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Alzheimer’s disease (AD) is a devastating disease, not only for patients
but also for their families and loved ones. What typically begins as fairly
subtle memory loss progresses relentlessly over a period of approximately
7-10 years, until all higher cognitive functions are eroded and AD patients
are robbed of their identity and ability to interact with the outside world.
Currently, estimates indicate that more than 27 million individuals are af-
fected by AD worldwide [1]. In the United States alone, more than 4 million
individuals have the disease [2]. Unfortunately, without a cure or a means to
otherwise prevent this disease or significantly slow its progression, the num-
ber of affected individuals in the United States is expected to triple by 2050
due to the aging baby boomer generation [2]. This enormous increase in the
number of affected individuals is likely to have dire consequences on the
already overburdened health care system in this country.

Based on the statistics alone, the identification of novel therapeutic or
preventative agents is of considerable importance. To rationally develop
these agents, an understanding of the etiology and pathogenesis of this com-
plex disease is necessary. Over the past century, numerous hypotheses have
been proposed, including abnormal phosphorylation of tau, unconventional
infectious agents, trace element neurotoxicity, growth factor deficiency, ex-
citatory amino acid insult, altered calcium homeostasis, free radical toxicity,
deficits in energy metabolism, and altered protein processing resulting in
abnormal B-amyloid peptide (AP) accumulation (reviewed in part by
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Markesbery [3]). Most importantly, any hypothesis describing the etiology
and pathogenesis of AD must take into account the neurologic and neuro-
pathologic features of AD as well as the known genetic risk factors, causa-
tive mutations, and the heightened risk associated with advanced age.

One such comprehensive hypothesis, that has received significant atten-
tion over the past 2 decades (for better or for worse), is the amyloid hypoth-
esis [4-6]. Although many iterations of this hypothesis currently exist, the
initial hypothesis stated that the “deposition of amyloid B protein (ABP),
the main component of the plaques, is the causative agent of Alzheimer’s
pathology...” [5]. This article examines the evidence for this hypothesis
and its potential limitations, particularly related to the development of novel
therapeutic and preventative agents.

Neuropathology of Alzheimer’s disease and the identification
of beta-amyloid

The first evidence for the amyloid hypothesis came from neuropathologic
assessments of brains isolated from AD patients. The earliest examinations
published by Alois Alzheimer described the neuropathology in two patients
[7-9], and revealed a diffuse atrophy primarily of the cerebral cortex. Stain-
ing of the brains isolated from these two patients demonstrated the presence
of two types of lesions. The first type, now known as neurofibrillary tangles
(NFTs), was observed in the initial patient, and was described as a twisted
coil of fibrils derived from degenerating cerebral cortical cells. The second
type of lesion, now known as senile plaques, was present in both of the cases
to differing degrees. These plaques were found throughout the cerebral cor-
tex and were characterized by a central core surrounded by a more diffuse
halo.

We now know that these classical senile plaques are complex, extracellu-
lar lesions that are associated with degenerating neuronal processes, have
activated microglia intertwined with the central deposit, and are surrounded
by reactive astrocytes. These deposits are found throughout the neocortex
and hippocampus in patients who have AD [10]. The central deposit in clas-
sical senile plaques structurally is similar to the deposits seen in a group of
diseases referred to as amyloidoses, wherein there is extracellular deposition
of proteins with a beta-pleated sheet conformation (reviewed by Sipe
[11,12]). More than 15 different polypeptides have been identified as the
primary proteinaceous components of the amyloids that are deposited in
various tissues in the clinically diverse amyloidoses.

The central location of the plaque core within this pathology led to the
speculation that whatever comprises the core may play a pivotal role in
the disease process itself. In a landmark finding in 1984, Glenner and
Wong published the purification and sequence of the primary proteinaceous
component of amyloid isolated from meningeal vessels obtained from AD
brains [13]. By comparing samples from six AD patients and three controls,
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they identified a unique protein only present in the patients who had AD.
Size-exclusion chromatography revealed that the protein had an appro-
ximate molecular weight of 4200 daltons, and amino acid analysis and
sequencing revealed a novel amino acid sequence now referred to as A.

Alzheimer’s disease and Down syndrome: the link to chromosome 21

Previously, it was established that individuals who have Down syndrome
who live past age 50 have neuropathologic changes similar to AD patients
(reviewed by Mann [14]). In a follow-up to their original finding, Glenner
and Wong [15] isolated and analyzed the cerebrovascular amyloid from
Down syndrome patients. They established that the amino acid sequence
of cerebrovascular amyloid in Down syndrome is identical to that observed
in AD patients. Given the similarity of the amyloid deposited in AD and
Down syndrome, Glenner and Wong [15] proposed that there was a common
pathogenic process involved. Down syndrome results from trisomy of the
twenty-first chromosome, which implied that AD pathology could be
produced by increased expression of a gene or genes on chromosome 21.

After these initial reports, amino acid sequencing of the amyloid isolated
from senile plaques from AD and Down syndrome brains was reported by
other groups [16,17]. These reports established that the amino-terminal se-
quence and amino acid composition of plaque core amyloid was identical
to that of cerebrovascular amyloid isolated from AD or Down syndrome
brains, except for the presence of ragged NH, termini [17].

To isolate the gene encoding AB, Kang and colleagues [18] used degener-
ate primers targeted against amino acids 10-16 of the peptide to screen
a complementary DNA library constructed from the brain of a 5-month
old fetus. In these experiments, they isolated a clone encoding a 695 amino
acid protein that contained the A sequence beginning 99 amino acids from
the carboxyl end of the protein. This protein was simultaneously reported by
other groups and is now known as B-amyloid protein precursor (BAPP)
[19-21]. Southern blot analysis of mouse/human cell hybrids revealed that
the gene encoding BAPP is located on the twenty-first chromosome [18].
This data substantiated Glenner and Wong’s previous suggestion, that
overexpression of a gene or genes on chromosome 21 should be sufficient
to cause AD pathology. Subsequent studies by Tamaoka and colleagues
showed that AP levels were increased significantly in plasma isolated from
patients who had Down syndrome when compared with control individuals,
indicating that an increased copy number of BAPP does result in increased
levels of AP in humans [22].

B-amyloid protein precursor metabolism

A basic description of the metabolism of BAPP is necessary to under-
stand how the familial AD (FAD)-linked mutations (discussed later) can
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influence the accumulation of AB. The AP peptide sequence is embedded in
the BAPP protein, indicating that two separate proteolytic cleavages are re-
quired to generate AP from its precursor. The N-terminus of A is generated
by cleavage of BAPP by B-secretase, producing a 99 amino acid C-terminal
fragment (CTF) of BAPP that can be cleaved further by y-secretase to re-
lease AP. y-Secretase generates two major A species, 40 and 42 amino acids
in length, termed AB40 and AB42. BAPP also can be cleaved within the A
domain by a-secretase, an action that precludes AP generation. The B- and
v-secretase cleavages are discussed further with descriptions of the discovery
of the three genes linked to familial early-onset AD and the mechanisms by
which they elevate AR levels.

Genetics of Alzheimer’s disease

Some of the strongest evidence for a critical role for A in AD came from
an analysis of the genetic mutations that cause AD. In addition to trisomy
21 causing neuropathology that essentially is identical to that seen in typical
late-onset AD, AD can be inherited as a fully penetrant, autosomal domi-
nant trait in certain families [23—24]. In these families, the clinical and neu-
ropathologic presentation of the disease essentially is identical to typical
late-onset AD, but the age of onset is earlier, typically in the 50s. Mutations
in three distinct genes, on three separate chromosomes, have been identified
as the cause of AD in these families: the BAPP gene on chromosome 21
[25-29], the presenilin 1 gene on chromosome 14 [30], and the presenilin 2
gene on chromosome 1 [31]. These genes are reviewed in greater detail in the
article by Taner and colleagues elsewhere in this issue. However, some of
FAD-linked mutations are highlighted below as they relate to the amyloid
hypothesis.

The first mutation shown to cause AD, found in a single family, was
a point mutation in the BAPP gene itself. This mutation results in a substitu-
tion of the more hydrophobic amino acid, isoleucine, for valine at position
717 (V7171), which is immediately carboxyl to the AB sequence [26]. In other
families, additional mutations at this position subsequently were identified
that result in the substitution of phenylalanine (V717F) [25] or glycine
(V717G) [27]. After the identification of mutations at position 717 in the
BAPP gene, a double mutation at position 670/671 was identified in a large
Swedish family with a mean age of onset of AD of 55 years [28]. The 670/671
double mutation results in a substitution of asparagine and leucine for the
lysine and methionine, respectively, immediately preceding the N-terminus
of AR (K670N/M671L). In context, the identification of causative mutations
for AD, not only within the BAPP protein itself but also immediately
adjacent to the cleavage sites needed to liberate the AP peptide from its
precursor protein, provided additional, immediate support for the amyloid
hypothesis.
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To investigate the hypothesis that the mutations identified in the BAPP
gene would alter the amount of AP peptide being produced, several groups
turned their attention to the analysis of BAPP metabolism and extracellular
AB accumulation in model systems [32-35]. Analysis of total AB con-
centration in the conditioned medium of transfected cells expressing these
FAD-linked mutations indicated that the Swedish mutation caused a sev-
eral-fold increase in the amount of AP accumulated extracellularly [32,33].
Additionally, analysis of the CTFs and secreted forms of BAPP (sAPP)
showed elevations in CTFB and sAPPp, indicating that the increased Af
concentration observed with this mutation is likely the result of enhanced
B secretase cleavage [36]. Using the same experimental paradigm, no signif-
icant differences in total AR, CTFs, or sAPPs were observed, however, in
cells transfected with the 717 mutations [35].

Pioneering work by Lansbury and colleagues [37-39] showed that the car-
boxy-terminal length of the AB molecule was critical to determining the rate
at which A fibrils form. Using synthetic peptides, they showed that A end-
ing at position 42 formed fibrils far more rapidly and at lower concentra-
tions than AR ending at position 40. As the deposition of AB in the form
of amyloid fibrils represents an invariant feature of AD, Younkin and col-
leagues [33] proposed that the 717 mutations might be acting to selectively
increase secretion of AB42. In a landmark finding, Younkin’s group showed
that secreted AB42, which normally constitutes only a fraction of total se-
creted AP, is increased significantly in the medium of cells expressing the
717 mutations [35]. Thus, both the Swedish mutation and the 717 mutations
increase the concentration of A, in particular AB42.

To date, one of the greatest tests of the amyloid hypothesis involved the
analysis of mutations that also cause early-onset AD but that do not reside
in the BAPP gene or even on chromosome 21. These were the presenilin
mutations. (These are covered in detail the article by Taner and colleagues
elsewhere in this issue.) Initially, there was no evidence to suggest that these
genes were involved with BAPP processing. In fact, they seemed equally as
likely to directly influence tau, synapse loss, energy metabolism, or a host of
other factors associated with alternate theories regarding the etiology and
pathogenesis of AD.

However, studies performed by Younkin and colleagues [40] showed that
in cultured medium from primary fibroblasts and plasma isolated from
patients who had either presenilin 1 or presenilin 2 mutations, Af levels
were elevated, in particular AB42 levels, similar to the 717 mutations in
BAPP. Follow-up studies by several groups examining the influence of these
mutations on AP levels in either transfected cells or in the brains of animals
transgenic for these mutations confirmed these findings.

When the presenilins were discovered as FAD-linked genes in 1995, their
functions were unknown and their link to APP metabolism was not clear.
Then, in 1997, Selkoe and colleagues [41] showed that APP and presenilin
interact in mammalian cells, as evidenced by coimmunoprecipitation
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experiments. Over the next 5 years, several additional laboratories demon-
strated that the presenilins are the catalytic component of the multiprotein
complex that is y-secretase [42—44]. Consequently, the relationship between
BAPP, the presenilins, and AD now is clear: AP is generated by B-secretase
and +y-secretase (presenilin complex) cleavage of the BAPP protein. All of
the mutations identified in BAPP, presenilin 1, and presenilin 2 that cause
early-onset FAD increase Af levels, particularly AB42 levels, or otherwise
perturb the ratio of AB42 to AB40 levels [45] in ways likely to foster A
aggregation and deposition.

B-amyloid peptide levels increase during aging

Aging clearly is the most significant risk factor associated with AD, and
AB levels begin to increase in the brains of many people who are cognitively
normal between the ages of 40 and 80 [46,47]. According to the study of
consecutive autopsy cases by Funato and colleagues [46], insoluble AB42
in particular accumulates with age in the cortex and precedes senile plaque
formation. Compared with brains from cognitively normal elderly individ-
uals, AD brain had higher levels of soluble and insoluble AB42 and AB40
and a higher degree of N-terminally truncated or modified AB. Similar
correlations between A levels and age in individuals who were cognitively
normal were reported by Morishima-Kawashima and colleagues [47], with
significant increases in Af accumulation beginning after age 40. In both
studies, insoluble AP concentration was related logarithmically to plaque
density, and a critical threshold (approximately 100 pmol/g) of insoluble
APB42 was required for immunocytochemical detection of senile plaques.
In the latter study, carriers of the apolipoprotein E €4 allele, a strong
risk factor for AD, were found to accumulate AB at an earlier age than
noncarriers [47].

Increased levels of B-amyloid peptide: causative agent or very
good biomarker?

As discussed previously, elevations in A concentration that are likely to
enhance aggregation and deposition are linked to the expression of all of the
FAD-linked mutations analyzed to date, and in Down syndrome. These el-
evations can be detected in plasma and in fibroblast-conditioned medium
isolated from presymptomatic individuals [36,48] and in transgenic animals
before deposition [49,50], suggesting that these changes are early and not
simply an epiphenomenon associated with end-stage AD. In addition it
seems that A levels increase during aging in humans and in animal models,
with age being the highest contributing risk factor for the development of
the disease.
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The question then remains, do elevations in AP play a central, causal role
in the pathogenesis of the disease or are they a relatively benign marker of
the underlying disease process. Perhaps this question will not be answered
until newly developed approaches to lower Ab either fail or show significant
improvement in the clinics. However, it can be concluded, based on numer-
ous studies, that elevations in Ab levels are not likely without consequence.

Clinical-neuropathologic correlations in Alzheimer’s disease

The extent of correlation between the neuropathologic lesions in AD
patients and the severity of their dementia has been an area of considerable
debate and continues to be used consistently as an argument against the
amyloid hypothesis. As is true with any correlative function, a correlation
can be a good indicator of a causal relationship, but close correlation is
not definitive proof of causality. For example, a well-correlated change sim-
ply can be an inconsequential, reliable biomarker of another process that is
causative. With that in mind, some of the earliest studies showed significant
correlations between plaque numbers and the extent of dementia [51]. Sev-
eral other studies, however, reported that the number of NFTs and neuropil
threads is a far better indicator of the degree of dementia [52,53]. One of the
most comprehensive recent analyses, with respect to the extent of variables
examined, was published by Cummings and colleagues [54]. In this study,
they found that the number of plaques, NFTs, and dystrophic neurites all
correlated significantly with dementia severity and the area occupied by
AP and tau paired-helical filaments. However, individuals remain who
have extensive amyloid deposition and are cognitively normal. For example,
in a study by Markesbery’s group, significant AD-like pathology (plaques
and tangles) was found in the brains of a substantial number of elderly, cog-
nitively normal individuals [55]. These and similar studies led some to argue
that the amyloid hypothesis must be wrong. In response, some amyloid the-
ory proponents have adjusted the hypothesis accordingly to accommodate
and now argue for preamyloid-like aggregates of A, such as A oligomers,
as the causative agent in the disease process. Regardless of the correct
hypothesis, the development of AD is a reasonably long process. Therefore,
it is not surprising that with nearly one half of the population susceptible to
the disease, if they live long enough, individuals can be found who have
significant neuropathology and who are cognitively normal. Similar trends
are observed in other neurodegenerative diseases, such as Parkinson’s
disease, where approximately 70% of the dopaminergic neurons in the
subtantia nigra are lost before the development of clinical symptoms.

B-amyloid peptide toxicity

If alterations in AP are necessary and sufficient to play a causal role in AD
pathogenesis, then A should be able to elicit, directly or indirectly, the
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neuropathologic and cognitive changes observed in patients who have AD.
Furthermore, mechanisms must exist that can explain the prevalence of the
disease in the aging population and in people carrying causative mutations
and known genetic risk factors. Evidence gathered over the past several years
builds an increasingly stronger case that the alterations in A observed in
the genetic forms of AD are not without consequence and can account
for the neuropathology and dementia in AD. This section reviews evidence
for the neurotoxicity of abnormal A species. Although neurotoxicity ini-
tially was attributed to the fibrillar species of AP deposited in plaques, recent
data also implicate soluble AP oligomers, which may form before plaque
deposition and cause neuronal dysfunction that may facilitate many of the
downstream pathologic events in AD. Because these soluble oligomers exist
in equilibrium with fibrillar AB as deposition progresses, the neuronal loss,
inflammation, and other pathology seen in the vicinity of plaques may be
the result of the oligomers, the plaques, or a combination of the two.

Soluble, synthetic AR peptides were shown by Yankner and colleagues
[56] to be neurotrophic at low concentration to undifferentiated hippocam-
pal neurons in culture and toxic at higher concentrations to mature neurons.
Subsequently, the neurotoxicity of A was shown to be dependent on its
aggregation state [57,58]. Stable AB aggregates were highly toxic to primary
neurons, and partial reversal of aggregation resulted in a loss of toxicity.
Similar results were found in in vivo studies, with microinjection of fibrillar,
but not soluble, AB causing neurotoxicity in the cerebral cortex of aged rhe-
sus monkeys [59]. Neurotoxicity was dependent not only on the aggregation
state of AP but also on the age and species of the animal model used.
Specifically, plaque-equivalent concentrations of fibrillar AB resulted in
extensive neuronal loss, tau phosphorylation, and microglial activation in
the brains of aged monkeys but were not toxic to young adult monkeys
or aged rodents. Much higher concentrations of AB were required to elicit
neurotoxicity in young adult monkeys and in rodents [59—61]. These
results may help to explain the vulnerability of the elderly to AD and the
difficulty of generating a rodent model that faithfully reproduces all of the
neuropathologic features of the disease.

In vitro, fibrils are believed to form via the progression from A mono-
mers to low-molecular-weight oligomers to intermediate species (called pro-
tofibrils) that assemble into mature fibrils [62]. The data indicating that A
fibrils are neurotoxic and can elicit other AD characteristics, including tau
phosphorylation, suggested that disrupting fibrils might be therapeutically
beneficial. However, researchers suspected that the disruption of insoluble
AB fibrils could result in an accumulation of protofibrils and other soluble
oligomers. Therefore, experiments were performed to investigate whether
these lower-level aggregates apparently were nontoxic, like A monomers,
or whether they might elicit neurotoxic effects, like fibrils. Data generated
over the past several years demonstrates convincingly that AP oligomers
neurotoxic, and in many assays they are even more toxic than fibrils [63].
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Soluble oligomers range from dimers and trimers to dodecamers, also
called AB-derived diffusible ligands (ADDLs) [64,65]. The smaller sodium
dodecyl sulfate (SDS) stable oligomers are produced by several cell lines
and have been detected in human brain and cerebrospinal fluid. Similarly,
the larger ADDLs are not merely an artifact of the in vitro assembly of Af,
as structurally indistinguishable A oligomers are present in soluble extracts
of AD brain at average levels 12-fold higher than in control brains [66].
ADDLs, formed in vitro or purified from AD brain, bind specifically to
synapses in differentiated hippocampal neuronal cultures [63]. This evidence
for specific neuronal attachment, coupled with the fact that ADDLs and
lower-molecular-weight AB oligomers are shown to be potent inhibitors of
long-term potentiation, a model of synaptic plasticity and memory, provides
a rational explanation for early memory loss in AD and in animal models of
AD [64,67,68].

As discussed previously, a common criticism of the amyloid hypothesis
was that in some studies, plaque burden correlated poorly with severity of
dementia in AD. The discovery of soluble oligomers as neurotoxic AB spe-
cies led to an examination of the relationship between soluble AP concentra-
tion and clinical and pathologic severity. A strong correlation between
soluble AB and markers of disease severity, including synaptic loss, was
identified [69,70]. Two additional lines of evidence support the hypothesis
that soluble AP oligomers are the primary toxic entity in the brain, at least
in animal models.

First, impaired synaptic transmission and cognitive function are seen be-
fore overt amyloid deposition in mouse models of AD [71-73]. In the widely
used APP transgenic mouse model, Tg2576, a partial decline in memory
occurs at approximately 6 months, before amyloid deposition. Cognitive
function then remains stable over the next 7 to 8§ months, even though pla-
que deposition progresses and becomes significant over this time period.
Finally, a further decline in cognitive function is detected at ages greater
than 15 months. The initial memory decline at 6 months, followed by the
period of stability, was perplexing in terms of the lack of correlation with
the course of amyloid plaque deposition in this model. This led Lesné and
colleagues [72] to conduct a detailed biochemical analysis of AB complexes
in the brains of these mice during the time period when the first behavioral
deficits are detected. Soluble, extracellular-enriched extracts from the fore-
brain of 6-month-old Tg2576 contained SDS and urea stable A complexes
with molecular weights theoretically corresponding to trimers and multiples
thereof, up to a molecular weight of 56 kd. Only the 56-kd (theoretic
dodecamer) and 40-kd (theoretic nonamer) species appeared for the first
time at 6 months. Both correlated inversely with memory performance,
with the 56-kd form (termed AP*56) showing the strongest correlation.
The levels of the 40- and 56-kd AP complexes remained stable on average
during the subsequent period of cognitive stability in the mice. To test
more directly whether or not AB*56 causes cognitive impairment, the
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complexes were purified from Tg2576 brain extracts and then injected into
the lateral ventricle of rats. AB*56 caused a transient decrease in spatial
memory in rats, supporting the hypothesis that this complex could be re-
sponsible for the onset of memory deficits in the Tg2576 mouse model
[72]. Whether or not AB*56 structurally is identical to the 56-kd ADDLs
derived from AD brain [66] is an intriguing question that remains to be
determined.

Second, therapeutic interventions, which lower the level of soluble AP or
disrupt AB assembly in animal models, often in the absence of detectable
changes in plaque load, ameliorate cognitive deficits [74—79]. This effect is
not unique to a single therapeutic approach and has been observed with
such divergent strategies as AP immunization, acute y-secretase inhibition,
and oligomer neutralization. Recently, Lee and colleagues [77] showed that
short-term passive immunization of aged Tg2576 APP transgenic mice with
a conformation-specific AB antibody that preferentially recognizes dimers,
soluble oligomers, and certain amyloid deposits resulted in significant
improvements in spatial learning and memory without affecting amyloid
burden. These results are similar to those obtained by independent groups
using different AB antibodies and different transgenic lines [75,76] and
support the hypothesis that the neutralization of toxic AP species can
reverse cognitive deficits in mice. This hypothesis has recently been tested
by other investigators [78] using a completely different experimental para-
digm but with similar results [78,79]. Cyclohexanehexol stereoisomers, which
inhibit AP aggregation and favor the disassembly of fibrils, can prevent A
oligomer—induced toxicity in cultured primary neurons and hippocampal
slices and oligomer-induced memory deficits in rats [79]. When administered
orally to TgCRNDS8 APP transgenic mice from 6 weeks of age (predeposi-
tion) to 4 to 6 months (significant amyloid deposition), scyllo-cyclohanehexol
showed a dose-dependent improvement in spatial learning accompanied by
decreases in amyloid burden and AP oligomers [78]. Synaptic loss was
ameliorated at 6 months as was accelerated mortality in the treated mice.

Perhaps the most important implication of these studies is that the cogni-
tive impairment in these models is not permanent. To what degree this applies
to the human condition is unknown, because the profound neuronal loss in
AD is absent in AD mouse models. Nonetheless, reducing soluble A levels
or altering a toxic conformation may be a less ambitious goal than clearing
plaques. The true test for the amyloid hypothesis of AD, and the specific
notion that soluble oligomers mediate AP toxicity, awaits the further
development of AB-targeted therapies and their progression to clinical trial.
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