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Abstract

The popular generalized second price (GSP) auction for sponsored search is built upon a
separable model of click-through-rates that decomposes the likelihood of a click into the product
of a “slot effect” and an “advertiser effect”—if the first slot is twice as good as the second
for some bidder, then it is twice as good for everyone. Though appealing in its simplicity,
this model is quite suspect in practice. A wide variety of factors including externalities and
budgets have been studied that can and do cause it to be violated. In this paper we adopt
a view of GSP as an iterated second price auction (see, e.g., Milgrom [2010]) and study how
the most basic violation of separability—position dependent, arbitrary public click-through-
rates that do not decompose—affects results from the foundational analysis of GSP [Varian,
2007; Edelman et al., 2007]. For the two-slot setting we prove that for arbitrary click-through-
rates, for arbitrary bidder values, an efficient pure-strategy equilibrium always exists; however,
without separability there always exist values such that the VCG outcome and payments cannot
be realized by any bids, in equilibrium or otherwise. The separability assumption is therefore
necessary in the two-slot case to match the payments of VCG but not for efficiency. We moreover
show that without separability, generic existence of efficient equilibria is sensitive to the choice
of tie-breaking rule, and when there are more than two slots, no (bid-independent) tie-breaking
rule yields the positive result. In light of this we suggest alternative mechanisms that trade the
simplicity of GSP for better equilibrium properties when there are three or more slots.

1 Introduction

The generalized second price (GSP) auction is the predominant auction for sponsored search ad-
vertising today. The auction takes per-click bids and proceeds as follows: a score is computed
independently for each advertiser, reflecting its bid and propensity to be clicked; ads are ranked ac-
cording to these scores, matched to slots accordingly, and finally charged the minimum bid required
to maintain their allocated slot (i.e., to stay above the winner of the slot below). Fundamental
to this procedure is the fact that the optimal assignment can be computed based on a ranking of
independently-computed scores, which requires that: (a) the differences between slots affect all ads
equally, and (b) an ad’s propensity to be clicked is unaffected by the other ads shown around it.
Formally, this amounts to separability of click-through-rates: any given ad i’s probability of being
clicked when shown in slot j decomposes into two factors, µj (a “slot-effect”) and βi (an “adver-
tiser effect”). The GSP auction, as well as the theory underlying it (Varian [2007]; Edelman et al.
[2007]), all critically rely on this model.
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Unfortunately, separability generally does not hold in practice (one recent work challenging the
model is Jeziorski and Segal [forthcoming]). Moreover, the inadequacy of the model is becoming
more acute as online advertising evolves to incorporate more heterogeneous bidders and slots.
Instead of a uniform column of vanilla text ads, it is now common for different ad formats (images,
text with sitelinks, etc.) to appear together on the same search results page. New ad marketplaces
with richer formats, such as Yahoo’s “native” stream, have emerged. For advertisers that are
seeking clicks, click-through-rate is the relevant metric, but for brand advertisers the “view rate”
of a slot is more relevant (see, e.g., Hummel and McAfee [2014]).

In this paper we examine what happens if we move beyond the separable model: besides
assuming—as in the standard model—that click-through-rates can be determined independent of
context (i.e., surrounding ads), we make virtually no structural assumptions and determine to what
extent the most important classical findings hold up.

Our main results in the two-slot setting show that efficiency is achievable but revenue may suffer.
For arbitrary click-through-rates and values, there exist efficient equilibria. However, for arbitrary
click-through-rates, there exist values such that the VCG outcome and payments are not achievable
(in equilibrium or otherwise). Put another way: all click-through-rate profiles ensure existence of
efficient equilibria, but no non-separable click-through-rate profiles ensure the feasibility of VCG
payments. We also show that the price of anarchy in a two-slot setting without the separability
assumption is 2 (Caragiannis et al. [2014] showed that it is at most 1.282 with separability).

When there are three or more slots, we show that efficient equilibria do not always exist if
the tie-breaking rule cannot be chosen dynamically in response to bids. We present an alternate
mechanism that restores efficient equilibria by expanding the bid space so that agents can specify
a bid for every slot, with items left unallocated if there is not sufficient competition.

1.1 Related work

Besides providing one of the earliest models of the sponsored search setting, Edelman et al. [2007]
proved that—in the complete-information model with separable click-through-rates—GSP has an
equilibrium that realizes the VCG result, i.e., an efficient allocation with each winner paying a
price equal to the negative externality his presence exerts on the other advertisers. In another
important early paper, Lahaie [2006] provides equilibrium analysis for GSP (including for the
version where advertiser effects are ignored) and first-price variants, in both the complete and
incomplete information settings. A good early survey is Lahaie et al. [2007].

In a recent paper, Caragiannis et al. [2014] examine the space of equilibria that may exist under
GSP with separable click-through-rates, and bound the efficiency loss that can result in any of the
sub-optimal equilibria. Part of this work involves a straightforward price of anarchy analysis for the
complete information setting, to which we provide a counterpoint without separability in Section
3.4.

The prior literature contains some empirical evidence against the separability assumption. For
instance, Craswell et al. [2008] demonstrate clear violations of separability for organic search results.
Gomes et al. [2009] take three prominent keywords and show that the separable model is a poorer
fit to observed clicks than an alternate “ordered search” model of click-through-rates. Most of
the work that steps outside of the classic separable model is motivated by externalities between
advertisements [Kempe and Mahdian, 2008; Ghosh and Mahdian, 2008; Giotis and Karlin, 2008;
Athey and Ellison, 2011; Aggarwal et al., 2008; Gomes et al., 2009; Ghosh and Sayedi, 2010]. The
context in which an ad is shown may matter: for instance, an ad may yield more clicks if shown
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below poor ads than it would if shown below very compelling competitors. Our model in the current
paper removes the separability assumption but does not capture externalities, as it assumes click-
through-rates are context-independent.

Aggarwal et al. [2006] show that in the absence of the separability assumption, there are cases
where truthful bidding under GSP will not lead to an efficient allocation. The authors go on to
design a truthful mechanism that implements the allocation that would result under GSP (which is
not truthful) with truthful bidding. Gonen and Vassilvitskii [2008] extend this analysis in a setting
with reserve prices.

Finally, without separability a set of agents could have arbitrary “expected values” for each
slot—no common structure is assumed. Though types in our model are single-dimensional since
click-through-rates are not private knowledge, there is a connection to work that shows existence
of efficient equilibria when agents have a private value for each slot [Leonard, 1983; Abrams et al.,
2007].

2 Preliminaries

The basic sponsored search model can be described as follows: a set of m slots are to be allocated
among n ≥ m advertisers. When ad i is shown in slot j, regardless of what is shown in other
slots, a user clicks on ad i with probability (“click-through-rate”) αi,j, generating value vi for
the advertiser. We let I denote the set of advertisers, and assume throughout that lower slots
yield weakly lower click-through-rates, i.e., ∀i ∈ I, ∀k ∈ {1, . . . ,m − 1}, αi,k ≥ αi,k+1, and that
∀i ∈ I, ∀k ∈ {1, . . . ,m}, αi,k > 0. Our model places no further assumptions on click-through-rates.

In the separable refinement of this model, click-through-rates αi,j can be decomposed multi-
plicatively into αi,j = µjβi, where µj is the slot effect that depends only on the position and βi is
the ad effect that depends only on the bidder. Slots are ordered so that µ1 ≥ µ2 ≥ · · · ≥ µm. In
that setting, the GSP auction can be defined like such:

Definition 1 (GSP auction). The generalized second price (GSP) auction proceeds as follows:

1. Each bidder i ∈ I submits a per-click bid bi.

2. Bidders are ranked by βibi and matched to slots according to their rank.

3. The bidder in position j pays “the ad-effect-adjusted bid of the bidder in position j+1” when
her ad is clicked; specifically, she pays the minimum amount required to be ranked in position
j:

pj =
βj+1bj+1

βj

To move beyond separable click-through-rates, we must generalize the GSP mechanism. We
will work from a common observation (see, e.g., Milgrom [2010]) that the GSP auction can be
viewed as a special sequence of second-price auctions—each slot is sold in order as if it were the
only slot for sale. This view allows us to naturally handle general click-through-rates.

Definition 2 (Iterated second price auction). An iterated second price auction for sponsored search
proceeds as follows:

1. Each bidder i ∈ I submits a per-click bid bi.

2. An order-of-sale σ is selected for the slots.
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3. For j from 1 to m, with slots indexed according to σ:

(a) A second-price auction is used to sell slot j as follows: let i∗ be the remaining bidder
with the highest αi,jbi and let i+ be the bidder with the second-highest αi,jbi. i∗ wins the

auction and pays
αi+,jbi+
αi∗,j

per click or αi+,jbi+ per impression.

(b) Bidder i∗ is removed from the auction and cannot win future slots.

This auction, with “best to worst” as the order of sale adopted in step 2, is the implicit context for
all results in this paper, except where stated otherwise.

Another important auction mechanism is the Vickrey-Clarke-Groves (VCG) mechanism, which
yields tuthful bidding and an effcient allocation in dominant strategies.

Definition 3 (VCG mechanism). In sponsored search, the Vickrey-Clarke-Groves (VCG) mecha-
nism proceeds as follows:

1. Each bidder i ∈ I submits a per-click bid bi to the auction.

2. Bids are interpreted as values per-click, and a matching of bidders to slots i(j) is chosen that
maximizes welfare, i.e that maximizes

∑
j∈I αi(j),jbi(j).

3. Each bidder i ∈ I is charged an amount equal to the welfare other bidders would gain, accord-
ing to their reported bids, if i were removed from the auction.

In this paper we will compare the outcome of our GSP generalization (Definition 2) to that of
VCG:

Definition 4 (VCG result). The VCG result refers to the allocation and payments realized by the
VCG mechanism.

Given a set of advertiser bids, if we say that an auction has “realized the VCG result” we are
saying that its allocation and payments match those of the VCG mechanism.

3 Two slots

We focus much of our analysis on the two-slot case, for a few reasons. First, this is the simplest
case in which GSP deviates from a straightforward Vickrey auction (which it reduces to in the
case of a single slot); second, with two slots “separability” is cleanly and simply defined, holding
whenever the ratio of click-through-rate for the first slot to the click-through-rate for the second
(henceforth, the click-ratio) is the same across all agents (i.e., ∀i, j ∈ I,

αi,1

αi,2
=

αj,1

αj,2
); and finally, we

will be able to show important positive results for the two-slot case that do not extend to larger
numbers of slots.

3.1 Efficient equilibria

Among the first questions one might ask about an auction mechanism is: does it yield efficient
equilibria? The foundational work of Edelman et al. [2007] and Varian [2007] demonstrated that
efficient equilibria do exist under GSP in the separable model, and we now ask whether the as-
sumption of separability is necessary. We resolve this in the negative.
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bidder value αi,1 αi,2

1 1 1 1

2 1 1 1

3 2 0.4 0.2

Table 1: A two-slot, three-bidder example in which two bidders are indifferent between the two
slots. There is no pure strategy equilibrium unless ties are broken in favor of bidder 3.

To build intuition, we will start by considering an especially “problematic” example for the
non-separable setting that reveals some of the challenges that can arise.

The first thing to notice about the example in Table 1 is that in any pure strategy equilibrium
bidders 1 and 2 win the slots and bidder 3 gets nothing.1 So now assume without loss of generality
that bidder 1 wins slot 1 and bidder 2 wins slot 2. Bidder 2 has the better deal, since he’ll have to
pay at most half of what bidder 1 pays (since the bid of bidder 3 will set the price for slot 2 and
lower-bound the price for slot 1), and slot 2 is as good as slot 1 (in the eyes of bidders 1 and 2).
Thus, in order for bidder 1 to be best-responding, it must be impossible for him to bid so as to win
slot 2 (which would sell at a lower price) instead of slot 1. In other words, if he were to underbid
bidder 2, he must end up with nothing. This can only be the case if 0.4b3 = b2 and a hypothetical
tie between bidders 2 and 3 for slot 1 is broken in favor of bidder 3.

Therefore, interestingly, in the above example there exists a pure strategy equilibrium—efficient
or otherwise—only if ties are broken in a specific way. This would seem to bode very poorly for
the prospects of a general result establishing existence of efficient equilibria. However, we will see
in this section that, at least in the two-slot case, efficient equilibria do in fact always exist (given
the right tie-breaking rule). Several of the proofs are somewhat painstaking and are deferred to
the Appendix, along with auxiliary lemmas, with proof sketches included in the main text.

Theorem 1 (Efficient equilibria exist). In a two-slot setting with any number of bidders, for
arbitrary values and click-through-rates, if there is a unique efficient allocation and ties are broken in
favor of an agent with highest click-ratio, then there is an efficient equilibrium without overbidding.

Proof sketch. Consider arbitrary click-through-rates α and values v. Let 1 and 2 denote the
respective winners of slots 1 and 2 in the efficient allocation, and let 3 denote argmaxj∈I\{1,2} αj,2vj .

We dichotomize the set of possible click-through-rate profiles into those in which
α2,1

α2,2
≥ α3,1

α3,2
and

those in which
α2,1

α2,2
<

α3,1

α3,2
. In the former case, the following bid profile is an efficient equilibrium:

b1 = v1, b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
, b3 = v3, and bi = 0, ∀i ∈ I \ {1, 2, 3}. In the latter, the following

is: b1 = v1, b2 =
α3,2

α2,2
v3, b3 =

α2,1

α2,2

α3,2

α3,1
v3, and bi = 0, ∀i ∈ I \ {1, 2, 3}. The proof verifies that an

exhaustive set of sufficient equilibrium conditions holds in each case.

It is interesting to see what the above tells us about the problematic example of Table 1. To
derive bids yielding an efficient equilibrium, we can note the following about the example: an

1Assume otherwise. If bidder 3 were winning the first slot in equilibrium, he must be paying less than his value
in expectation (0.8), but in that case the loser amongst bidders 1 and 2 could benefit by bidding between 0.8 and 1,
winning a slot for at most 0.8. Likewise, if bidder 3 were winning the second slot in equilibrium, he must be paying
less than his value in expectation (0.4), but in that case the loser amongst bidders 1 and 2 could benefit by bidding
between 0.4 and 1.
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efficient allocation gives slots 1 and 2 to bidders 1 and 2, and thus the agents are labeled in a way
consistent with the convention of Theorem 1. Now, since

α2,1

α2,2
<

α3,1

α3,2
, the above proof indicates that

the following bids—combined with a tie-breaking rule that favors bidder 3 over bidder 2—yields an
efficient equilibrium: b1 = v1 = 1, b2 =

α3,2

α2,2
v3 = 0.4, b3 =

α2,1

α2,2

α3,2

α3,1
v3 = 1.

3.2 Globally envy-free equilibria

In the previous subsection we demonstrated that efficient equilibria always exist. We proved this
constructively, giving bid functions that yield efficiency for all valuations. However, these bids do
not generally lead to global envy-freeness:

Definition 5 (Globally envy-free outcome). Consider an arbitrary allocation and prices. Let k
denote the winner of slot k and pk denote the price paid by k, for k ∈ {1, . . . , n}; let n + 1 denote
the agent that receives nothing; and let pn+1 = 0. The allocation and prices constitute a globally
envy-free outcome if and only if, for all i, j ∈ {1, . . . , n+ 1},

αi,ivi − pi ≥ αi,jvi − pj

Envy-freeness is a major focus of the classic work on GSP [Edelman et al., 2007; Varian, 2007],
because of its relationship to VCG results, the salience it arguably confers on equilibria, and perhaps
most importantly, the fact that envy-freeness implies that an equilibrium generates at least as much
revenue as VCG. Unfortunately, we will now see that this guarantee does not extend to our setting,
and an envy-free equilibrium is not guaranteed to exist.

We will give a necessary condition for global envy-freeness (Proposition 1), which will not always
be satisfied. We will then show that whenever the condition is satisfied, global envy-freeness can
be achieved, and moreover done so in the context of an efficient equilibrium (Theorem 2).

Proposition 1. In a two-slot, three-bidder setting, for arbitrary values v and click-through-rates α,
there exist no bids yielding a globally envy-free outcome unless, letting 1 and 2 denote the respective
winners of slots 1 and 2 in the efficient allocation:

(α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1

Proof. Take arbitrary values v, click-through-rates α, and bids b. First assume b2 ≥ α3,1

α2,1
b3 (i.e., 2

sets the price for 1). For 1 to not be envious of 2, it must be the case that b2 ≤ α3,2b3+(α1,1−α1,2)v1
α2,1

.

The combination of these two constraints yields (α3,1 − α3,2)b3 ≤ (α1,1 − α1,2)v1. Now instead
assume b2 ≤ α3,1

α2,1
b3 (i.e, 3 sets the price for 1). 1 is not envious of 2 if and only if α1,1v1 − α3,1b3 ≥

α1,2v1 − α3,2b3, i.e., (α3,1 − α3,2)b3 ≤ (α1,1 − α1,2)v1, again. Finally, noting that envy-freeness for
3 requires that b3 ≥ v3 (otherwise 3 would envy 2), global envy-freeness requires:

(α3,1 − α3,2)v3 ≤ (α3,1 − α3,2)b3 ≤ (α1,1 − α1,2)v1

If (α3,1 − α3,2)v3 > (α1,1 − α1,2)v1, this cannot be satisfied.

Theorem 2 (GEF and efficient equilibria condition). In a two-slot, three-bidder setting, for arbi-
trary click-through-rates α and values v, there exist bids yielding a globally envy-free and efficient
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equilibrium if and only if, letting 1 and 2 denote the respective winners of slots 1 and 2 in the
efficient allocation:

(α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1

If a globally envy-free and efficient equilibrium exists, one exists that yields the VCG result and
does not require overbidding.

Proof sketch. The full proof follows similar lines to that of Theorem 1, and is again relegated to the
Appendix along with auxiliary lemmas. The proof considers three cases: (i) (α3,1−α3,2)v3 ≤ (α2,1−
α2,2)v2; (ii) (α3,1−α3,2)v3 > (α2,1−α2,2)v2 and

α3,1

α2,1
v3 ≤ v2; and (iii) (α3,1−α3,2)v3 > (α2,1−α2,2)v2

and
α3,1

α2,1
v3 > v2. In each case it is assumed that (α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1. We specify bids

yielding efficient and globally envy-free equilibria: in case (i) b1 = v1, b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
, and

b3 = v3; in case (ii), b1 = v1, b2 =
α3,1

α2,1
v3, and b3 = v3; and in case (iii), b1 = v1, b2 = v2, and

b3 = v3.

For instance, consider a 3-agent example with v1 = v2 = v3 = 1, α1,1 = 0.9, α1,2 = 0.5,
α2,1 = 0.5, α2,2 = 0.4, α3,1 = 0.6, and α3,2 = 0.1. The unique efficient allocation gives slots 1 and 2
to bidders 1 and 2, respectively. But we have: 0.5 = (α3,1 − α3,2)v3 > (α1,1 − α1,2)v1 = 0.4. Thus
Theorem 2 implies that there can be no globally envy-free and efficient equilibrium.

A characterization for more than three bidders is harder to state in a concise form, but the
following theorem gives sufficient conditions for efficiency and global envy-freeness.

Theorem 3. For arbitrary click-through-rates and values, letting 1 and 2 denote the respective
winners of slots 1 and 2 in the efficient allocation, if

α2,1

α2,2
≥ αi,1

αi,2
, ∀i ∈ I \ {1, 2}, there exists an

efficient and globally envy-free equilibrium without overbidding.

3.3 VCG results cannot always be achieved

In the results of Edelman et al. [2007], existence of an efficient equilibrium in the separable setting
is demonstrated via proof that an equilibrium realizing the VCG result always exists. In some
sense the VCG result is the most salient kind of efficient equilibrium, and it would be surprising if
efficient equilibria exist generically but VCG equilibria do not. But that is exactly what we now
demonstrate. Whenever a set of click-through-rates violates separability,2 one can never be assured
that a VCG result is feasible, in equilibrium or otherwise. That is, there always exist values that
make it impossible for the agents to bid in a way that yields an efficient allocation and VCG prices.

Theorem 4 (Always a bad value profile). Assume strictly decreasing click-through-rates. In a
two-slot setting with three bidders, one of whom has a strictly higher click-ratio than the other two,
there always exist values such that the VCG result is not supported.

Proof. Consider three agents with strictly decreasing click-through-rates α such that one agent’s
click-ratio is strictly higher than that of the other two. Label the three bidders in a non-decreasing

2Interestingly, there is one very minor exception to this “whenever”: if there is exactly one agent whose click-ratio
is not equal to the maximum across all bidders—i.e., click-through-rates are separable except in the case of one
bidder, and his click-ratio is lower—then the VCG result will be supported.
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order of αi,1/αi,2. Strictly decreasing click-through-rates entails that α1,1/α1,2 > 1, and α1,1/α1,2 ≤
α2,1/α2,2 < α3,1/α3,2 by assumption. In other words, for some ε ≥ 0 and δ > 0,

1 <
α1,1

α1,2
=

α2,1

α2,2
− ε =

α3,1

α3,2
− ε− δ (1)

Fix arbitrary v3 > 0. Let λ1 =
(α3,1−α3,2

α1,1−α1,2
− α3,1

α1,1

)
v3. Note that:

α3,1 − α3,2

α1,1 − α1,2
>

α3,1

α1,1
⇔ 1− α3,2

α3,1
> 1− α1,2

α1,1

⇔ α1,1

α1,2
<

α3,1

α3,2

This holds by (1), and thus λ1 > 0. Now let λ2 =
(α3,1−α3,2

α2,1−α2,2
− α3,2

α2,2

)
v3. Note that:

α3,1 − α3,2

α2,1 − α2,2
>

α3,2

α2,2
⇔ α3,1

α3,2
− 1 >

α2,1

α2,2
− 1

⇔ α2,1

α2,2
<

α3,1

α3,2

This also holds by (1), and thus λ2 > 0. Now let v1 =
α3,1−α3,2

α1,1−α1,2
v3 − γ1, for some γ1 ∈ (0, λ1). We

have:

α3,1

α1,1
<

v1
v3

<
α3,1 − α3,2

α1,1 − α1,2
(2)

And let v2 =
α3,2

α2,2
v3 + γ2, for some γ2 ∈ (0, λ2). We have:

α3,2

α2,2
<

v2
v3

<
α3,1 − α3,2

α2,1 − α2,2
(3)

We refine our specification of γ1 and γ2 such that:

1

α3,2v3

[
(α1,1 − α1,2)γ1 + (α2,1 − α2,2)γ2

]
< δ,

γ2 >
α1,1 − α1,2

α2,2
γ1, and

α1,1 − α1,2

α1,1v3

(α1,1

α3,2
γ1 +

α2,1 − α2,2

α3,2
γ2

)
< δ +

α1,2

α1,1
ε

Note that such values can be chosen consistent with everything specified above, for arbitrary δ > 0.
Letting (i, j) denote the allocation in which agent i receives slot 1 and agent j receives slot 2, if we

can establish that (1,2) is an efficient allocation, then the bidder labels here correspond to those used
in Proposition 1. Letting w(i, j) denote αi,1vi +αj,2vj, i.e., the social value of allocation (i, j), this
can be established by demonstrating that: w(1, 2) > w(2, 1), w(1, 2) > w(1, 3), w(1, 2) > w(2, 3),
w(1, 2) > w(3, 2), and w(1, 2) > w(3, 1). Due to space constraints, we omit demonstration of these
inequalities, which are relatively straightforward.
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Now, since a VCG result is always globally envy-free (see, e.g., Leonard [1983]), in light of
Proposition 1, to complete the proof it is sufficient to show that (α3,1 − α3,2)v3 > (α1,1 − α1,2)v1.
We have:

(α3,1 − α3,2)v3 − (α1,1 − α1,2)v1

= (α3,1 − α3,2)v3 − (α1,1 − α1,2)

(
α3,1 − α3,2

α1,1 − α1,2
v3 − γ1

)
= (α1,1 − α1,2)γ1

> 0

The result extends almost immediately to the n-bidder case if we forbid overbidding (note that
overbidding is weakly dominated in GSP). We can fix the values of all but three agents to 0; then
the problem is equivalent to one in which the 0-valued agents do not exist, since they can’t bid
anything other than 0.

Corollary 1. Assume strictly decreasing click-through-rates. In a two-slot setting with any number
of bidders greater than two, if there exists a bidder with click-ratio strictly greater than that of two
other agents, there always exist values such that the VCG result is not supported without overbidding.

In light of this negative result, one might ask whether the VCG result can be recovered if we are
willing to experiment with different orders of sale. It turns out this can never help in the two-slot
case.

Proposition 2. In settings with at most three bidders, if the VCG result is not supported when
selling slots in-order, it is not supported when selling slots in reverse order.

Proof. Let 1 and 2 denote the bidders that receive items 1 and 2, respectively, in a VCG result,
and let p1 and p2 denote the respective (per-impression) VCG prices. Suppose first that we sell the
items in order to achieve the VCG result. Since bidder 3 will be the only competition for bidder 2,
it must be that α3,2b2 = p2. Moreover, we can suppose that α2,1b2 = p1 (lowering b2 cannot help,
bidding higher will interfere with the auction for item 1 either by winning the item or by raising
the price). Thus, suppose bidders bid as follows:

b1 = v1 , b2 =
p1
α2,1

, and b3 =
p2
α3,2

.

By construction, these bids will achieve the VCG result as long as two other conditions are
met: α2,2b2 ≥ p2 so bidder 2 still wins item 2, and α3,1b3 ≤ p1 so bidder 3 does not interfere
in the sale of item 1. The first condition is always true — envy-freeness of VCG prices implies
α2,1v2 − p1 ≤ α2,2v2 − p2 and so

α2,2(v2 − b2) ≤ α2,1(v2 − b2) = α2,1v2 − p1 ≤ α2,2v2 − p2

α2,1b2 ≥ p2

as desired. The second condition may indeed be violated.
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It remains to show that whenever α3,1b3 > p1, then selling items in reverse order cannot achieve
the VCG result. Suppose we find bids that support the VCG result selling out of order. Then
bidder 1 must choose a bid b1 that wins item 1 without interfering in the auction for item 2, i.e., a
bid b1 such that α1,2b1 ≤ p2 and α1,1b1 ≥ p1. We thus get

α1,1v1 − p1 ≥ α1,1(v1 − b1) > α1,2(v1 − b1) ≥ α1,2v1 − p2

α1,1v1 − p1 > α1,2v1 − p2

Now, since VCG prices are the minimal envy-free prices (see Leonard [1983]), some bidder’s envy
constraint must be tight for item 2 (otherwise we could lower the price of item 2 while preserving
envy-freeness). It cannot be bidder 3 because, when α3,1b3 > p1, bidder 3 strictly prefers item 1 at
VCG prices:

α3,2v3 − p2 = α3,2(v3 − b3) ≤ α3,1(v3 − b3) < α3,1v3 − p1 .

The only remaining bidder who can be indifferent is 1, so we can conclude that α1,1v1 − p1 =
α1,2v1 − p2, which contradicts the prior statement that α1,1v1 − p1 > α1,2v1 − p2. Thus, when
α3,1b3 > p1, selling items in reverse order cannot support the VCG result either.

3.4 Price of anarchy

We established in Section 3.1 that our generalization of GSP will always have an efficient equilib-
rium, but there may be many inefficient equilibria as well. In this section we consider how much
efficiency may be lost if one of those other equilibria occurs. We will make the natural assumption
that agents don’t bid more than their value; this is standard in the literature—overbidding is a
weakly dominated strategy, and with overbidding very strange equilibria can be constructed.

We find that the efficient equilibrium is never more than twice as good as the worst equilibrium,
and this bound is tight. This result stands in contrast to the results of Caragiannis et al. [2014],
who showed that in the separable setting with two slots, the efficient equilibrium is never more
than 28.2 percent better than (i.e., yields no more than 1.282 times the social welfare of) the worst.
One could thus say there is a significant added “efficiency risk” in a setting without separability.

Definition 6 (Price of anarchy). Given click-through-rates α and values v, the price of anarchy
is the ratio of the social welfare in the efficient (best) equilibrium to that in the worst equilibrium;
i.e., letting 1 and 2 denote the respective winners of slots 1 and 2 in the efficient allocation, letting
A denote the set of equilibrium allocations, and letting a1 and a2 denote the respective winners of
slots 1 and 2 in allocation a ∈ A,

α1,1v1 + α2,2v2

mina∈A
[
αa1,1va1 + αa2,2va2

]
The following lemma, and especially its corollary, will be critical for the proof bounding price

of anarchy in our setting (these proofs are in the Appendix).

Lemma 1. Let (i, j) denote an allocation in which i receives slot 1 and j receives slot 2. For
arbitrary click-through-rates α and values v, letting 1 and 2 denote the respective winners of slots 1
and 2 in the efficient allocation, the only possible inefficient equilibria are: (argmaxi∈I\{1} αi,1vi, 1)
and (2, argmaxi∈I\{2} αi,2vi).
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Proof. First note that ∀i �= 1, α2,2v2 > αi,2vi, by efficiency. If 2 is not allocated a slot and slot
2 is allocated to some j �= 1, then α2,2v2 > αj,2vj, and bj ≤ vj by assumption, and thus 2 has
a profitable deviation to bid high enough to win slot 2. Thus the only candidates for equilibria
involve 2 receiving a slot or 1 receiving slot 2.

If 1 receives slot 2 in equilibrium, then slot 1 must go to i = argmaxj∈I\{1} αj,1vj. Otherwise,
since bids don’t exceed values, i could bid truthfully and win slot 1 for a profit). If 2 receives slot
1 in equilibrium, then slot 2 must go to i = argmaxj∈I\{2} αj,2vj. Again, since bids don’t exceed
values, this holds because otherwise i could bid truthfully and win slot 2 for a profit. Finally, if
2 receives slot 2 in equilibrium, then slot 1 must go to i = argmaxj∈I\{2} αj,1vj. Yet again this
holds because otherwise i could bid truthfully and win slot 1 for a profit. In this case i is 1, and so
(1, 2)—the efficient allocation—is the only equilibrium with 2 receiving slot 2.

Corollary 2. Given click-through-rates α and values v, letting 1 and 2 denote the respective win-
ners of slots 1 and 2 in the efficient allocation, letting j denote argmaxi∈I\{1} αi,1vi and k denote
argmaxi∈I\{2} αi,2vi, the price of anarchy is:

max

{
e(1, 2) · 1, e(j, 1) · α1,1v1 + α2,2v2

αj,1vj + α1,2v1
, e(2, k) · α1,1v1 + α2,2v2

α2,1v2 + αk,2vk

}
,

where e(i, j) = 1 if allocation (i, j) is attainable in equilibrium3 and 0 otherwise.

Proposition 3. For the two-slot, n-bidder setting, for any n ≥ 2, for arbitrary click-through-rates
and values, the price of anarchy is at most 2.

Proof. Let 1 and 2 denote the respective winners of slots 1 and 2 in the efficient allocation, j
denote argmaxi∈I\{1} αi,1vi, and k denote argmaxi∈I\{2} αi,2vi. Take arbitrary bids b that realize
allocation (j, 1) in equilibrium, if any exist. Let p2 denote the price paid by 1, and let p1,1 denote
the price 1 would have to pay were he to deviate from the equilibrium in a way that leads him to
win slot 1. Since b forms an equilibrium, α1,1v1 − p1,1 ≤ α1,2v1 − p2, and noting that p1,1 ≤ αj,1vj ,
we have:

α1,1v1 − α1,2v1 ≤ p1,1 − p2 ≤ αj,1vj − p2

Adding α2,2v2 to both sides of this inequality and rearranging yields:

α1,1v1 + α2,2v2 ≤ αj,1vj + α1,2v1 + α2,2v2 − p2

This implies that:

α1,1v1 + α2,2v2
αj,1vj + α1,2v1

≤ αj,1vj + α1,2v1 + α2,2v2 − p2
αj,1vj + α1,2v1

= 1 +
α2,2v2 − p2

αj,1vj + α1,2v1

Now noting that α2,2v2 ≤ α2,1v2 ≤ αj,1vj (by non-decreasing click-through-rates plus the definition
of j), we have:

1 +
α2,2v2 − p2

αj,1vj + α1,2v1
≤ 1 +

αj,1vj − p2
αj,1vj + α1,2v1

≤ 1 + 1 = 2

Now take arbitrary bids b that realize allocation (2, k) in equilibrium, if any exist. Let p1,1
denote the price 1 would have to pay were he to deviate from the equilibrium in a way that leads

3Note that Theorem 1 entails that e(1, 2) = 1 in all cases.
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him to win slot 1, and p1,2 the price he’d have to pay were he to deviate in a way that yields him
slot 2. Since b forms an equilibrium, α1,2v1 ≤ p2 ≤ αj,2vj (otherwise i could bid truthfully and win
slot 2 for a profit, and bj ≤ vj). Similarly, α1,1v1 ≤ p1,1 ≤ α2,1v2 (using b2 ≤ v2). This implies that:

α1,1v1 + α2,2v2
α2,1v2 + αj,2vj

≤ α2,1v2 + α2,2v2
α2,1v2 + α1,2v1

≤ α2,1v2 + α2,1v2
α2,1v2 + α1,2v1

≤ α2,1v2 + α2,1v2
α2,1v2

= 2

We use weakly-decreasing click-through-rates in the second inequality and non-negativity of values
and click-through-rates in the third. By Corollary 2, this is sufficient to establish the claim.

We now show that this bound is tight by way of an example.

Proposition 4. For the two-slot, n-bidder setting, for any n ≥ 2, for arbitrary ε > 0, there exist
click-through-rates and values such that the price of anarchy is at least 2− ε.

Proof. Consider a setting with n bidders, for arbitrary n ≥ 2. Consider the case where two bidders,
which we’ll call 1 and 2, have value 1 and all other bidders (if there are any) have value 0. Take
α1,1 = 1− δ, α1,2 = δ, α2,1 = 1, and α2,2 = 1 − δ, for arbitrary δ ∈ (0, 13). The efficient allocation
is (1, 2), and this is supported, e.g., by equilibrium bids b1 = 1 and b2 = δ. But allocation (2, 1) is
also supported as an equilibrium, e.g., by bids b1 = 0 and b2 = 1. The price of anarchy is thus:

α1,1v1 + α2,2v2
α2,1v2 + α1,2v1

=
(1− δ) + (1− δ)

1 + δ
=

2− 2δ

1 + δ

For any ε > 0, if δ < ε
4−ε then 2−2δ

1+δ > 2 − ε. Therefore, for any ε > 0, we can choose δ ∈
(0,min{1

3 ,
ε

4−ε}), in which case the price of anarchy will exceed 2− ε.

This also shows that equilibrium revenue, as a fraction of the VCG revenue, may be arbitrarily
bad. In the example above, the b1 = 0, b2 = 1 equilibrium yields 0 revenue, while the b1 = 1, b2 = δ
equilibrium yields the VCG outcome, with revenue δ.

4 Three or more slots

So far, we have seen that many of the important properties of the GSP auction break in a two-slot
setting. In this section, we will explore additional complexities that arise with more than two slots.
Notably, we will see that the order in which slots are sold becomes critical — it will no-longer be
sufficient to sell slots from “best to worst” as in a standard GSP auction.

4.1 Absence of equilibrium

First, we show that even the existence of equilibrium is in doubt. The following example with 4
bidders and 3 slots illustrates that no bid-independent tie-breaking rule can guarantee the existence
of an equilibrium for every set of valuations:

12



bidder value αi,1 αi,2 αi,3

1 v1 1 1 0

2 v2 1 1 0

3 v3 1 0.5 0.5

4 v4 1 0.5 0.5

Table 2: An example in which no pure-strategy equilibrium exists for all v with a fixed, bid-
independent tie-breaking rule.

The example in Table 2 uses similar techniques to the simpler one in Section 3.1, so we will
only sketch the reasoning here. It is straightforward to argue that any equilibrium must achieve
the efficient allocation, otherwise some bidder could deviate and benefit. In Section 3, we saw that
it was important to break ties in favor of the bidder who had a greater incremental value for slot
1 over slot 2. In this example, if the efficient allocation chooses bidders 1 and 2 (as well as either
bidder 3 or 4), then we see the same structure replicated here — it will be important to break ties
in favor of bidder 3 and/or 4. On the other hand, if the efficient allocation chooses bidders 3 and 4,
with one of bidder 1 or 2, then the same structure arises across slots 1 and 3. However, bidders 1
and 2 have a greater incremental value for slot 1 over slot 3 and therefore it is important to break
ties in their favor. Thus, any tie-breaking rule that does not depend on bids will necessarily fail for
at least one of these scenarios.

4.2 The importance of the order of sale

We just saw that selling slots in a different order can be beneficial, but is it ever necessary? In fact,
we show that it is.

Observation 1. With four bidders and three slots, there exist values and click-through-rates such
that the VCG result can be achieved, but not by selling slots in order.

bidder value αi,1 αi,2 αi,3

1 10 1 0.4 0.4

2 8 1 0.75 1
7

3 8 1 0.5 0.5

4 5 1 1 0

Table 3: A four-bidder, three-slot example demonstrating that selling items out of order may
facilitate VCG results.

Proof. Consider the four-bidder, three-slot example depicted in Table 3. One can check that the
optimal assignment is (1,2,3) and VCG prices for the slots are p = [7, 5, 1]. If slots are sold in order,
then bidder 4 must set p3. Thus, bidder 4 must be bidding such that α4,3b4 = p3, which implies
0× b4 = 1. Clearly, this is not possible, and there will be similar problems even if we require that
α4,3 is strictly positive.
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However, VCG prices can be achieved by selling slots in the order 1,3,2. One can check that
the bids b = [10, 7, 7, 5] achieve VCG prices.

Remark: Note that bidder 1 is indifferent between slots 1 and 3 at VCG prices while bidder 2
strictly prefers slot 2 to 3. Thus, it might seem more natural to sell slots in the order 3,1,2 and
have bidder 1 set the price for slot 3. However, one can check that this will fail because we cannot
sell slot 1 after slot 3. Instead, the example is constructed carefully so that bidder 2 can also set
the price of slot 3 despite her strict preference for slot 2 at VCG prices.

4.3 An auction with expressive bidding

Finally, we show how we can build an auction that always yields the VCG result as an equilibrium
by selling slots in a different order. For this mechanism, we will need bidders to place a distinct
bid bi,j for each slot (WLOG we ignore α values here). First, we need to argue that an appropriate
ordering exists, then we will construct a mechanism that exploits this ordering.

4.3.1 Price support orderings and forests

We first establish that the VCG result is a feasible outcome of an iterated auction with expressive
bidding. If i is paying price pi, then some other bidder who has not already been allocated is
bidding pi for the slot i wins. It is not a priori clear that this is possible without requiring some
bidder to overbid her true value. We call an ordering that achieves this a price support ordering
(PSO).

Our first lemma shows that a price support ordering always exists for VCG prices More specifi-
cally, we show that a price support forest (PSF) exists — a price support forest is a directed forest
that captures the ability of bidders to support prices:

Definition 7. A price support forest (PSF) for prices pj with n slots and bidders is a graph F on
n nodes with the following properties:

• F is a directed forest with edges pointing away from the roots.

• Root nodes (nodes with no incoming edges) have price pj = 0.

• Edge (i, j) in F implies that bidder i can set the price for slot j without overbidding.

We will formalize “i can set the price for slot j” below.
Assume that the VCG mechanism assigns bidder i to slot i, and let pj denote the minimum

Walrasian equilibrium price for slot j (the VCG price of bidder j). The following lemma says that
VCG prices always admit a PSF in which edges capture indifferences. A precisely equivalent lemma
appears in Mehta and Vazirani [2013], but we include our own version for completeness.

Lemma 2 (VCG Price Support Lemma). There exists a directed forest F with the following prop-
erty: for any slot j, either pj = 0, or there is an edge (i, j) corresponding to a bidder who is
indifferent between getting slot i at price pi and getting slot j at price pj, ergo i is happy to bid
bi,j = pj for slot j and thereby set its price. Thus, F is a price support forest.

Proof. We show how to construct a PSF. WLOG, suppose there are n advertisers and n slots.
Construct a directed graph G with n nodes in which there is an edge from node i to node j if
advertiser i is indifferent between getting node i at price pi and getting node j at price pj, that is,
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vi,i − pi = vi,j − pj. Note that envy-freeness implies vi,i − pi ≥ vi,j − pj for all (i, j), so the absence
of an edge in G means vi,i − pi > vi,j − pj .

Claim: Every node i in the graph is reachable from some node j with price pj = 0. Proof by
contradiction. If not, then let S ⊆ [n] be the set of nodes that are not reachable from a node with
price zero. Let δ > 0 be a constant sufficiently small that it has the following properties:

• vi,i − pi ≥ δ+ vi,j − pj for any (i, j) where vi,i − pi > vi,j − pj (note that this is any (i, j) that
is not an edge in the graph), and

• δ ≤ minj∈S pj.

Now, consider prices p′ that uniformly lower prices for slots in S by δ, keeping other prices fixed:

p′j =

{
pj − δ, j ∈ S

pj otherwise.

By construction, we still have vi,i−p′i ≥ vi,j −p′j for every (i, j), hence these prices p′ are envy-free.
Since p′j ≤ pj for all j, envy-freeness of p′ contradicts the fact that VCG prices are the minimum
envy-free prices, proving the claim.

From G, compute a PSF F by computing a spanning forest of G.

Corollary 3. There exists an ordering σ of slots with the following property: for any slot j, either
pj = 0, or there is some bidder with i > j who is indifferent between getting slot i at price pi and
getting slot j at price pj, ergo i is happy to bid bi,j = pj for slot j and thereby set its price.

Proof. By Lemma 2, we know that a price support forest F exists. Compute an ordering σ such
that any parent in F comes after all its children (e.g.) by a breadth-first traversal of F .

4.3.2 Auctions leveraging price support

Finally, we show how the existence of a PSF can be used to construct an auction that supports the
VCG result as an equilibrium:

Definition 8 (Auction with a Price Support Order). An iterated second-price auction can be
implemented leveraging a price support order as follows:

1. Choose an order of sale σ and tie-breaking rules that maximize seller revenue given bids. If
a slot has only one nonzero bid, it does not get sold.

2. Run an iterated second-price auction according to the order σ and rules selected in (1).

Theorem 5 (Equilibrium). The iterated second-price auction with unit-demand bidders and ex-
pressive bids has an efficient equilibrium in which bidders pay VCG prices.

Proof. Choose an arbitrary PSF and define bids as follows:

bi,j =



vi,j i = j

pj i supports the price of j in the PSF, or

0 otherwise.
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Consider deviations by a particular bidder k. Notice that no slot j can have a bid less than pj
unless it was placed by bidder k. We can thus conclude that if k wins any slot for less than the
VCG price through this defection (which is necessary for it to be profitable), then k must have won
the slot for free. However, our auction rules stipulate that slots will not be sold if they only have
one nonzero bid, so this is impossible.

5 Conclusion

The primary theoretical justification for GSP builds on the analyses of Varian [2007] and
Edelman et al. [2007] to argue that GSP will perform at least as well as VCG. Unfortunately,
our results demonstrate that this is a very fragile phenomenon—when GSP is naturally general-
ized as an iterated second price auction, these performance guarantees fall apart even with small
deviations from GSP’s separable model. Our work suggests a few techniques for recovering desir-
able performance guarantees, such as varying the order of sale and allowing expressive bidding,
but perhaps even more importantly it points to significant open questions that might suggest new
mechanisms and principles for implementing auctions:

• Is there a better way to generalize GSP that would preserve the performance guarantees of
Varian [2007] and Edelman et al. [2007]?

• What are the key principles that define GSP in theory?

• What are the properties that capture GSP’s practical popularity?

That said, our results also include a surprising positive result: all click-through-rate profiles
ensure existence of efficient equilibria in the two-slot setting, given a specific bid-independent tie-
breaking rule. We proved that this result does not generalize to the case with more slots, but
whether bid-dependent tie-breaking rules could yield generic existence of efficient equilibria remains
an open question. And even if no meaningful extension beyond the two-slot setting is possible, the
positive result we have may turn out to be relevant in a world of mobile devices where only a small
number of slots can be shown per page.
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Appendix

Proofs for Section 3.1

The proof of Theorem 1 makes use of two important lemmas, the first giving sufficient conditions
for existence of an efficient equilibrium, and the second demonstrating a relationship between event-
ratios and efficient allocations among pairs of agents.

Lemma 3. Consider a two-slot setting with n ≥ 3 bidders, arbitrary weakly decreasing4 and click-
through-rates, arbitrary values, and an arbitrary efficient allocation, letting 1 and 2 denote the
respective winners of slots 1 and 2. Bids b yield this allocation in equilibrium if (A0)–(A6) hold
or (B1)–(B6) and the following condition on tie-breaking holds: if α2,1b2 = maxj∈I\{1,2} αj,1bj , if 1
were hypothetically to underbid this value, slot 1 would be allocated to argmaxj∈I\{1,2} αj,1bj .

α2,1b2 ≥ max
j∈I\{1,2}

αj,1bj (A0)

α2,1b2 < α1,1v1 (A1)

α2,2b2 > max
i∈I\{1,2}

αi,2bi (A2)

max
i∈I\{1,2}

αi,2bi ≥ α2,1b2 − (α1,1 − α1,2)v1 (A3)

α2,2b2 ≥ max
k∈I\{1,2}

αk,2vk (A4)

max
i∈I\{1,2}

αi,2bi ≤ α1,1v1 − (α2,1 − α2,2)v2 (A5)

max
i∈I\{1,2}

αi,2bi ≤ α2,2v2 (A6)

max
j∈I\{1,2}

αj,1bj ≥ α2,1b2 (B0)

max
j∈I\{1,2}

αj,1bj < α1,1v1 (B1)

α2,2b2 > max
i∈I\{1,2}

αi,2bi (B2)

max
j∈I\{1,2}

αj,1bj ≤ α2,2b2 + (α1,1 − α1,2)v1 (B3)

α2,2b2 ≥ max
k∈I\{1,2}

αk,2vk (B4)

max
i∈I\{1,2}

αi,2bi ≤ α1,1v1 − (α2,1 − α2,2)v2 (B5)

max
i∈I\{1,2}

αi,2bi ≤ α2,2v2 (B6)

Proof. Take b1 = v1. The (A0)/(B0) condition dichotomizes the set of possible bids into those
where 2 is setting the price for 1 (A) and those where some other agent is.

(A1) and (B1)—in their respective contexts of (A0) and (B0)—imply that 1 wins slot 1 and has
no incentive to deviate in a way that gives him no slot (for price 0).

(A2) and (B2) entail that 2 receives slot 2.
(A3) and (B3) entail that 1 has no incentive to deviate in a way that gives him slot 2, for

price α3,2b3 in the A case and α2,2b2 in the B case. (A3) is sufficient even if a hypothetical tie for
slot 1 between 2 and 3 is broken in favor of 3, due to (A2). In the case of (B3) we are using the
tie-breaking assumption in the lemma statement.

(A4) and (B4) entail that no losing agent has an incentive to deviate in a way that yields him
slot 2. (A5) and (B5) entail that 2 has no incentive to bid in a way that instead yields him slot
1; (A6) and (B6) entail that 2 has no incentive to bid in a way that instead yields him no slot
(for price 0). We know by efficiency and the fact that b1 = v1 that no losing agent can benefit by
bidding to receive slot 1 (for price α1,1v1).

Lemma 4. For arbitrary values v and click-through-rates α, letting 1 and 2 denote the respective
winners of slots 1 and 2 in the efficient allocation, ∀i ∈ I \ {1, 2},

α2,1

α2,2
≥ αi,1

αi,2
⇒ (α2,1 − α2,2)v2 ≥ (αi,1 − αi,2)vi

4I.e., αi,1 ≥ αi,2, ∀i ∈ I .
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Proof. Consider arbitrary i ∈ I \ {1, 2}. We have:

α2,2v2 > αi,2vi ⇒ α2,1 − α2,2

αi,2
v2 ≥ α2,1 − α2,2

α2,2
vi

⇔ αi,2vi + (α2,1 − α2,2)v2
αi,2

≥ α2,1

α2,2
vi

⇔ αi,2vi + (α2,1 − α2,2)v2
α2,1

≥ αi,2

α2,2
vi

Since the first inequality holds by efficiency, the last inequality holds too. Now note that:

(αi,1 − αi,2)vi > (α2,1 − α2,2)v2 ⇔ αi,1

α2,1
vi >

αi,2vi + (α2,1 − α2,2)v2
α2,1

Therefore (αi,1 − αi,2)vi > (α2,1 − α2,2)v2 ⇒ αi,1

α2,1
vi >

αi,2

α2,2
vi, i.e., (αi,1 − αi,2)vi > (α2,1 − α2,2)v2 ⇒

αi,1

αi,2
>

α2,1

α2,2
. We state the lemma in the form of the contrapositive, for more direct application in

the results that follow.

Theorem 1. For a two-slot setting with any number of bidders, for arbitrary values and click-
through-rates, if there is a unique efficient allocation and ties are broken in favor of an agent with
highest click-ratio, then GSP has an efficient equilibrium without overbidding.

Proof. If there is one bidder the result holds trivially. If there are two or more bidders, let 1 and
2 denote the respective winners of slots 1 and 2 in the efficient allocation. If there are exactly two
bidders, it is easy to verify that b1 = v1 and b2 = 0 is an equilibrium. So assume there are n ≥ 3
bidders, and let 3 denote argmaxj∈I\{1,2} αj,2vj .

First assume
α2,1

α2,2
≥ α3,1

α3,2
, and consider the following bid profile: b1 = v1, b2 =

α3,2v3+(α2,1−α2,2)v2
α2,1

,

b3 = v3, and bi = 0, ∀i ∈ I \ {1, 2, 3}. Note that no agent overbids in this profile, and all bids are
non-negative.5 We will show that (A0)–(A6) hold.

(A0) reduces to (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2, which holds by Lemma 4.
(A1) reduces to α2,1v2 + α3,2v3 < α1,1v1 + α2,2v2, which holds by efficiency.
(A2) reduces to α3,2v3 < α2,2v2, which holds by efficiency.
(A3) reduces to (α2,1 − α2,2)v2 ≤ (α1,1 − α1,2)v1, which holds by efficiency.
(A4) reduces to α3,2v3 ≤ α2,2v2, which, like (A2), holds by efficiency.
(A5) reduces to α2,1v2 + α3,2v3 ≤ α1,1v1 + α2,2v2, which holds by efficiency.
(A6) reduces to α3,2v3 ≤ α2,2v2, which, like (A2) and (A4), holds by efficiency.
Now, to prove the theorem it is sufficient to show that if

α2,1

α2,2
<

α3,1

α3,2
, there exists a set of bids

satisfying (B0)–(B6). Assume
α2,1

α2,2
<

α3,1

α3,2
and take b1 = v1, b2 =

α3,2

α2,2
v3, b3 =

α2,1

α2,2

α3,2

α3,1
v3, and bi = 0,

∀i ∈ I \ {1, 2, 3}. Again, no agent overbids in this profile—in fact, 2 is bidding the minimum he
would need to bid if 3 were to bid truthfully, and 3 is underbidding (since

α2,1

α2,2

α3,2

α3,1
< 1). Moreover,

if ties are broken by click-ratio, then any hypothetical ties between 2 and 3 will be broken in favor
of 3, which satisfies the conditions of Lemma 3.

(B0) holds with equality.
(B1) follows from efficiency, since 3 is not overbidding.

5To see that b2 ≥ 0, note that
α2,1

α2,2
≥ α3,1

α3,2
implies (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2, by Lemma 4. This in turn

implies α2,2v2 ≤ α2,1v2 + α3,2v3, since click-through-rates and values are non-negative.
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(B2) reduces to 1 >
α2,1

α2,2

α3,2

α3,1
, which holds if

α2,1

α2,2
<

α3,1

α3,2
.

(B3) reduces to α3,2(α2,1 − α2,2)v3 ≤ α2,2(α1,1 − α1,2)v1. To see that this holds, note that
efficiency entails that α3,2v3 ≤ α2,2v2 and (α2,1 − α2,2)v2 ≤ (α1,1 − α1,2)v1.

(B4) holds with equality.
(B5) reduces to α2,1v2 +

α2,1

α2,2

α3,2

α3,1
α3,2v3 ≤ α1,1v1 + α2,2v2, which follows from efficiency and the

fact that
α2,1

α2,2

α3,2

α3,1
< 1.

(B6) follows from (B2) and the fact that b2 ≤ v2.

Proofs for Section 3.2

The missing proof from Section 3.2 is that of Theorem 2. On our way to proving that, we estab-
lish the following two lemmas, characterizing global envy-freeness for the two-item, n-bidder case
(Lemma 5), and then consolidating those constraints with efficiency constraints for the three-bidder
case (Lemma 6). Lemma 5 will be important for the proof of Theorem 3, omitted from the main
text and included below.

Lemma 5. For arbitrary click-through-rates α, values v, and bids b, the resulting outcome is
globally envy-free if and only if, letting 1 denote argmaxi∈I αi,1bi, 2 denote argmaxi∈I\{1} αi,2bi,
3 denote argmaxi∈I\{1,2} αi,2bi, and 4 denote argmaxi∈I\{1,2} αi,1bi: (A-GEF0)–(A-GEF6) ∨ (B-
GEF0)–(B-GEF6) ∨ (C-GEF0)–(C-GEF6).

b2 ≥ α4,1

α2,1
b4 (A-GEF0)

b2 ≤ α3,2b3 + (α1,1 − α1,2)v1
α2,1

(A-GEF1)

b2 ≤ α1,1

α2,1
v1 (A-GEF2)

b2 ≥ α3,2b3 + (α2,1 − α2,2)v2
α2,1

(A-GEF3)

b3 ≤ α2,2

α3,2
v2 (A-GEF4)

b2 ≥ 1

α2,1
max

i∈I\{1,2}
αi,1vi (A-GEF5)

b3 ≥ 1

α3,2
max

i∈I\{1,2}
αi,2vi (A-GEF6)

b2 ≤ α3,1

α2,1
b3, b3 =

α4,1

α3,1
b4 (B-GEF0)

b3 ≤ α1,1 − α1,2

α3,1 − α3,2
v1 (B-GEF1)

b3 ≤ α1,1

α3,1
v1 (B-GEF2)

b3 ≥ α2,1 − α2,2

α3,1 − α3,2
v2 (B-GEF3)

b3 ≤ α2,2

α3,2
v2 (B-GEF4)

b3 ≥ 1

α3,1
max

i∈I\{1,2}
αi,1vi (B-GEF5)

b3 ≥ 1

α3,2
max

i∈I\{1,2}
αi,2vi (B-GEF6)
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b2 ≤ α4,1

α2,1
b4, b3 <

α4,1

α3,1
b4 (C-GEF0)

b4 ≤ α3,2b3 + (α1,1 − α1,2)v1
α4,1

(C-GEF1)

b4 ≤ α1,1

α4,1
v1 (C-GEF2)

b4 ≥ α3,2b3 + (α2,1 − α2,2)v2
α4,1

(C-GEF3)

b3 ≤ α2,2

α3,2
v2 (C-GEF4)

b4 ≥ 1

α4,1
max

i∈I\{1,2}
αi,1vi (C-GEF5)

b3 ≥ 1

α3,2
max

i∈I\{1,2}
αi,2vi (C-GEF6)

Proof. Consider arbitrary click-through-rates α, values v, and bids b without overbidding. Let p1
and p2 denote the prices paid by the winners of slots 1 and 2, respectively. Since no agent overbids,
p2 ≤ α3,2v3. If b3 < v3 then p2 < α3,2v3 and agent 3 is envious. Therefore, in any globally envy-free
outcome, b3 = v3; or, to be precise, if there is a tie for definition of agent 3, one such agent must
bid his value, and we will call him agent 3 in what follows.

Now there are three possibilities: (i) 2 sets p1 and 3 sets p2, (ii) 3 sets both p1 and p2, or (iii) 3
sets p2 and some other agent 4 sets p1. (A-GEF0)–(A-GEF6) encode exactly the envy constraints
for possibility (i): 2 sets p1 (A-GEF0), 1 doesn’t envy 2 (A-GEF1), 1 doesn’t envy an unallocated
agent (A-GEF2), 2 doesn’t envy 1 (A-GEF3), 2 doesn’t envy an unallocated agent (A-GEF4), no
unallocated agent envies 1 (A-GEF5), and no unallocated agent envies 2 (A-GEF6).

(B-GEF0)–(B-GEF6) encode exactly the envy constraints for possibility (ii): 3 sets p1 and p2
(B-GEF0), 1 doesn’t envy 2 (B-GEF1), 1 doesn’t envy an unallocated agent (B-GEF2), 2 doesn’t
envy 1 (B-GEF3), 2 doesn’t envy an unallocated agent (B-GEF4), no unallocated agent envies 1
(B-GEF5), and no unallocated agent envies 2 (B-GEF6).

Finally, (C-GEF0)–(C-GEF6) encode exactly the envy constraints for possibility (iii): 4 sets p1
(C-GEF0), 1 doesn’t envy 2 (C-GEF1), 1 doesn’t envy an unallocated agent (C-GEF2), 2 doesn’t
envy 1 (C-GEF3), 2 doesn’t envy an unallocated agent (C-GEF4), and no unallocated agent envies
1 (C-GEF5), and no unallocated agent envies 2 (C-GEF6).

Lemma 6. In a two-slot, three-bidder setting, for arbitrary click-through-rates α and values v,
letting 1 and 2 denote the respective winners of slots 1 and 2 in the efficient allocation and 3 the
other bidder, if ties are broken in favor of an agent with highest click-ratio: arbitrary bids b with
α1,1b1 ≥ max{α2,1b2, α3,1b3} constitute an efficient and globally envy-free equilibrium if (D0)–(D7)
or (E0)–(E8).
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b2 ≥ α3,1

α2,1
b3 (D0)

b2 ≤ α3,2b3 + (α1,1 − α1,2)v1
α2,1

(D1)

b2 <
α1,1

α2,1
v1 (D2)

b2 ≥ α3,2b3 + (α2,1 − α2,2)v2
α2,1

(D3)

b3 ≤ α2,2

α3,2
v2 (D4)

b3 ≥ v3 (D5)

b2 >
α3,2

α2,2
b3 (D6)

b3 ≤ α1,1v1 − (α2,1 − α2,2)v2
α3,2

(D7)

b2 ≤ α3,1

α2,1
b3 (E0)

b3 ≤ α1,1 − α1,2

α3,1 − α3,2
v1 (E1)

b3 ≥ α2,1 − α2,2

α3,1 − α3,2
v2 (E2)

b3 ≤ α2,2

α3,2
v2 (E3)

b3 ≥ v3 (E4)

b3 <
α1,1

α3,1
v1 (E5)

b2 >
α3,2

α2,2
b3 (E6)

b3 ≤ α2,2b2 + (α1,1 − α1,2)v1
α3,1

(E7)

b3 ≤ α1,1v1 − (α2,1 − α2,2)v2
α3,2

(E8)

b does not constitute an efficient and globally envy-free equilibrium unless (D0)–(D7) or (E0)–(E8)
hold, replacing the strict inequalities with weak inequalities.

Proof. The lemma follows directly from combining the efficiency equilibrium constraints and the
envy-freeness constraints, found in Lemmas 3 and 5, reducing the constraints as the 3-agent case
allows.

Theorem 2. In a two-slot, three-bidder setting, for arbitrary click-through-rates α and values v,
there exist bids—without overbidding—yielding a globally envy-free and efficient equilibrium if and
only if, letting 1 and 2 denote the respective winners of slots 1 and 2 in the efficient allocation:

(α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1

If a globally envy-free and efficient equilibrium exists, one exists that yields the VCG result and
does not require overbidding.

Proof. Take arbitrary click-through-rates α and values v. The “only if” direction holds by
Proposition 1. So assume (α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1. First consider the case where

(α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2. Let b1 = v1, b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
, and b3 = v3. (D0) reduces

to (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2, which holds by assumption. (D1) reduces to (α3,1 − α3,2)v3 ≤
(α1,1 − α1,2)v1, which also holds by assumption. (D2) reduces to α2,1v2 + α3,2v3 < α1,1v1 + α2,2v2,
which holds by efficiency. (D3) holds with equality. (D4) reduces to α3,2v3 ≤ α2,2v2, which holds
by efficiency. (D5) holds with equality. (D6) reduces to α3,2v3 > α2,2v2, which holds by effi-
ciency. (D7) reduces to α2,1v2 + α3,2v3 ≤ α1,1v1 + α2,2v2, which holds by efficiency. Note that
these bids yield the VCG result, since when (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2 ≤ (α1,1 − α1,2)v1, the
externality imposed by 1 is α3,2v3 + (α2,1 − α2,2)v2 and that imposed by 2 is α3,2v3. Moreover,

b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
= v2 − α2,2v2−α3,2v3

α2,1
≤ v2, and so no overbidding is required.

Now consider the case where (α3,1 − α3,2)v3 > (α2,1 − α2,2)v2. We will have to consider one
further conditional. Assume first that

α3,1

α2,1
v3 ≤ v2. In this case, take b1 = v1, b2 =

α3,1

α2,1
v3, and
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b3 = v3. (D0) holds with equality. (D1) reduces to α3,1v3 + α1,2v1 ≤ α1,1v1 + α2,2)v2, which
holds by efficiency. (D2) reduces to α3,1v3 < α1,1v1, which holds by efficiency. (D3) reduces to
(α3,1−α3,2)v3 ≥ (α2,1−α2,2)v2, which holds by assumption. (D4) reduces to α3,2v3 ≤ α2,2v2, which
holds by efficiency. (D5) holds with equality. (D6) reduces to

α2,1

α2,2
<

α3,1

α3,2
, which holds by Lemma

4 (taking the contrapositive). (D7) reduces to α2,1v2 + α3,2v3 ≤ α1,1v1 + α2,2v2, which holds by
efficiency. So this is an efficient and GEF equilibrium. These bids also yield the VCG result, since
the externality imposed by 1 is α3,1v3, a price which is set by 3 in this case, and that imposed by
2 is α3,2v3. Moreover, since b2 =

α3,1

α2,1
v3 ≤ v2 by assumption, no overbidding is required.

Now assume instead that
α3,1

α2,1
v3 > v2. In this case, take b1 = v1, b2 = v2, and b3 = v3.

(E0) holds by assumption. (E1) reduces to (α3,1 − α3,2)v3 ≤ (α1,1 − α1,2)v1, which also holds by
assumption. (E2) reduces to (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2, which again holds by assumption.
(E3) reduces to α3,2v3 ≤ α2,2v2, which holds by efficiency. (E4) holds with equality. (E5) reduces
to α3,1v3 < α1,1v1, which holds by efficiency. (E6) reduces to α2,2v2 > α3,2v3, which holds by
efficiency. (E7) reduces to α3,1v3+α1,2v1 ≤ α1,1v1+α2,2v2, which holds by efficiency. Finally, (E8)
reduces to α2,1v2 +α3,2v3 ≤ α1,1v1 +α2,2v2, which holds by efficiency. Thus this is an efficient and
GEF equilibrium. These bids also yield the VCG result (with 2 setting the price for 1 in this case),
and since all agents are bidding their true values, clearly no overbidding is required.

In each of the three conditional cases considered above, an equilibrium was established with
bids that yield the VCG result and do not exceed true valuations, and so the theorem is proved.

Theorem 3. For arbitrary click-through-rates α and values v, letting 1 and 2 denote the respective
winners of slots 1 and 2 in the efficient allocation, if

α2,1

α2,2
≥ αi,1

αi,2
, ∀i ∈ I \ {1, 2}, there exists an

efficient and globally envy-free equilibrium without overbidding.

Proof. Assume that
αi,1

αi,2
≤ α2,1

α2,2
, ∀i ∈ I \ {1, 2}. Let 1 and 2 denote the respective winners of

slots 1 and 2 in the efficient allocation, and let 3 denote argmaxi∈I\{1,2} αi,2vi. Let b1 = v1,

b2 =
α3,2v3+(α2,1−α2,2)v2

α2,1
, b3 = v3, and bi = 0, ∀i ∈ I\{1, 2, 3}. The proof of Theorem 1 demonstrated

that these bids satisfy (A0)–(A6) and yield an efficient equilibrium, without overbidding. Therefore,
to prove this theorem it is sufficient to show that these bids satisfy (A-GEF0)–(A-GEF6).

Noting that the “agent 4” of (A-GEF0) is our agent 3, given the above bids, (A-GEF0) reduces to
(α3,1−α3,2)v3 ≤ (α2,1−α2,2)v2, and this holds by Lemma 4. (A-GEF1) reduces to (α3,1−α3,2)v3 ≤
(α1,1 − α1,2)v1, which holds by (α3,1 − α3,2)v3 ≤ (α2,1 − α2,2)v2 (which we just demonstrated)
combined with (α2,1−α2,2)v2 ≤ (α1,1−α1,2)v1 (which is entailed by efficiency). (A-GEF2) reduces
to α2,1v2 + α3,2v3 < α1,1v1 + α2,2v2, which holds by efficiency. (A-GEF3) holds with equality. (A-
GEF4) reduces to α3,2v3 ≤ α2,2v2, which holds by efficiency. (A-GEF5) reduces to (α2,1−α2,2)v2 ≥
maxi∈I\{1,2} αi,2vi − α3,2v3. Note that, ∀i ∈ I \ {1, 2}, Lemma 4 entails that (α2,1 − α2,2)v2 ≥
(αi,1 − αi,2)vi. Thus, also using the definition of agent 3, we have:

(α2,1 − α2,2)v2 ≥ (αi,1 − αi,2)vi ≥ αi,1vi − α3,2v3,

and so (A-GEF5) holds. Finally, (A-GEF6) holds with equality by the definition of agent 3.
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