integrates the features obtained from different levels yield-
ing superior results (for more details on HED, see [14]). Since our model performs
the edge detection on the basis of pixelwise prediction, the transformation from
the region feature to boundary feature is required. Hence, the original HED
model is modified by adding two convolution layers in each side output path and
the HED-SC model is born. In this paper, we build a multichannel model (Fig.2)
that accomplishes the task of instance segmentation in the gland histology image.

Fig. 2: Figure above illustrates a brief structure of DMCS. The black arrows represent the forward
learning progress. FCN, the region channel, yields the prediction of regional probability maps. HED-
SC, the edge channel, outputs the result of boundary detection. Convolution neural network is
engaged to concatenate features generated by different channels and produce segmented instances.

2.2 Multichannel Learning
There are N images in the training set that can be divided into K categories.
Note that K is the number of object categories plus. We denote our training

set by S = {(Xn, Yn, Zn), n = 1, 2, ..., N} where Xn = {x(n)
j , j = 1, 2, ..., |Xn|}

denotes the original input image, Yn = {y(n)
j , j = 1, 2, ..., |Yn|}, yjε{0, 1, 2, ...,K}

and Zn = {z(n)
j , j = 1, 2, ..., |Zn|}, zjε{0, 1} denotes the corresponding ground

truth label and binary edge map for image Xn respectively. For convenience,
Xn is simplified as X since all the training images are independent. Our goal
is to predict the output set Y from the input image X. By multichannel, we
emphasize that we exploit basic cues of segmenting images - region context and
edge context - as two channels.

Region feature channel The region feature channel optimizes the pixel-
wise prediction Pr. We fix the parameter we, wf while learning the parameter w,
wr. The parameters in HED-SC and the parameters before the fully connection
layer are represented as we and wr respectively. Parameters in the fuse stage are
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Fig. 3: Illustrates the deep multichannel side supervision model. The region channel engaged in
producing a coarse pixel prediction of which the structure is identical to FCN32s [8]. At the first
convolutional layer, padding of 100 pixels is involved as Long does [8]. The output of this channel
achieved via the strategy of in-network up-sample layers and crop layers is the same size as the input
images. Boundary information is obtained by the HED-SC channel of DMCS inspired by HED [7].
In this edge detection model side convolution is inserted before all the pooling layers in the FCN32s.
Altogether, there are five side convolutions. Learnable weighting is assigned to five output of deep
supervisions to produce the final result. The third part in DMCS aims to do instance segmentation
based on information of region and boundary. It concatenates the output of the region channel and
the HED-SC channel together. This fully convolutional neural network is utilized to process the
segmented images.

denoted as wf . Shared with both channels, the weights in FCN before wr are
symbolized as w. In this stage, our proposed model follows the architecture of
FCN. Fully convolutional networks are trained pixel-to-pixel to achieve image
semantic segmentation. Given an input image X, we first predict the pixel-to-
pixel label Y ∗ where µk denotes the kth class output of softmax function and
h(·) calculates the activation of neural network:

Pr

(
y∗j = k | X;w,wr

)
= µk (h (X,w,wr)) , (1)

The loss function in this stage are

Lr (Y ∗, X,w,wr) =

|Y ∗|∑
j=1

llog
(
Pr

(
y∗j = yj | X;w,wr

))
. (2)

llog(·) is the logarithmic loss function.
HED-SC channel The HED-SC channel performs the edge detection on

the pixel-wise prediction basis. First of all, the lower layer representation of
most neural network lack of semantically meaning due to the gradients van-
ishing/exploding problem during back-propagation. Deep supervised networks
solve the exact problem by adding loss layers in lower structure of network. In
our edge detection model, prior to each pooling layer, feature maps are executed
with convolution operation with the kernel size of 3× 3, yielding five heatmaps
in this case. The prediction for each side-output is calculated as follows:

P (m)
e

(
z
∗(m)
j = 1 | X;w,w(m)

e

)
= σ

(
h
(
X,w,w(m)

e

))
, (3)

σ(·) is the sigmoid function. The loss function for side-output is:
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L(m)
e

(
Z∗, X,w,w(m)

e

)
=

|Z∗|∑
j=1

lE

(
P (m)
e

(
z
∗(m)
j = 1 | X;w,w(m)

e

))
, (4)

lE(·) is cross entropy loss function. Meanwhile, these five side-outputs are gen-
erated from feature maps with various sizes, in doing so the architecture of
the network is naturally multi-scale. Weighted concatenating the five-scale side-

outputs together (the weight w
(0)
b is learnable), the low-, middle- and high-level

information is integrated to generate the edge map:

P (0)
e

(
z
∗(0)
j = 1 | X;w,we

)
= σ

(
M∑

m=1

w(0)(m)
e · h

(
X,w,w(m)

e

))
, (5)

and the loss function is

L(0)
e (Z∗, X,w,we) =

|Z∗|∑
j=1

lE

(
P (0)
e

(
z
∗(0)
j = 1 | X;w,we

))
, (6)

Our loss function of this stage can be computed as

Le (Z∗, X,w,we) =

M∑
m=1

L(m)
e

(
Z∗, X,w,w(m)

e

)
+ L(0)

e (Z∗, X,w,we) , (7)

Merging side-outputs and weighted-fuse would optimize the edge detection result

[14], but our priority is not edge detection thus we consider P
(0)
e as the final edge

prediction.
Training At the training phase we combine the pixel prediction and edge

prediction together and obtain the fine-grained pixelwise prediction Y ∗f as our
final result:

Pf

(
y∗fj = k | Or, O

(0)
e ;wf

)
= µk

(
h
(
Or, O

(0)
e , wf

))
, (8)

where Or = h (X,w,wr) and O
(0)
e =

∑M
m=1 w

(0)(m)
e · h

(
X,w,w

(m)
e

)
Firstly, it

concatenates the output of first component, the pixel prediction, and the second
component, the edge information, together. Then we apply a fully convolutional
neural network to process the segmented images. This network contains four
convolutional layers, two pooling layers, three full connected layers which are
achieved by convolution and an up-sampling layer. We still choose the logarith-
mic loss function:

Lf

(
Y ∗f , Or, O

(0)
e , wf

)
=

|Y ∗
f |∑

j=1

llog

(
Pf

(
y∗fj = yj | Or, O

(0)
e ;wf

))
, (9)

3 Experiment
Experiment data The dataset is provided by MICCAI 2015 Gland Segmen-
tation Challenge Contest [11, 12] which consists of 165 labeled H&E stained
colorectal cancer histological images. There are 85 images in the training set
and 80 in the test sets (test A has 60 images and test B has 20 images).
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Fig. 4: From left to right: original image, ground truth, result using FCN, result using DMCS model.
Compared to FCN, most of the adjacent glandular structures are separated apart which indicates
that our framework accomplishes the instance segmentation goal. However, few glands with small
shape or filled with red blood cells escape the detection of our model. The bad performance in the
last row is because that in most samples, the white area are recognized as cytoplasm while on the
contrary, the white area is the background in this image.

Data augmentation We first preprocess the data by performing per channel
zero mean. To enhance performance and combat overfitting, copious training
data are needed to learn the parameters. Given the circumstance of the absence
of a large dataset, data augmentation is essential before training. The following
lists five methods we deploy in augmentation. Horizontal flipping is used in
our given dataset. The insensitivity of orientation in the gland slide enables
the rotation operation (0,90,180,270) to training images. Meanwhile, shifting
operation is applied to the available training images as well.

Hyperparameters We implement our learning network using a deep learn-
ing framework CAFFE [5]. Experiments are carried out on K40 GPU and the
CUDA edition is 7.0. During the training phase, a back progression training
strategy is involved. The parameters of the framework are as follows: weight
decay is 0.002, momentum is 0.9, mini-batch size is 10. While training the re-
gion channel of the network, the learning rate is 10−3 and the parameters in the
framework is initialized by pre-trained FCN32s model [8], while the HED-SC
channel is trained under the learning rate of 10−9 and the Xavier initialization
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is performed. Fusion is learned under the learning rate of 10−3 and initialized by
Xavier initialization. Finally, the whole framework is fine-tuned with the learning
rate 10−3 and the weight of loss of edge is 10−6.

Evaluation Three criteria are engaged to evaluate the result of instance
segmentation. The summation of six ranking numbers of three criteria on two
testing datasets determine the final ranking of each team. The F1 score measures
the accuracy of glandular instance segmentation. The true positive is defined
as the segmented object which at least 50% intersects with the ground truth.
ObjectDice assesses the performance of segmentation. ObjectHausdorff evaluates
the shape similarity between ground truth and segmented object based on object-
level Hausdorff distance.

Method
F1 Score ObjectDice ObjectHausdorff

Rank SumPart A Part B Part A Part B Part A Part B
Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank

FCN 0.709 11 0.708 5 0.748 11 0.779 7 129.941 12 159.639 6 52

Ours 0.858 8 0.771 1 0.888 2 0.815 1 54.202 2 129.930 1 15

CUMedVision2 [1] 0.912 1 0.716 4 0.897 1 0.781 6 45.418 1 160.347 8 21

ExB1 0.891 4 0.703 6 0.882 5 0.786 3 57.413 7 145.575 2 27

ExB3 0.896 2 0.719 3 0.886 3 0.765 8 57.350 6 159.873 7 29

Frerburg2 [9] 0.870 5 0.695 7 0.876 6 0.786 4 57.093 4 148.463 4 30

CUMedVision1 [1] 0.868 6 0.769 2 0.867 9 0.800 2 74.596 9 153.646 5 33
Table 1: Our framework performs outstandingly in datasets provided by MICCAI 2015 Gland Segmentation Challenge Contest
and achieves the state-of-the-art result. We rearrange the scores and ranks in this table. Our method outranks FCN and other
participants [11] based on rank sum.

Result Our framework performs well in the dataset provided by challenge of
2015 MICCAI and achieves state-of-the-art results (as listed in Table. 1) among
all participants [11]. We train FCN 20 for epoches with approximately 23h, HED
for 20 epoches with 22h and the fusion phase for 40 epoches with 50h. Compared
to the result of FCN our framework obtains better score which is a convincing
evidence that our work is more effective in solving instance segmentation problem
in histological images.

The result of instance segmentation is illustrated in Fig.4. Our method is
inspired by FCN and we add the region information to solve the instance seg-
mentation task. Compared to FCN, most of the adjacent glandular structures
have been separated apart which indicates that our framework accomplishes the
instance segmentation goal. However, glands which are too small and have simi-
lar backgrounds (fifth row in Fig.4) are neither detected by FCN nor recognized
in the fusion process. Images scattered with red blood cells caused by internal
hemorrhage are excluded in training dataset, consequently instance segmenta-
tion result (sixth row in Fig.4) is not satisfactory.

Discussion This framework exploits information from both region and gland
channels, of which the region channel accomplishes the segmentation and posi-
tioning while the edge channel separates two adjacent gland instances.

In test A, most of the pathology slide images are the normal ones while
test B contains a majority of the images of cancerous tissue which are more
complicated in shape and lager in size. Hence, a larger receptive field is required
in order to detect cancerous glands. We use 5 pooling layers to enlarge the
receptive field but in doing so, the network produces a much smaller heatmap (
32 times subsampling of the original image ) thus the performance concerning
detecting small normal glands gets worse.
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4 Conclusion
We propose a new algorithm called deep multichannel side supervision which
achieves state-of-the-art results in MICCAI 2015 Gland Segmentation Chal-
lenge. The universal framework extracts features of both the edge and region
and concatenate them together to generate the result of instance segmentation.

In future work, this algorithm can be utilized in medical images and multi-
channel learning can be used to improve instance segmentation.
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