
1

2

3

4

5
6

7

9

1011
12
13
14
15
16
17
18
19

2 0

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
O
O

FUnifying computers and dynamical systems using the theory
of synchronous concurrent algorithms

B.C. Thompson a, J.V. Tucker a, J.I. Zucker b,*

a Department of Computer Science, Swansea University, Singleton Park, Swansea SA2 8PP Wales, United Kingdom
b Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada L8S 4K1

a r t i c l e i n f o a b s t r a c t
21
22
23
24
25
26
27
28
Keywords:
Synchronous concurrent algorithm
Dynamical systems
Many sorted algebras
Equational specifications
Streams
Computability on topological algebras
Computable physical systems
29
30
31
32
33
34
35
36

0096-3003/$ - see front matter � 2009 Published b
doi:10.1016/j.amc.2009.04.058

* Corresponding author.
E-mail addresses: J.V.Tucker@swansea.ac.uk (J.V.

Please cite this article in press as: B.C. Thomps
current algorithms, Appl. Math. Comput. (200
C
T
E
D

P
R

A synchronous concurrent algorithm (SCA) is a parallel deterministic algorithm based on a
network of modules and channels, computing and communicating data in parallel, and
synchronised by a global clock with discrete time. Many types of algorithms, computer
architectures, and mathematical models of physical and biological systems are examples
of SCAs. For example, conventional digital hardware is made from components that are
SCAs and many computational models possess the essential features of SCAs, including sys-
tolic arrays, neural networks, cellular automata and coupled map lattices.

In this paper we formalise the general concept of an SCA equipped with a global clock in
order to analyse precisely (i) specifications of their spatio-temporal behaviour; and (ii) the
senses in which the algorithms are correct. We start the mathematical study of SCA com-
putation, specification and correctness using methods based on computation on many-
sorted topological algebras and equational logic. We show that specifications can be given
equationally and, hence, that the correctness of SCAs can be reduced to the validity of equa-
tions in certain computable algebras. Since the idea of an SCA is general, our methods and
results apply to each of the particular classes of algorithms and dynamical systems above.

� 2009 Published by Elsevier Inc.
37
U
N

C
O

R
R

E

1. Introduction

1.1. The concept

A synchronous concurrent algorithm (SCA) is an algorithm based on a network of modules and channels, computing and
communicating data in parallel, and synchronised by a global clock with discrete time. The etymology of ‘synchronous’ is
Greek: ‘‘at the same time”. SCAs can process infinite streams of input data and return infinite streams of output data. Most
importantly, an SCA is a parallel deterministic algorithm.

Many types of algorithms, computer architectures, and mathematical models of physical and biological systems are
examples of SCAs. First and foremost, conventional digital hardware, including all forms of serial and parallel computers
and digital controllers, are made from components that are SCAs. In many cases, complete specifications of computers at dif-
ferent levels of abstraction are SCAs. Interestingly, the structure of Charles Babbage’s Analytical Engine (developed from
1833 onwards) is that of an SCA.

Further, many specialised models of computation possess the essential features of SCAs, including systolic arrays, neural
networks, cellular automata and coupled map lattices.
y Elsevier Inc.

Tucker), zucker@mcmaster.ca (J.I. Zucker).

on et al., Unifying computers and dynamical systems using the theory of synchronous con-
9), doi:10.1016/j.amc.2009.04.058

mailto:J.V.Tucker@swansea.ac.uk
mailto:zucker@mcmaster.ca
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc
Original text:
Inserted Text
8PP, Wales

Original text:
Inserted Text
Ontario

Original text:
Inserted Text
4K1, Canada

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

8484

85

86

87

88

89

9191

92

93

94

95

96

97

98

99

101101

102

103

104

105

106

107

2 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
T
E
D

P
R

O
O

F

The parallel algorithms, architectures and dynamical systems that comprise the class of SCAs have many applications,
ranging from their use in special purpose devices (for communication and signal processing, graphics and process control)
to computational models of biological and physical phenomena.

From the point of view of computing, an SCA can be considered to be a type of deterministic data flow network, in which
time is explicit and enjoys a primary role. SCAs require a new specialised mathematical theory with applications of its own.

From the point of view of mathematical physics and biology, an SCA can be considered to be a type of spatially extensive
discrete space, discrete time, deterministic dynamical system that is studied independently or as an approximation to con-
tinuous space, continuous time dynamical systems.

In most cases, SCAs are complicated and require extensive simulation and mathematical analysis to understand their
operation, behaviour and verification. In fact, in the independent literatures on the above types of SCAs it is often difficult
to formulate precisely

(i) specific SCAs and their operation in time;
(ii) specifications of their spatio-temporal behaviour; and

(iii) the senses in which the algorithms are correct.

In the case of neural networks, correctness is further complicated by the difficulty of writing problem specifications, the exis-
tence of a learning phase, and notions of approximate correctness. In the case of non-linear dynamical systems, correctness is
concerned with properties such as chaotic, stable, emergent and coherent behaviour over time. Thus, SCAs constitute a wide
ranging class of useful algorithms for which many basic questions concerning their structure and design remain unanswered.

In this paper, we formalise the general concept of an SCA equipped with a global clock and analyse precisely ideas about
the specification and correctness of SCAs. Our mathematical study of SCA computation, specification and correctness pro-
vides a unified theory of deterministic parallel computing systems and deterministic, spatially extensive, non-linear dynam-
ical systems.

The methods are based on abstract computability theory on many-sorted topological algebra and equational logic. We
show how to define SCAs by equations over stream algebras in a simple way. We also show that specifications can be given
equationally and, hence, that the correctness of SCAs can always be reduced to the validity of equations in certain algebras.
Thus, a natural method for verification of SCAs is equational reasoning, although this is incomplete.

Our methods and results apply to each of the classes of algorithms and architectures listed above. In particular, they can
be used in case studies and software tools for design and verification of specific classes of SCAs, and as a starting point for a
general theoretical analysis of hardware verification.

1.2. The theory

Data is modelled by an algebra
Please
curren
CA ¼ ðA;B;T; F1; . . . ; FkÞ
R
Ewith three carrier sets: the set A of data, B of Booleans and T of naturals f0;1;2; . . .g (written T instead of N because it rep-

resents the discrete time on the global clock), and functions F1; . . . ; Fk which include the standard Boolean operations (with
possibly equality on A) and the arithmetic operations of 0 and successor t þ 1.

The behaviour of SCAs in time is modelled using streams of elements of A, which are infinite sequences indexed by (discrete)
time. Let ½T! A� be the set of all streams. The operations on data, time and streams are combined to form a stream algebra:
A ¼ ðA;B;T; ½T! A�; F1; . . . ; Fk; evalÞ:
C
O

R

Typically, in models of hardware systems, SCAs compute with streams of bits, integers or terms. In dynamical systems, SCAs
compute with streams of real and complex numbers. To prepare for this mathematical view, we provide some preliminaries
on topological algebras in Section 2 and stream algebras and computable algebras in Section 3. We note that all stream alge-
bras are topological algebras and often have certain dense subalgebras that are computable.

In Section 4, we define synchronous concurrent algorithms and architectures and formalise their semantics by means of
functions defined by simultaneous primitive recursion equations over A.

More specifically, an SCA based on a network N with m modules and p input streams is specified by a network state
function
 N
VN : Am � ½T! A�p � T! Am
Uin which VNða; x; tÞdenotes the state of the SCA on processing p input streams x 2 ½T! A�p from initial state a 2 Am at time t 2 T.
In Section 5, we give a sketch of the broad range of types of SCAs (systolic arrays, neural networks, cellular automata and

coupled map lattices) with an bibliography.
In Section 6, we consider specifications and correctness criteria for a simple form of the space-time behaviour of SCAs:

correctness based on specifications with respect to a single system clock of the SCA. Other forms of correctness are possible,
such as correctness based on specifications with respect to a second clock external to the SCA [30].
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
constititute

Original text:
Inserted Text
paper

Original text:
Inserted Text
booleans

Original text:
Inserted Text
boolean

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 3

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

In Section 7, we consider the SCA equational models from the point of view of computability theory. We define two
classes of predicates on A, broader than the class of PR (primitive recursive) predicates: equational PR, which includes
the (not necessarily computable) equality relation as primitive, and equational kPR, which also includes stream abstrac-
tion.

We consider specifications and correctness relations which should be algorithmically testable, e.g., by primitive recursive
computations. We prove some results concerning the logical and computational structure of SCA correctness, including
results having the following form:

Theorem 1. The network state function VN is PR on the stream algebra A.

Theorem 2. Suppose A is a Hausdorff algebra, and further

(a) P;Q and R are equationally kPR on A,
(b) A has a dense computable subalgebra D.

Then we can effectively construct a computable algebra CV ;P;Q ;R with signature RV ;P;Q ;R that expands by functions the stream
subalgebra of eventually constant streams over D, and equations eP ; eQ ; eV ;R over RV ;P;Q ;R such that the following are equiv-
alent:

(i) VN is correct w.r.t P;Q and R, i.e., (7.4) holds;
(ii) CV ;P;Q ;R � eP ^ eQ ! eV ;R.

Thus, the correctness of the SCA (as in (i)) can be reduced to the validity of a conditional equation in a computable algebra (as in
(ii)). Through our definitions, this reduction to conditional equations applies to a wide variety of complex space-time behav-
iours for a wide variety of computing devices and dynamical systems,

This has several consequences, including the fact that SCA correctness is co-recursively enumerable. This suggests there
are no effectively axiomatisable complete proof systems for SCA verification. However, we do have the following result in this
direction.

Theorem 3. Given the hypotheses of Theorem 2, we can effectively construct a finite equational specification ðRV ;P;Q ;R; EV ;P;Q ;RÞ and
equations eP ; eQ ; eV ;R over RV ;P;Q ;R s.t. the following are equivalent:

(i) VN is correct w.r.t P;Q and R, i.e., (7.4) holds;
(ii) TðRV ;P;Q ;R; EV ;P;Q ;RÞ � eP ^ eQ ! eV ;R.

Section 8 contains some concluding remarks, concerning the issues of (a) a common theoretical framework for SCA net-
works and analog networks, and (b) generalising the model to allow for partial module functions and streams.

Since the emphasis in this paper is on the a general mathematical model of SCAs, it will be helpful if the reader has some
familiarity with theory for algorithmic computability on discrete and continuous data [54,74,65,68,58].

1.3. Origins

The idea of a making a mathematical theory of SCAs that would uncover and analyse common structures and properties
between hardware, parallel algorithms, and dynamical systems modelling natural phenomena arises in the work of the sec-
ond author (JVT) at Leeds University, starting in 1981. Over many years, the SCA notion was developed primarily through
studying applications, in work with, for example:

� Harman on hardware design and verification [19,22,21,23–26,17,18,20].
� Holden and Poole on non-linear dynamical systems [32,33,31,52,53].

The first two authors (BCT and JVT) started work on these mathematical foundations for SCA theory in 1987, leading to the
report [60]. Although unpublished, it was widely circulated (forming, e.g., part of JVT’s lecture notes for the NATO Summer
School on Logic and algebra of specification, Marktoberdorf, Germany, 1991). There is a full conceptual analysis and extensive
reflection on correctness and examples in [60].

However, the subtlety of the connections between the SCA models and abstract and concrete computability theories
for continuous data types, such as streams of real numbers, was a problem. Thus, a gap of 17 years is partly excused by
the need to master computability theories for topological algebras, to which JVT and the third author (JIZ) have devoted
many pages in the period [63–69]. Our current understanding enabled us to look at continuous time, continuous state
and discrete space systems in our paper [70], where we were motivated by the idea of models capable of unifying disparate
analogue technologies. Clearly, this application to analogue computation was inspired by the earlier unification of models
work on SCAs.
Please cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
current algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
)

Original text:
Inserted Text
).

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

177177

178

180180

181

183183

184

185

186

188188
189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

209209

4 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
R
O

O
F

2. Topological algebras

We briefly survey the basic concepts of topological and metric many-sorted algebras. More details can be found in
[65,64,68].

2.1. Basic algebraic definitions

A signature R (for a many-sorted algebra) is a pair consisting of (i) a finite set SortðRÞ of sorts, and (ii) a finite set FuncðRÞ of
(basic) function symbols, each symbol F having a type s1 � � � � � sm ! s, where s1; . . . ; sm; s 2 SortðRÞ; in that case we write
F : s1 � � � � � sm ! s. (The case m ¼ 0 corresponds to constant symbols.)

A R-product type has the form u ¼ s1 � � � � � sm ðm P 0Þ, where s1; . . . ; sm are R-sorts.
A R-algebra A has, for each sort s of R, a non-empty carrier set As of sort s, and for each R-function symbol F : u! s, a func-

tion FA : Au ! As, where, for the R-product type u ¼ s1 � � � � � sm, we write Au¼df As1 � � � � � Asm . For m ¼ 0; FA is an element of
As.

The algebra A is total if FA is total for each R-function symbol F.

Remark 2.1.1 (Assumption of total algebras). For the purpose of this paper, we work only with total algebras, for the sake of
simplicity. The interesting generalisation to the framework of partial algebras (with partial operations and partial streams) is
left to a future paper (see Section 8).

Given an algebra A, we write RðAÞ for its signature.

Example 2.1.2

(a) The algebra B of Booleans has the carrier B ¼ ft; fg of sort bool:
Please
curren
PB ¼ ðB; t; f; and; or; notÞ:
(b) The algebra T0 of naturals has a carrier T of sort nat, together with the zero constant and successor function:
T0 ¼ ðT; 0;SÞ:
 DNote that here and elsewhere we use the notation
T¼df N ¼ f0;1;2; . . .g
T
E

for the set of natural numbers (denoted t; t0; . . .), since the interpretation of N throughout this paper will be almost exclusively
as a discrete global clock.

(c) The ring R0 of reals has a carrier R of sort real:
R0 ¼ ðR; 0;1;þ;�;�Þ:
U
N

C
O

R
R

E
C

We make the following
Instantiation Assumption. For every R-sort s, there is a closed term of that sort, called the default term ds of that sort. In any

R-algebra A, it names an element of As, called the default element of As.

2.2. Adding Booleans: standard signatures and algebras

Definition 2.2.1 (Standard signature). A signature R is standard if it includes the signature of Booleans, i.e., RðBÞ# R.

Given a standard signature R, a sort of R is called an equality sort if R includes an equality operator eqs : s2 ! bool.

Definition 2.2.2 (Standard algebra). Given a standard signature R, a R-algebra A is standard if (i) it is an expansion of B; (ii)
the equality operator eqs is interpreted as identity on the carrier of each equality sort s.

An example of an equality sort is the sort nat of naturals, with carrier T. Intuitively, equality is ‘‘computable” or ‘‘decid-
able” on T.

A non-equality sort is the sort real of reals. Intuitively, equality is (‘‘co-semi-decidable”, but) not (totally) decidable on R.
Any many-sorted signature R can be standardised to a signature RB by adjoining the sort bool together with the standard

Boolean operations; and, correspondingly, any algebra A can be standardised to an algebra AB by adjoining the algebra B,
together with equality at the equality sorts.

Example 2.2.3

(a) A standard algebra of naturals T is formed by standardising the algebra T0 (Example 2.1.2(b)), with (total) equality
and order operations on T:
T ¼ ðT0;B; eqnat; lessnatÞ:
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
.

Original text:
Inserted Text
booleans

Original text:
Inserted Text
-

Original text:
Inserted Text
booleans: Standard

Original text:
Inserted Text
booleans,

Original text:
Inserted Text
boolean

Original text:
Inserted Text
),

210

212212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

242242

243

244

246246

247

248

249

250

251

253253

254

255

256

257

258

259

260

261

262

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 5

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
(b) The standardised ring of reals (cf. Example 2.1.2(c)):
Please
curren
R ¼ ðR0;BÞ:
Note that there is no (total) equality on R, as discussed above.
R
O

O
F

2.3. Adding the naturals: T-standard signatures and algebras

Definition 2.3.1 (T-standard signature). A signature R is T-standard if (i) it is standard, and (ii) it contains the standard
signature of naturals, i.e., RðTÞ# R.

Definition 2.3.2 (T-standard algebra). Given an T-standard signature R, a corresponding R-algebra A is T-standard if it is an
expansion of T.

Any standard signature R can be T-standardised to a signature ðR; TÞ by adjoining the sort nat and the operations 0; S; eqnat

and lessnat. Correspondingly, any standard R-algebra A can be T-standardised to an algebra AT by adjoining the carrier T to-
gether with the corresponding standard functions.

Throughout this paper, we will assume:
T-standardness Assumption. The signature R, and the R-algebra A, are T-standard.

Definition 2.3.3

(a) A topologicalR-algebra is a R-algebra with topologies on the carriers such that each of the basic R-functions is continuous.
(a) A (T-)standard topological algebra is a topological algebra which is also a (T-)standard algebra, such that the carriers B

(and T) have the discrete topology.
D
P

Example 2.3.4

(a) Discrete algebras: The standard algebras B and T of Booleans and naturals respectively (Sections 2.1 and 2.2) are topo-
logical (total) algebras under the discrete topology. All functions on them are trivially continuous, since the carriers are
discrete.

(b) The T-standard topological total real algebra RT is defined by
 ET
R ¼ ðR;T; divnatÞ;
 Twhere R is the standardised ring of reals (Example 2.2.3(b)), T is the standard algebra of naturals (Example 2.2.3(a)), and
divnat : R� T! RÞ is the total (continuous!) function defined by
Cdivnatðx; tÞ ¼

x=t if t – 0;
0 if t ¼ 0:

�

ENote that RT does not contain (total) Boolean-valued functions ‘<’ or ‘=’ on the reals, since they are not continuous; nor does
it contain division of reals by reals, since that cannot be total and continuous. See [64,68,69] for discussions of these issues.
R
R

2.4. Metric algebra

A particular type of topological algebra is a metric algebra. This is a many-sorted standard algebra A with an associated
metric:
 OA ¼ ðA1; . . . ;Ar ;R; FA

1; . . . ; FA
k ; d

A
1; . . . ; dA

r Þ;
N
Cwhere R is the standardised ring of reals (Example 2.2.3(b)), the carriers Ai are metric spaces with metrics dA

i : A2
i ! R; ði ¼

1; . . . ; rÞ; F1; . . . ; Fk are the R-function symbols other than d1; . . . ; dk, and the functions FA
i are all continuous with respect to

these metrics. The carriers B and T (included among the Ai) are given the discrete metric, which induces the discrete topology.
Clearly, metric algebras can be viewed as special cases of topological algebras.

Example 2.4.1. The real algebra RT (Example 2.3.4(b)) can be recast as a metric algebra in an obvious way.
U3. Stream algebras; Computable algebras

3.1. Adding streams to algebras: algebras A of signature R

Let R be a T-standard signature, and A a T-standard R-algebra. We define an extension of R and a corresponding expansion
of A.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
):

Original text:
Inserted Text
booleans

Original text:
Inserted Text
2.1,

Original text:
Inserted Text
),

Original text:
Inserted Text
),

Original text:
Inserted Text
boolean-valued

Original text:
Inserted Text
),

Original text:
Inserted Text
)

Original text:
Inserted Text
Algebras

263

264

265

266

268268

269

270

271

272

274274

275

276

277

278

279

280

281

282

283

284

285

286
287
289289

290

291

292

293

294

296296

297
298

299

300

301

302

303

304

305

307307

308

309

310

311

312

313

314

6 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
We choose a set S # SortðRÞÞ of pre-stream sorts, and then extend RN to a stream signature RS relative to S, as follows. With
each s 2 S, associate a new stream sort �s, also written nat! s. Then

(a) SortðRSÞ ¼ SortðRÞ [f�sjs 2 Sg;
(b) FuncðRSÞ consists of FuncðRÞ, together with the evaluation function
Please
curren
evals : ðnat! sÞ � nat! s
for each s 2 S.

Now we can expand AT to a ðRSÞ-stream algebra AS by adding for each s 2 S:

(i) the carrier for �s, which is the set
 FA�s ¼ As ¼ ½T! As�
of all streams on As i.e., functions u : T! As;
D
P
R

O
O(ii) the interpretation of evals on A as the function evalAs : ½T! As� � T! As which evaluates a stream at a time instant:

evalAs ðu; tÞ ¼ uðtÞ.

The algebra AS is the (full) stream algebra over A with respect to S. (We will usually omit explicit reference to the set S.)
Note that the Instantiation Assumption does not hold (in general) for the signature of a stream algebra.

3.2. Expanding topological algebras to stream algebras

The algebraic expansion of an algebra A to a stream algebra A induces a corresponding topological expansion:

(a) The topological T-standardisation AT , of signature ðR; TÞ, is constructed from A by giving the new carrier T the discrete
topology.

(b) Next, a topology on AT can be extended to one on A by giving the stream carriers ½T! As� the product topology based on
As, where the basic open sets have the form
EU ¼ fu 2 AsjuðtiÞ 2 Ui for i ¼ 1; . . . ; ng ð3:1Þ
for some n > 0; t1; . . . ; tn 2 T and U1; . . . ;Un open subsets of As.
C
TWith this topology, the operator evalAs is continuous.

Remark 3.2.1

(a) This topology is the same as the inverse limit topology on ½T! As� [71, Section 2.1].
(b) If As is metrisable by the metric ds, then so is ½T! As� [71, Section 3.1], by the metric
E

d�sðu;vÞ¼df

X1
t¼0

min dsðuðtÞ; vðtÞÞ;2�t� �
:

O
R

R

3.3. Regular streams

Let B be a R-subalgebra of A. Then the stream algebra B over B is a R-subalgebra of the stream algebra A. Further, for any
stream sort s, if we replace ½T! Bs� by any non-empty subset of it in the definition of B, then we again obtain a ‘‘stream sub-
algebra” of A. All subalgebras of A are obtained in this way.

Of special interest is the following subset of the set As of all streams in A of sort s. Define the set of regular streams of A of
sort s by
 CðAsÞreg ¼ ½T! As�reg ¼ fu 2 ½T! As�j9t08t P t0ðuðtÞ ¼ dsÞg;
U
Nwhere ds is the default element of As (Section 2.1).

Further, for each T-standard R-algebra A we define ðAÞreg, the regular stream algebra over A, to be the R-subalgebra of the
stream algebra A obtained by restricting, at each stream sort s;As to the set ðAsÞreg of regular streams of sort �s.

Lemma 3.3.1. If B is a R-subalgebra of A then the regular stream algebra ðBÞreg over B is a R-subalgebra of the stream algebras
B; ðAÞreg, and A.
3.4. Dense regular subalgebras

We need the following general topological result.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
.

Original text:
Inserted Text
,

Original text:
Inserted Text
§2.1]

Original text:
Inserted Text
§3.1]

Original text:
Inserted Text
nonempty

315

316

317

318

319
320

321

322

323

324

325

326

327

328

330330

331

332

333

334

335

336

337

338

340340

341

342
343

344

345

346

347

348

349

351351

352

354354

355

356
357

358

359

360

361

362

363

364

365

366

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 7

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
Lemma 3.4.1. If X is a topological space and Y a Hausdorff space, and f : X ! Y and g : X ! Y are both continuous, with
f � D ¼ g � D for some dense subset D of X, then f ¼ g.

Let A be a R-algebra.

Definition 3.4.2. Dense subsetA SortðRÞ-indexed subset D is dense in A if for all R-sorts s;Ds is dense in As.
Lemma 3.4.3. Let A be a T-standard topological R-algebra. Then

(a) if A is Hausdorff then so is A;
(b) if D is a dense R-subalgebra of A then D and Dreg are dense R-subalgebras of A.
FProof. We prove the second part of (ii). Note first that Dbool ¼ Abool ¼ B and Dnats ¼ Anats ¼ N. Now, for any stream sort s, by
assumption Ds is dense in As. It remains to show that ðDsÞreg is dense in As ¼ ½T! As�. Choose any basic open set U in ½T! As�,
as in (3.1). Since Ds is dense in As, we can find di 2 Ui \ Ds for i ¼ 1; . . . ;n. Now define a stream u by
Please
curren
OuiðtÞ ¼
di if t ¼ ti for i ¼ 1; . . . ;n;

ds otherwise:

�

D
P
R

OThen u 2 U \ ðDsÞreg. h

From now on, we will assume that all our topological algebras satisfy the
Hausdorff Assumption. A is a Hausdorff topological algebra.

3.5. Computable algebras; Computable stream algebras

In order to investigate effective aspects of correctness specification of SCAs (Section 8), we need the concept of a comput-
able algebra [4].

Definition 3.5.1. Recursive number algebraA recursive number R-algebra X is a R-algebra in which for each R-sort s;Xs is a
recursive subset of N and for each R-function symbol F : u! s,
FX : Xu ! Xs
 E

Tis a total recursive function.
E
CLet A be a T-standard R-algebra.

Definition 3.5.2. Effectively presented algebraAn effective presentation ða;XÞ for A consists of a recursive number R-algebra
X and a R-epimorphism a : X! A.

We assume that Xnats ¼ N and anats ¼ idN.
A is said to be effectively presented by ða;XÞ.
Next we define the SortðRÞ-sorted congruence relation
R�a ¼ h�a;sjs 2 SortðRÞi
Rinduced by a on X:
x�a;sy() asðxÞ ¼ asðyÞ
 Ofor all x; y 2 Xs. Note also that A ffi X=�a.
U
N

CDefinition 3.5.3. Computable algebraA is computable if it has an effective presentation ða;XÞ in which �a is decidable on X;
that is, for each s 2 S;�a;s is decidable.

Note, next, that the stream algebra A has uncountable carrier sets As and so it cannot be effectively presented. We there-
fore work with a regular subalgebra of A.

Lemma 3.5.4. Let D be a computable dense R-subalgebra of A. Then Dreg is a computable dense R-subalgebra of A.

Proof. It is easy to extend an effective presentation for A with decidable equality to one for A. The denseness of Dreg in A
follows from Lemma 3.4.3. h

Remark 3.5.5. An example of a computable dense subalgebra of an algebra, satisfying the assumptions of Lemma 3.5.4, is in
the real algebra RT (Example 2.3.4(b)), in which the rationals Q form a dense subset of R.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
(

Original text:
Inserted Text
).

Original text:
Inserted Text
(

Original text:
Inserted Text
).

Original text:
Inserted Text
(

Original text:
Inserted Text
).

Original text:
Inserted Text
(

Original text:
Inserted Text
).

Original text:
Inserted Text
),

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

390390

391

392

393

394

395

396

397

398

399

400

401

8 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
R
O

O
F

4. Synchronous concurrent algorithms

4.1. Introduction to SCAs

An SCA is an algorithm given by a network N of modules, channels, sources and sinks. The modules compute and commu-
nicate in parallel; computation and data flow between modules is synchronised by a single global clock measuring discrete
time, with values in T.

For simplicity, assume that our T-standard R-algebra A contains only one carrier (apart from B and T), also called A, of sort
data. The data flowing between modules are taken from this set.

The SCA processes streams or infinite sequences uð0Þ; uð1Þ;uð2Þ; . . . of data from A, clocked by T. Such a stream is repre-
sented as a function u : T! A. Let ½T! A� be the set of all streams over A.

The network N in Fig. 1 is made from a sequence M1; . . . ;Mm of modules, a set Iin of p sources and a set Iout of q sinks. For
simplicity we represent the modules, sources and sinks as natural numbers: I ¼ f1; . . . ;mg; Iin ¼ f1; . . . ; pg and Iout ¼ f1; . . . ; qg.

Communication between modules occurs by means of the channels. These have unit bandwidth and are unidirectional; that
is, they can transmit only a single datum a 2 A at any one time in one direction. Channels may branch with the intention that
the datum transmitted along the channel is ‘‘copied” and transmitted along each branch. However, channels may not merge.

A module is an atomic computing device capable of some specific internal processing. If module Mi has kið> 0Þ input chan-
nels and one output channel then we assume the processing of Mi to be specified by a total function Fi : Aki ! A with the
intention that if a1; . . . ; aki

2 A arrive on the module’s ki input channels (one datum per channel) at time t then Mi computes
Fiða1; . . . ; aki

Þ, and transmits it at time t þ 1.
A source has no input and one output channel (which may branch). A network with p sources will process p input streams

x1; . . . ; xp 2 ½T! A�, or, equivalently, a vector-valued input stream x 2 ½T! A�p with xðtÞ ¼ ðx1ðtÞ; . . . ; xpðtÞÞ.
The sinks each have one input and no output channel. They transmit the q output streams.
An SCA’s architecture is given by three wiring functions
Please
curren
P
a : I�N! Iin [I
b : I�N! fM; Sg
out : Iout ! I

ðthese symbols explained belowÞ:
R
E
C

T
E
D

The map out is such that for each sink i; outðiÞ is the module that supplies i.
The maps a and b are partial functions that enumerate the inputs to a given module in the following way. Given a module

i 2 I with ki input channels, for j ¼ 1; . . . ; ki:

� if bði; jÞ ¼ M then input channel j of module i is the output channel of module aði; jÞ;
� if bði; jÞ ¼ S then input channel j of module i is the output channel of source aði; jÞ.

If j R f1; . . . ; kig then aði; jÞ and bði; jÞ are undefined.
Note that feedback is characterised by a module i with input j, where bði; jÞ ¼ M and aði; jÞ ¼ i.

4.2. Informal explanation of operation

Initially, at time t ¼ 0, each module i has some initial value ai 2 A on its output channel. The initial state of N is specified by
the vector a ¼ ða1; . . . ; amÞ 2 Am. Thus we have:

Initialisation Assumption At time t ¼ 0 there is a single datum on every channel in the network.
U
N

C
O

R

Fig. 1. An SCA network.

cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
,

Original text:
Inserted Text
,

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

425425

426

427

428

429

431431

432

433

434

435

436

437

438

440440

441

442

443

444
445
447447

448
449
451451

452

453

454

455

456

457

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 9

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
Each module i now computes by first reading its input data and then evaluating Fi on these data. The result of this eval-
uation is stored on the module’s output channel.

From the above, we can infer two related assumptions:

4.2.1. Module totality and determinism assumptions

(a) For each module in N, there is a datum on its output channel at time t þ 1.
(b) This item is uniquely determined by the data on its input channels at time t.
P
R

O
O

F

Remark 4.2.1 (Unit delay assumption). The module totality and determinism assumptions entail a unit delay assumption:
that it takes at most one time cycle for every module to read, evaluate and store in some order, and that any module taking
less than one time unit is forced to wait until any slower modules have finished. Hence, as the clock beats t ¼ 0;1;2; . . ., the
modules concurrently pass data and compute with each module performing its tth read/evaluate/store sequence starting at
time t and ending by time t þ 1. This is a reasonable assumption (assuming module totality!) since, even if we assume that
computation time of a module function is (in principle) unbounded for arbitrary inputs, we can always ‘‘re-scale” time
intervals to bound the computation time by one unit, for any given inputs.

We return to a discussion of the module totality and determinism assumptions in Section 4.6.

4.3. Algebraic formalisation

We start with a T-standard signature ðR; TÞ and R-algebra A (Section 2.3). As stated above, we assume for convenience
that there are only three carriers: A of data, B of Booleans and T of naturals (i.e., discrete time instants). Apart from the stan-
dard Boolean and arithmetic operations, there may be other functions, including (perhaps) equality on A.

Now we form the module algebra AF by adding the module functions to A:
Please
curren
AF ¼ ðA; F1; . . . ;FmÞ:

DNote that if A is a topological algebra (as we are generally assuming) then in order that AF can also be considered a topolog-

ical algebra (with the given topology on A), we must assume:
Continuity of Module Functions Assumption. The module functions are all continuous on A.
Next, we extend the algebra AF to the algebra AF of streams over AF (Section 3.1), which we call the module stream algebra:
E

AF ¼ ðAF
; ½T! A�; evalÞ:
R
E
C

TRecall that the input to the network N consists of a tuple of initial values a ¼ ða1; . . . ; amÞ 2 Am and a stream tuple
x ¼ ðx1; . . . ; xpÞ 2 ½T! A�p.

Lemma 4.3.1 (Network totality and determinism properties). At each time t 2 T there is a value output from each module,
which can be determined uniquely from t, u and a.

Proof. By a simple induction on t, using the initialisation assumption at t ¼ 0, and the module totality and determinism
assumptions at the induction step. h

For each module i 2 I we define its module value function
Vi : Am � ½T! A�p � T! A;
O
Rwhere Viða; x; tÞ is the value output by the module i at time t when the network is executed with initial data a and input

streams x. Note that these functions are total, by the network totality property.
Thus, the state of the network N is given by combining the module value functions V1; . . . ;Vm into the single network state

function
VN : Am � ½T! A�p � T! Am ð4:1aÞ
C

defined by
VNða; x; tÞ ¼ ðV1ða; x; tÞ; . . . ;Vmða; x; tÞÞ: ð4:1bÞ
U
N

This defines the state of N at each time cycle. (We will sometimes drop the ‘‘network superscript” ‘N’.)
The concurrent execution of the modules of N is modelled by the parallel evaluation of V1; . . . ;Vm. We now develop gen-

eral formulae for the computation of V1; . . . ;Vm and hence of VN .

4.4. SCA network equations

We define V1ða; x; tÞ; . . . ;Vmða; x; tÞ for a ¼ ða1; . . . ; amÞ 2 Am
; x ¼ ðx1; . . . ; xpÞ 2 ½T! A�p, and t ¼ 0;1;2; . . ., by simultaneous

recursion on t.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
Totality

Original text:
Inserted Text
Determinism Assumptions

Original text:
Inserted Text
-th

Original text:
Inserted Text
arbitray

Original text:
Inserted Text
booleans

Original text:
Inserted Text
boolean

Original text:
Inserted Text
.

458
459
461461

462

463

464
465
467467

468
469

471471
472

473

474

475

476

478478

479

481481

482

483

484

485

486

487

488
489
491491

492
493
495495

496

497

499499

500

502502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

10 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
Base case: Initialisation. For i ¼ 1; . . . ;m:
Please
curren
Viða; x;0Þ ¼ ai: ð4:2Þ
Recursion step: State transition. Each module i has a functional specification Fi : Aki ! A, where, if b1; . . . ; bki
arrive on i’s

input channels at time t then the value output by the module at time t þ 1 is Fiðb1; . . . ; bki
Þ. Let the SCA have wiring functions

a and b as described in Section 4.1. Then for i ¼ 1; . . . ;m and all t P 0
Viða; x; t þ 1Þ ¼ Fiðbi1; . . . ; biki
Þ; ð4:3aÞ
where for j ¼ 1; . . . ; ki
bij ¼
Vaði;jÞða; x; tÞ if bði; jÞ ¼ M;

xaði;jÞðtÞ if bði; jÞ ¼ S:

(
ð4:3bÞ
O
F

Remark 4.4.1. The Eqs. (4.2) and (4.3) together form a definition by simultaneous primitive recursion.

Remark 4.4.2. Stream transformationWe can rewrite the network state function V (4.1) as a stream transformation by
‘‘abstraction” or ‘‘currying”; i.e., define
 ObV : Am � ½T! A�p ! ½T! A�m; ð4:4aÞ
where
 RbVða; xÞðtÞ ¼ Vða; x; tÞ: ð4:4bÞ
PWe will reconsider these two forms, from a computational point of view, in Section 7.2.
D
4.5. Output specification

Note that the network state function VN gives the values output by every module in the network. In many cases we are
interested only in the values sent to the network’s sinks. When the network has q > 0 sinks with Iout ¼ f1; . . . ; qg we use the
function out : Iout ! I (Section 4.1). Now define the network output function
E

Vout : Am � ½T! A�p � T! Aq ð4:5aÞ
Tby
Voutða; x; tÞ ¼ ðVoutð1Þða; x; tÞ; . . . ;VoutðqÞða; x; tÞÞ; ð4:5bÞ
Cso that Voutða; x; tÞ is the vector of q values at the sinks of N at time t.
Note (cf. Remark 4.4.2) that we can also reformulate Vout as a stream transformation by abstraction:
EbVout : Am � ½T! A�p ! ½T! A�q;
where
 RbVoutða; xÞðtÞ ¼ Voutða; x; tÞ:
U
N

C
O

R4.6. Generalisation of the model

There are many fruitful generalisations of our mathematical model, defined by weakening or generalising some of the
conditions in our definition. We mention four here, of which the first two have already been studied, and the last two are
suitable for future investigation.

(i) Infinite SCAs. These consist of infinitely many modules, each of which has only finitely many input and output chan-
nels, but each output channel may branch infinitely, copying data to infinitely many modules. There are many inter-
esting examples, including infinite hardware systolic arrays [41,57] and infinite cellular automata. Infinite SCAs are
useful for modelling parameterised families of finite SCAs.

(ii) Non-unit delays. One can generalise the timing properties of SCAs by relaxing the unit delay assumption (Section 4.2).
Many interesting algorithms have this property. Note that the network totality and determinism properties still hold.
Generalisation of the theory to such a network requires course-of-values recursive functions, and course-of-values
inductive proofs [29], but is otherwise straightforward.

(iii) Partial algebras of data. This is a particularly interesting – and theoretically non-trivial – generalisation. Here we drop
the module totality assumption, and (more generally) the assumption that the algebra A is total. This is of practical
importance, in the case, for example, that A is an algebra of reals, that includes the operation of real division, and
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
(

Original text:
Inserted Text
).

Original text:
Inserted Text
—

Original text:
Inserted Text
—

518

519

520

521

522523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 11

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
the Boolean operations of equality and order. In order that these operations be continuous, we must make them partial,
as discussed in Example 3(b) and [64,68,69]. In such a framework, the module functions will also be partial, as will the
network state function. We will also have to work with partial streams. We discuss this further in Section 8.2(i).

(iv) Nondeterministic SCAs. This is a closely related to the previous generalisation. (The connection between partiality and
nondeterminism and continuity is discussed in [68].) Here we drop the Module Determinism Assumption (Section 4.2).
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

5. Examples of synchronous concurrent algorithms

Before developing our theory, and to illustrate the breadth of the concept of an SCA, we give, very briefly, five types of SCA,
to which our theory has been applied. For all these examples (and especially neural networks) correctness is treated poorly
in the existing literature. A number of examples are worked out in detail in [60].

5.1. Clocked digital systems

Here we have in mind electronic circuits made from Boolean logic, a global clock, and clocked storage elements such that
every closed signal path passes through at least one such storage element [44]. Useful references on the specification and
verification of such hardware systems are [6,8,38,34,28,49,56]. Case studies on modelling hardware with SCAs have been
made in connection with

(i) components: in particular, the modelling of fixed length buffers and RS flip-flops as SCAs over bit strings [75,29,11];
(ii) computers: cf. our work with Harman cited in Section 1.3; and

(iii) graphics processors: cf. our work with Eker [12–15].

5.2. Systolic arrays

This notion was developed by Kung and others to isolate a class of algorithms particularly well-suited to avoiding the von
Neumann bottleneck and to special-purpose implementation in VLSI circuits. As explained informally in [37], a systolic array
is a (synchronous, concurrent) network of processing elements with the following properties:

(i) the network comprises a small number of different types of simple processor;
(ii) the network data and control flows have a regular and modular structure;

(iii) the array is such that each piece of input data is used many times, and
(iv) the algorithm employs much parallelism through pipelining and multiprocessing.

As an example, the buffer mentioned in the previous subsection has all these properties. Further examples and discussion
can be found in [37,44,72,45,50,16,51,46,43]. We have applied our tools to the specification and verification of systolic arrays
of many types [59,39,30,29,41,47,48,57].

5.3. Neural networks

The notion of an (artificial) neural network is due to McCulloch and Pitts [42]. These networks were first defined in order to
provide a mathematical characterisation of logical aspects of activity levels in nervous systems in living organisms. Since then
they have become of interest to researchers in mathematics, physics and engineering sciences, artificial intelligence and cog-
nitive science. As witnessed by the many publications in this field, neurocomputation is a very active subject area [27,40,1].

Formalisation of the models as SCAs leads to clarification of the models’ operation and specification [32,61].

5.4. Cellular automata

The notion of a cellular automaton was invented by von Neumann [73] in order to study evolution and self-reproduction
in biological systems. Recently, many disparate applications of cellular automata have been discovered in mathematics,
physics, chemistry and biology [7,76,55,77]. In general a cellular automaton can be described as a finite or infinite two-
dimensional array of cells. Our tools are currently limited to algorithms with finitely many cells, so we can interpret finite
cellular automata as SCAs.

5.5. Coupled map lattices

A coupled-map lattice (or CML) is a dynamical system based on discrete space, discrete time and continuous state. It is a
generalisation of iterated map dynamical systems [10]. It can also be considered as a generalisation of a cellular automaton
(which has a discrete state). CMLs are surveyed in [9,35]. They can also be interpreted as SCAs [33,31].
Please cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
current algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
boolean

Original text:
Inserted Text
.

Original text:
Inserted Text
Arrays

Original text:
Inserted Text
Von

566

567

568

569

570

571

572

573

574

576576

577

578

579

580

582582

583
584

585

586

587

588

589

590

591

592

593

594

595

597597

598

600600

601

602

603

604

605

606

607

609609

610

611
612

613

614

615

616

617

618

619

620

621

12 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
6. Specifications and correctness

First, we define the concept of S-indexed sets and mappings.
Let S be a finite non-empty set. An S-indexed set A is a family A ¼ hAsjs 2 Si.
Given two S-indexed sets A ¼ hAsjs 2 Si and B ¼ hBsjs 2 Si, an S -indexed mapping from A to B is a family f ¼ hhfsjs 2 Si

where fs : As ! Bs for each s 2 S. In symbols we write f : A! B.

6.1. Syntax: terms and conditional equations

(a) TðRÞ is the SortðRÞ-indexed set of R-terms (denoted t; . . .), where the set TsðRÞ of such terms of sort s (denoted ts; . . .) is
defined (simultaneously over S) by
Please
curren
Fts ::¼ x
sjcjFðts1

1 ; . . . ; tsm
m Þ;

where xs is a variable of sort s; c is a constant symbol of sort s, and F is a R-function symbol of type s1 � � � � � sm !
sðm > 0Þ.
 O(b) EqðRÞ is the set of R-equations ðts

1 ¼ ts
2Þ between R-terms of the same R-sort. We also write equations as e; e0;

(d) CondEqðRÞ is the set of R-conditional equations
e1 ^ � � � ^ en ! e ðn P 0Þ:
P
R

O

6.2. Semantics: satisfaction

A R-conditional equational specification is a pair ðR; EÞ where E # CondEqðRÞ.
Let A be a R-algebra. The concepts:

(a) A satisfies the R-conditional equation e, written A � e, and
(b) A satisfies the conditional equational specification ðR; EÞ, written A � E, are defined in the standard way.
E
D6.3. Correctness of an SCA

We introduce the concept of relational correctness of an SCA.
Suppose that a computational task or behaviour is specified by a relation of the form
TR # Am � ½T! A�p � T� Aq ð6:1Þ
such that for each a 2 Am
; x 2 ½T! A�p, t 2T and y 2 Aq,
 CRða; x; t; yÞ
R
R

Emeans that y is acceptable as an output for an initial state a and input stream x at time t. We call R the specifying relation.
There are various ways of formulating correctness w.r.t. a specifying relation R, depending on how we treat initialisations

and inputs: We can consider a particular initialisation, or all initialisations from some subset of Am (possibly all of Am). Similarly,
we can consider a particular input stream, or all inputs from some subset of ½T! A�p (possibly all of ½T! A�p). To take a typical
(and useful) case:

Definition 6.3.1. Correctness for initialisations and inputs from some set For any sets P # Am of initialisations and
Q # ½T! A�p of inputs, the SCA is correct w.r.t. P;Q and R if
ð8a 2 PÞð8x 2 QÞð8t 2 TÞ Rða; x; t;Voutða; x; tÞÞ: ð6:2Þ
OHere the output value function Vout : Am � ½T! A�p � T! Aq (4.5) is a selection function for the relation R, relative to P and Q.
CNote that if we want to specify the behaviour of the whole state of the SCA, we can simply modify the above definition by
replacing Vout by V.
U
N7. Primitive recursive computability on stream algebras

7.1. Simultaneous primitive recursion on abstract algebras

In [62], we developed a theory of abstract computability on standard abstract many-sorted algebras. We formulated a gen-
eralised Church–Turing thesis, which identifies a certain class of functions (namely, ‘lPR’ or ‘While’ computable) with func-
tions algorithmically computable on such structures.

We also developed a theory of generalised primitive recursion over T-standard algebras A. These generalise Kleene’s prim-
itive recursion functions on N [36], and form a proper subclass of the class lPR.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
Terms

Original text:
Inserted Text
Satisfaction

Original text:
Inserted Text
∈

Original text:
Inserted Text
(

Original text:
Inserted Text
).

Original text:
Inserted Text
Church-Turing

Original text:
Inserted Text
‘’

622

623

624

626626

627
628

630630

631

633633

634

635

636

637

638

639

640

641
642
644644

645

646

647

649649

650

651

652

653

654

655

656

657
658
660660

661

663663

664

666666

667

668

669

670

671

673673

674

676676

677

678

679

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 13

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
Briefly, we define a class PRðAÞ of PR (primitive recursive) functions on A, generated by schemes for (i) the initial functions
and constants, i.e., the interpretations on A of the R-functions, (ii) projections, (iii) definition by cases, (iv) composition, and
(v) simultaneous primitive recursion, where the function
Please
curren
f : Am � ½T! A�p � T! Am
is defined by
fða; x;0Þ ¼ gða; xÞ
fða; x; t þ 1Þ ¼ hða; x; t; fða; x; tÞÞ

ð7:1Þ
with
g : Am � ½T! A�p ! Am
;

h : Am � ½T! A�p � T� Am ! Am
:

R
O

O
F

This is a simple recursion for an Am-valued function, equivalent to an m-fold simultaneous recursion defining m A-valued func-
tions. Note that the defining Eqs. (4.2) and (4.3) for the network value functions in Section 4.4 are a special case of this.

Note also that the class lPRðAÞ is formed from PRðAÞ by adding a scheme for the (constructive) least number operator.

Lemma 7.1.1. For any topological algebra A, all functions in PRðAÞ are continuous.

This is proved, in fact for all lPR functions, in [65].
We now consider a class of relations on algebras broader than primitive recursiveness.

Definition 7.1.2 (Equationally PR definable relations). A relation R # Au on an algebra A is equationally PR definable on
AðPR ¼ ðAÞÞ if there are PRðAÞ functions fR; gR : u! s for some R-sorts u; s such that for all a 2 Au
Pa 2 R() fRðaÞ ¼ gRðaÞ: ð7:2Þ
D
We call the r.h.s. of (7.2) a PR defining equation for R, and the pair ðfR; gRÞ PR defining functions for R.

Remark 7.1.3 (Comparison of PR and PR¼ computability). Note that PR¼ðAÞ is (in general) a strictly broader concept than
PRðAÞ. For on the one hand, any PRðAÞ relation R is also PR¼ðAÞ, since (if vR is the characteristic function of R)
a 2 R() vRðaÞ ¼ true
T
E

(a special case of (7.2)). But on the other hand, the range sort s (in Definition 7.1.2) need not be an equality sort (cf. Section
2.2), i.e., equality at sort s is not necessarily PR.
E
C7.2. Primitive recursion on stream algebras

Assume for simplicity (as stated in Section 4) that our T-standard R-algebra A contains (apart from B and T) only one
carrier A of data.

Consider now PR stream valued functions or stream transformers on A:
f : ½T! A�m � An ! ½T! A�: ð7:3Þ
R

It has been shown [63] that all PR stream transformers f of type as in (7.3) have the form
Rf ðu1; . . . ;um; a1; . . . ; anÞ ¼ uf0ðu1 ;...;um ;a1 ;...;anÞ
for some PR function
 Of0 : ½T! A�m� An ! T:
N
CIn other words, PR stream transformers are not ‘‘interesting”: they only return one of the input streams, the choice of which one

depending primitive recursively on the inputs.
We therefore consider a broader, more interesting class of stream transformers, namely the class kPRðAÞ formed from

PRðAÞ by adding a scheme for stream ðkÞ-abstraction. Note that a function f as in (7.3) will be in kPRðAÞ if its ‘‘cartesian” or
‘‘uncurried” form
�f : ½T! A�m� An � T! A
Uis in PRðAÞ, where
�f ðu; a; tÞ ¼ f ðu; aÞðtÞ:
Note also that we can define the class kPR¼ðAÞ of equational kPR definable relations on A, analogously to PR¼ðAÞ (Definition
7.1.2).

Now assume A, and hence A, are topological algebras.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
computability).

Original text:
Inserted Text
.

680

681

682

683

684

685

686

687

688

689

690

691
692

693

694

695

696

697

698

699

700

701

702

703
704

705

706

707
708
710710

711

712

713

714

715

716

717

718

719

720

721

722

723

724
725
727727

728

729

730

731
732

734734

735

736

737

14 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
Lemma 7.2.1. For f as in (7.3), f is continuous iff �f is continuous.

Hence, from Lemma 7.1.1:

Lemma 7.2.2. All functions in kPRðAÞ are continuous.

Corollary 7.2.3. Let A be Hausdorff T-standard algebra, and D a dense subalgebra of A. Let f and g be kPR functions on A. Then the
following are equivalent:

(i) f ¼ g on A
(ii) f ¼ g on D

(iii) f ¼ g on ðAÞreg
(iv) f ¼ g on Dreg.
 FProof. From Lemmas 3.4.1, 3.4.3 and 7.2.2. h
R
O

O7.3. Primitive recursiveness of SCA state function

Recall the module algebra AF, module stream algebra AF, module value functions V1; . . . ;Vm, network state function V and
network output function Vout. (Sections 4.3–4.5).

Theorem 1. For any SCA over a T-standard algebra A, with module algebra AF:

(a) The module value functions V1; . . . ;Vm, network state function V and network output function Vout are in PRðAFÞ.
(b) The abstracted forms bV and bVout are in kPRðAFÞ.
 PProof. The main step in (a) is to show that V is definable (uniquely) from the module functions by simultaneous primitive

recursion (Eqs. (4.2) and (4.3) as special cases of scheme (7.1)), using a simple inductive argument parallelling the PR def-
inition. h
E
D7.4. Computability of relational correctness specification

Recall the Definition 6.3.1 of correctness for a specifying relation R with initialisations and input streams from sets P # Am

and Q # ½T! A�p, respectively:
Please
curren
Tð8a 2 PÞð8x 2 QÞð8t 2 TÞ Rða; x; t;Voutða; x; tÞÞ: ð7:4Þ
C
O

R
R

E
CTheorem 2. For an SCA over a Hausdorff T-standard algebra A, with continuous module functions, and module algebra AF, suppose

(a) P;Q and R are kPR¼ on AF,
(b) AF has a dense computable subalgebra D.

Then we can effectively construct a computable algebra CV ;P;Q ;R with signature RV ;P;Q ;R that expands Dreg by functions, and
equations eP ; eQ ; eV ;R over RV ;P;Q ;R such that the following are equivalent:

(i) V is correct w.r.t P;Q and R, i.e., (7.4) holds;
(ii) CV ;P;Q ;R � eP ^ eQ ! eV ;R.

Consequently, correctness in the sense of ðiÞ can be effectively reduced to the validity of conditional equations in a computable
algebra and is co-recursively enumerable.

Proof. We prove ðiÞ) ðiiÞ. Consider the statement
a 2 P ^ x 2 Q ! Rða; x; t;Voutða; x; tÞÞ: ð7:5Þ
U
NLet ðfP ; gPÞ; ðfQ ; gQ Þ and ðfR; gRÞ be kPR defining functions for the sets P;Q and R respectively. By assumption and Theorem 1,

these functions, as well as V, are all kPR on AF. By assumption (i), (7.5) holds on AF, and therefore it holds on Dreg, by Corollary
7.2.3 (with A replaced by AF). Since D is a computable algebra, so is Dreg, by Lemma 3.5.4, with effective presentation ða;XÞ
say (recall Section 3.5). Now expand Dreg to the algebra
CV ;P;Q ;R¼df ðDreg; V; fP ; gP ; fQ ; gQ ; fR; gRÞ ð7:6Þ
with signature RV ;P;Q ;R. Since the seven functions shown in (7.6) are all kPR over Dreg, they are ‘‘a-computable” on Dreg. (This
follows from the soundness theorem for abstract computability [68]). Hence, CV ;P;Q ;R is also a computable algebra. Moreover,
(7.5) has the form of a conditional equation eP ^ eQ ! eV ;R over CV ;P;Q ;R. Hence ðiiÞ follows. h
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
(4.2),

Original text:
Inserted Text
,

Original text:
Inserted Text
“-computable”

Original text:
Inserted Text
Moreover

738

739

740

741

742

744744

745

747747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

781781

782

783

784
785

787787

788

789

790

791

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 15

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
That the correctness problem is co-r.e. follows from the a-computability of the functions noted above, together with the
decidability of �a.

Example 7.4.1. Let A be the T-standard topological algebra RT (Example 2.3.4(b)). A has a dense computable subalgebra
D ¼ QT consisting of the rationals Q with the same signature as A. As a very simple example of a specifying relation that is
kPR¼ over AF (in fact, PR¼ over A), we could take
Please
curren
Rða; x1; x2; t; yÞ () x1ðtÞ2 þ x2ðtÞ2 ¼ y2;
where x1 and x2 are input stream variables and y is an output variable. A more interesting example would be something like
R0ða; x1; x2; t; yÞ () ð0 < y2Þ ^ ðy2 < x1ðtÞ2 þ x2ðtÞ2Þ;
C
O

R
R

E
C

T
E
D

P
R

O
O

F

i.e., a Boolean combination of equalities and inequalities between kPR terms.
The problem here is that equality and order, as total predicates on R, are not computable [64,68,69]. In this paper, we have

solved this problem for equality by using the computable subalgebra QT of RT , together with the concept of equational PR
definability (Definition 7.1.2).

To handle ‘<’, we can proceed similarly, extending the model of PR computability on stream algebras PRðAÞ to a model
PR¼;<ðAÞ, in which ‘<’, as well as ‘=’, is allowed as an extra basic predicate. And so on, for other non-computable predicates
used in specifications.

We could ask if condition (ii) in Theorem 2 could be replaced by a statement that the conditional equation is a valid con-
sequence of a certain set of axioms, i.e., a completeness result. However the correctness problem for conditional equations in
stream algebras is complete P0

1 [4] and so completeness fails.
In this direction, however, we can prove the following, using results of Bergstra and Tucker on initial algebra semantics

[2–5].

Theorem 3. With the hypotheses of Theorem 2, we can effectively construct a finite equational specification ðRV ;P;Q ;R; EV ;P;Q ;RÞ and
equations eP ; eQ ; eV ;R over RV ;P;Q ;R such that the following are equivalent:

(i) V is correct w.r.t P;Q and R, i.e., (7.4) holds;
(ii) TðRV ;P;Q ;R; EV ;P;Q ;RÞ � eP ^ eQ ! eV ;R,

where TðRV ;P;Q ;R; EV ;P;Q ;RÞ is the RV ;P;Q ;R-term model generated by EV ;P;Q ;R.

Other work on the use of higher order equational methods in hardware verification is presented in [47,48,57].

8. Concluding remarks

Since the concept of an SCA is quite general, our methods and results provide a unified model for the various classes of
algorithms, architectures and physical models mentioned in the introduction, as well as for several others.

We can also construct a unified model for SCA networks and analog networks. This is done in [71], and summarised in the
following subsection.

8.1. Comparison with continuous-time analog networks

In [70] we develop a theory of analog networks. There are some striking resemblances – and differences – between that
theory and the theory of SCAs developed here.

Both models have global clocks. Whereas the SCA model has discrete time, modelled by the naturals, the analog model has
continuous time, modelled by the set T ¼ RP0 of non-negative reals. Now streams on A are taken to be continuous functions
from RP0 to A, and the set of all such streams is denoted C½T;A�. Nevertheless, there are formal resemblances in the networks
of modules: compare Fig. 1 in this paper and Fig. 2 in [70]. The main difference is this (writing Fi for the module function for
Mi). In SCAs (cf. Fig. 1) if the input channels to module Mi carry streams ui1 ; . . . ;uiki

and the output channel carries the stream
ui, then for all t 2 T
Fiðui1 ðtÞ; . . . ;uiki
ðtÞÞ ¼ uiðt þ 1Þ; ð8:1Þ
Ni.e., Fi acts on input data u1ðtÞ; . . . ;uki

ðtÞ to produce an output datum uiðt þ 1Þ.
In analog networks, by contrast, the module functions (which we now write as bFi) act on input streams to produce output

stream:
 UbFiðui1 ; . . . ;uiki
Þ ¼ ui: ð8:2Þ
The main consequence of this is that whereas with SCAs, it is very simple to find (or construct) the network state function, by
a simultaneous primitive recursion (Section 4.4); for analog networks a much more sophisticated approach is required. To
make any progress, we must first assume that Fi is causal, where F : C½T;A�k ! C½T;A� is said to be causal if for all u; v 2
C½T;A�k and t > 0,
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
).

Original text:
Inserted Text
boolean

Original text:
Inserted Text
paper

Original text:
Inserted Text
,

Original text:
Inserted Text
—

Original text:
Inserted Text
—

Original text:
Inserted Text
Figure

Original text:
Inserted Text
).

Original text:
Inserted Text
,

793793

794

795

796797

799799

800

801

802

803

804

805

806

807

808

809

810

811

812

813
814

815

816

817

818

819

820

821

822

823

824

825

826

827

828
829

830

831

832

833

834

835

836

837

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

16 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS

Please
curren
u�½0;tÞ ¼ v�½0;tÞ) FðuÞðtÞ ¼ FðvÞðtÞ:
In such a case we can find the network state function as the fixed point of a contracting functional [70].
In order to provide a unified model for these two types of networks, we first define, for an SCA, an ‘‘abstracted” version of

the network state function
bFiðui1 ; . . . ;uiki
ÞðtÞ ¼df

ai if t ¼ 0;
Fiðui1 ðt � 1Þ; . . . ;uiki

ðt � 1ÞÞ if t > 0;

(
ð8:3Þ
R
O

O
F

(where ai is the output of Fi at t ¼ 0) to mimic the analog stream transformer (8.2).
Note now that in the case of SCAs,

(1) streams on T are automatically continuous, since T is a discrete set;
(2) from (8.3) it can easily be seen that the module functions, and hence the network state function V (or bV; cf. 4.4), are

automatically causal – something that can by no means be assumed for analog networks.These points explain the
comparative simplicity of construction of network state functions for SCAs, compared to analog networks, as noted
above. But note two further points:

(3) The SCA state function V can also be constructed as the fixed point of a contracting functional, thus providing a unified
model for these two types of networks. Details are given in [71].

(4) The construction in (3) is along the lines of Kleene’s proof of his first recursion theorem [36, Thm XXVI]. However the
fixed point in Kleene’s construction is obtained as a limit of a sequence of partial streams, starting with the empty
stream, whereas the fixed point in [71] is obtained as a limit of a sequence of total streams, starting with an arbitrary
stream. (At stage n, the approximations by these two methods give identical values at the first n places.) Thus, Kleene’s
framework involves partial functions, unlike the framework here and in [70,71]. See, however, Section 8.2(1) below.
C
T
E
D

P8.2. Proposed generalisations of the theory

(1) Partial module functions. We want to investigate the theory of some of the generalisations of SCAs listed in Section 4.6,
particularly the last two, where, from considerations of continuity, we may have to drop the module totality and
determinism assumptions, and (hence also) the unit delay assumption, (Section 4.2), and deal with models based
on partial data algebras [68], with partial (and nondeterministic) module and network functions, and partial (and non-
deterministic) streams. We will also have to replace our global clock model with a system of local clocks. We conjec-
ture that this will be equivalent to the global clock model, with the totality, determinism and unit delay assumptions,
in the special case that the algebra A, and the function modules, are total.

(2) Specifiability based on lPR (semi-)computability. In Section 7, we investigated computability of specifications based on
PRðAÞ computable relations. It would be worth investigating the same problem for lPRðA) computable – or semicom-
putable – relations. In this way, we could get non-total relational specifications, which might fit in well with a partial
function/ partial stream model (see point (1) above).
U
N

C
O

R
R

EAcknowledgements

We thank the following colleagues for many useful and stimulating discussions on the subject: J.A. Bergstra, B.R.J. McCon-
nell, M.J. Poole, R. Stephens, W.B. Yates, S.M. Eker, K. Hobley, A.R. Martin, and A.V. Holden. We also thank two anonymous
referees for helpful comments. The research of the second and third authors was supported in part by a grant from EPSRC
(Engineering and Physical Sciences Research Council, UK). The research of the third author was supported in part by a grant
from NSERC (Natural Sciences and Engineering Research Council, Canada).

References

[1] J. Anderson, E. Rosenfeld (Eds.), Neurocomputing: Foundations of Research, MIT Press, 1988.
[2] J. Bergstra, J.V. Tucker, A characterisation of computable data types by means of a finite equational specification method, in: J. de Bakker, J. van

Leeuwen (Eds.), Seventh International Colloquium on Automata, Languages and Programming, Noordwijkerhout, Lecture Notes in Computer Science,
vol. 85, Springer-Verlag, The Netherlands, July 1980, pp. 76–90.

[3] J. Bergstra, J.V. Tucker, The completeness of the algebraic specification methods for data types, Information and Control 54 (1982) 186–200.
[4] J. Bergstra, J.V. Tucker, Algebraic specifications of computable and semicomputable data types, Theoretical Computer Science 50 (1987) 137–181.
[5] J. Bergstra, J.V. Tucker, Equational specifications, complete term rewriting systems and computable and semicomputable algebras, Technical Report CS-

20-92, Department of Computer Science, Swansea University, Swansea, Wales, 1992.
[6] G. Birtwhistle, P. Subrahmanyam (Eds.), VLSI Specification, Verification and Synthesis, Kluwer, 1988.
[7] C. Choffrut (Ed.), Automata networks: LITP Spring School on Theoretical Computer Science, Lecture Notes in Computer Science, vol. 316, Springer-

Verlag, 1986.
[8] L. Claesen (Ed.), Proceedings of the IMEC-IFIP Workshop on Applied Formal Methods for Correct VLSI Design, Elsevier, 1989.
[9] J. Crutchfield, K. Kaneko, Phenomenology of spatio-temporal chaos, in: H. Bai-lin (Ed.), Directions in Chaos, University of Illinois Press, 1987.

[10] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989.
[11] A. Dew, A. King, J.V. Tucker, A. Williams, The prioritiser experiment: estimation and measurement of computation time in VLSI, in: K. McEvoy, J.V.

Tucker (Eds.), Theoretical Foundations of VLSI Design, Cambridge Tracts in Theoretical Computer Science, vol. 10, Cambridge University Press, 1990, pp.
347–401.
cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
t algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

Original text:
Inserted Text
—

Original text:
Inserted Text
—

Original text:
Inserted Text
—

Original text:
Inserted Text
way

Original text:
Inserted Text
function /

Original text:
Inserted Text
Acknowledgement

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx 17

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

[12] S. Eker, Foundations for the design of rasterisation algorithms and architectures, Ph.D. Thesis, School of Computer Studies, University of Leeds, 1990.
[13] S. Eker, V. Stavridou, J.V. Tucker, Verification of synchronous concurrent algorithms using obj3*. A case study of the pixel planes architecture, in: G.

Jones, M. Sheeran (Eds.), Designing Correct Circuits, Springer-Verlag, 1991, pp. 231–252.
[14] S. Eker, J.V. Tucker, Specification, derivation and verification of concurrent line drawing algorithms and architectures, in: R. Earnshaw (Ed.), Theoretical

Foundations of Computer Graphics and CAD, Springer-Verlag, 1988, pp. 449–516.
[15] S. Eker, J.V. Tucker, Specification and verification of synchronous concurrent algorithms: a case study of the pixel planes architecture, in: P. Dew, R.

Earnshaw, T. Heywood (Eds.), Parallel Processing for Computer Vision and Display, Addison-Wesley, 1989, pp. 16–49.
[16] D. Evans (Ed.), Systolic Algorithms, Gordon and Breach, 1992.
[17] A. Fox, N. Harman, Algebraic models of correctness for microprocessors, Formal Aspects of Computer Science 12 (2000) 298–312.
[18] A. Fox, N. Harman, Algebraic models of correctness for abstract pipelines, Journal of Logic and Algebraic Programming 57 (2003) 71–107.
[19] N. Harman, Formal specifications for digital systems, Ph.D. Thesis, School of Computer Studies, University of Leeds, 1989.
[20] N. Harman, Algebraic models of behaviour and correctness of smt and cmt processors, Journal of Logic and Algebraic Programming 74 (2007) 32–56.
[21] N. Harman, J.V. Tucker, Clocks, retimings, and the formal specification of a UART, in: G. Milne (Ed.), The Fusion of Hardware Design and Verification

(Proceedings of the IFIP Working Group 10.2 Working Conference), North-Holland, 1988, pp. 375–396.
[22] N. Harman, J.V. Tucker, Formal specifications and the design of verifiable computers, in: Proceedings of 1988 UK IT Conference, Held Under the

Auspices of the Information Engineering Directorate of the Department of Trade and Industry, Institute of Electrical Engineers, 1988, pp. 500–503.
[23] N. Harman, J.V. Tucker, The formal specification of a digital correlator, I: user specification process, in: K. McEvoy, J.V. Tucker (Eds.), Theoretical

Foundations of VLSI Design, Cambridge University Press, 1990, pp. 161–262.
[24] N. Harman, J.V. Tucker, Consistent refinements of specifications for digital systems, in: P. Prinetto (Ed.), Correct Hardware Design Methodologies

(Proceedings ESPRIT BRA 3216 Workshop), Elsevier, 1991, pp. 281–304.
[25] N. Harman, J.V. Tucker, Algebraic methods and the correctness of microprocessors, in: G. Milne, L. Pierre (Eds.), Correct Hardware Design and

Verification Methods, Lecture Notes in Computer Science, vol. 683, Springer-Verlag, 1993, pp. 92–108.
[26] N. Harman, J.V. Tucker, Algebraic models of microprocessors: architecture and organisation, Acta Informatica 33 (1996) 421–456.
[27] R. Hecht-Nielson, Neurocomputation, Addison-Wesley, 1990.
[28] C. Hoare, M. Gordon (Eds.), Mechanical Reasoning and Hardware Design, Prentice-Hall, 1992.
[29] K. Hobley, The specification and verification of synchronous concurrent algorithms, Ph.D. Thesis, School of Computer Studies, University of Leeds, 1990.
[30] K. Hobley, B. Thompson, J.V. Tucker, Specification and verification of synchronous concurrent algorithms: a case study of a convoluted algorithm, in: G.

Milne (Ed.), The Fusion of Hardware Design and Verification (Proceedings of IFIP Working Group 10.2 Working Conference), North-Holland, 1988, pp.
347–374.

[31] A. Holden, M. Poole, J.V. Tucker, H. Zhang, Coupled map lattices as computational systems, Chaos 2 (1992) 367–376.
[32] A. Holden, B. Thompson, J.V. Tucker, The computational structure of neural systems, in: A. Holden, V. Kryukov (Eds.), Neurocomputers and Attention I:

Neurobiology, Synchronisation and Chaos, Manchester University Press, 1990, pp. 223–240.
[33] A. Holden, B. Thompson, J.V. Tucker, Can excitable media be considered as computational systems?, Physica D 49 (1991) 240–246
[34] G. Jones, M. Sheeran (Eds.), Designing Correct Circuits, Springer-Verlag, 1991.
[35] K. Kaneko (Ed.), Coupled Map Lattices: Theory and Applications, John Wiley & Sons, 1993.
[36] S. Kleene, Introduction to Metamathematics, North-Holland, 1952.
[37] H.-T. Kung, Why systolic architectures?, Computer 15 (1982) 37–47
[38] A. Leeser, G. Brown (Eds.), Hardware Specification, Verification and Synthesis: Mathematical Aspects, Lecture Notes in Computer Science, vol. 408,

Springer-Verlag, 1989.
[39] A. Martin, J.V. Tucker, The concurrent assignment representation of synchronous systems, Parallel Computing 9 (1988) 227–256.
[40] J. McClelland, D. Rumelhart, Parallel Distributed Processing, Bradford Books, vol. 1, MIT Press, 1986.
[41] B. McConnell, J.V. Tucker, Infinite synchronous concurrent algorithms: the specification and verification of a hardware stack, in: H. Schwichtenberg

(Ed.), Logic and Algebra for Specification, Springer-Verlag, 1993.
[42] W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, Series 2 (5) (1942) 115–133.
[43] K. McEvoy, J.V. Tucker (Eds.), Theoretical Foundations of VLSI Design, Cambridge Tracts in Theoretical Computer Science, vol. 10, Cambridge University

Press, 1990.
[44] C. Mead, L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.
[45] A. Megson, An Introduction to Systolic Algorithm Design, Oxford University Press, 1992.
[46] A. Megson (Ed.), Transformational Approaches to Systolic Design, Chapman and Hall, 1993.
[47] K. Meinke, L. Steggles, Specification and verification in higher order algebra: a case study of convolution, in: J. Heering, K. Meinke, B. Möller, T. Nipkow

(Eds.), Higher Order Algebra, Logic and Term Rewriting, Lecture Notes in Computer Science, vol. 816, Springer-Verlag, 1994, pp. 189–222.
[48] K. Meinke, L. Steggles, Correctness of dataflow and systolic algorithms using algebras of streams, Acta Informatica 38 (2001) 45–88.
[49] G. Milne, L. Pierre, in: Correct Hardware Design and Verification Methods, Lecture Notes in Computer Science, vol. 683, Springer-Verlag, 1993.
[50] L. Moore, Systolic Arrays, Oxford University Press, 1988.
[51] N. Petkov, Systolic Parallel Processing, Elsevier, 1993.
[52] M. Poole, J.V. Tucker, A. Holden, Hierarchies of spatially extended systems and synchronous concurrent algorithms, in: B. Möller, J.V. Tucker (Eds.),

Prospects for hardware foundations, Lecture Notes in Computer Science, vol. 1546, Springer-Verlag, 1998, pp. 184–235.
[53] M. Poole, J.V. Tucker, A. Holden, Hierarchical reconstructions of cardiac tissue, Chaos, Solitons & Fractals 13 (2002) 1581–1612.
[54] M. Pour-El, J. Richards, Computability in Analysis and Physics, Springer-Verlag, 1989.
[55] F.F. Soulié, Y. Robert, M. Tchuente (Eds.), Automata Networks in Computer Science, Manchester University Press, 1986.
[56] V. Stavridou, in: Formal Specifications for Digital Design, Cambridge Tracts in Theoretical Computer Science, vol. 37, Cambridge University Press, 1993.
[57] L. Steggles, Verifying an infinite systolic algorithm using third-order equational methods, Journal of Logic and Algebraic Programming 69 (2006) 75–

92.
[58] V. Stoltenberg-Hansen, J.V. Tucker, Effective algebras, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.), Handbook of Logic in Computer Science, vol. 4,

Oxford University Press, 1995, pp. 357–526.
[59] B. Thompson, A mathematical theory of synchronous concurrent algorithms, Ph.D. Thesis, School of Computer Studies, University of Leeds, 1987.
[60] B. Thompson, J.V. Tucker, Algebraic specification of synchronous concurrent algorithms and architectures (Revised), Research Report 9-91, Department

of Computer Science, Swansea University, Swansea, Wales, 1991.
[61] B. Thompson, J.V. Tucker, W. Yates, Algebraic specification of neural networks and correctness, Technical Report, Department of Computer Science,

Swansea University, Swansea, Wales, 1993.
[62] J.V. Tucker, J.I. Zucker, in: Program Correctness over Abstract Data Types, with Error-State Semantics, CWI Monographs, vol. 6, North-Holland, 1988.
[63] J.V. Tucker, J.I. Zucker, Computable functions on stream algebras, in: H. Schwichtenberg (Ed.), Proof and Computation: NATO Advanced Study Institute

International Summer School at Marktoberdorf, 1993, Springer-Verlag, 1994, pp. 341–382.
[64] J.V. Tucker, J.I. Zucker, Computation by ‘while’ programs on topological partial algebras, Theoretical Computer Science 219 (1999) 379–420.
[65] J.V. Tucker, J.I. Zucker, Computable functions and semicomputable sets on many-sorted algebras, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.),

Handbook of Logic in Computer Science, vol. 5, Oxford University Press, 2000, pp. 317–523.
[66] J.V. Tucker, J.I. Zucker, Abstract computability and algebraic specification, ACM Transactions on Computational Logic 3 (2002) 279–333.
[67] J.V. Tucker, J.I. Zucker, Infinitary initial algebra specifications for stream algebras, in: W. Sieg, R. Sommer, C. Talcott (Eds.), Reflections on the

Foundations of Mathematics: Essays in honor of Solomon Feferman, Lecture Notes in Logic, Association for Symbolic Logic, vol. 15, 2002, pp. 234–256.
Please cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
current algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

934
935
936
937
938 Q1
939
940
941
942
943
944
945

946

18 B.C. Thompson et al. / Applied Mathematics and Computation xxx (2009) xxx–xxx

AMC 14076 No. of Pages 18, Model 3G

5 May 2009 Disk Used
ARTICLE IN PRESS
[68] J.V. Tucker, J.I. Zucker, Abstract versus concrete computation on metric partial algebras, ACM Transactions on Computational Logic 5 (2004) 611–668.
[69] J.V. Tucker, J.I. Zucker, Computable total functions, algebraic specifications and dynamical systems, Journal of Logic and Algebraic Programming 62

(2005) 71–108.
[70] J.V. Tucker, J.I. Zucker, Computability of analog networks, Theoretical Computer Science 371 (2007) 115–146.
[71] J.V. Tucker, J.I. Zucker, Computation on algebras of continuous functions, in preparation.
[72] J. Ullman, Computational Aspects of VLSI, Addison-Wesley, 1984.
[73] J. von Neumann, Theory of self-reproducing automata, in: A. Burks (Ed.), Papers of John von Neumann on Computing and Computing Theory,

University of Illinois Press, 1966.
[74] K. Weihrauch, Computable Analysis: An Introduction, Springer-Verlag, 2000.
[75] A. Williams, Theoretical and empirical studies in vlsi complexity theory, Ph.D. Thesis, School of Computer Studies, University of Leeds, 1989.
[76] S. Wolfram (Ed.), Theory and Applications of Cellular Automata, World Scientific, 1986.
[77] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

Please cite this article in press as: B.C. Thompson et al., Unifying computers and dynamical systems using the theory of synchronous con-
current algorithms, Appl. Math. Comput. (2009), doi:10.1016/j.amc.2009.04.058

	Unifying computers and dynamical systems using the theory of synchronous concurrent algorithms
	Introduction
	The concept
	The theory
	Origins

	Topological algebras
	Basic algebraic definitions
	Adding Booleans: standard signatures and algebras
	Adding the naturals: T-standard signatures and algebras
	Metric algebra

	Stream algebras; Computable algebras
	Adding streams to algebras: algebras \overline{A} of signature \overline{\iSigma}
	Expanding topological algebras to stream algebras
	Regular streams
	Dense regular subalgebras
	Computable algebras; Computable stream algebras

	Synchronous concurrent algorithms
	Introduction to SCAs
	Informal explanation of operation
	Module totality and determinism assumptions

	Algebraic formalisation
	SCA network equations
	Output specification
	Generalisation of the model

	Examples of synchronous concurrent algorithms
	Clocked digital systems
	Systolic arrays
	Neural networks
	Cellular automata
	Coupled map lattices

	Specifications and correctness
	Syntax: terms and conditional equations
	Semantics: satisfaction
	Correctness of an SCA

	Primitive recursive computability on stream algebras
	Simultaneous primitive recursion on abstract algebras
	Primitive recursion on stream algebras
	Primitive recursiveness of SCA state function
	Computability of relational correctness specification

	Concluding remarks
	Comparison with continuous-time analog networks
	Proposed generalisations of the theory

	Acknowledgements
	References

