View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

Error-Tolerant Version Space Algebra -

Eugene R. Creswick
Stottler Henke Associates, Inc.
1107 NE 45th, Suite 310, Seattle, WA, USA
rcreswick @stottlerhenke.com

ABSTRACT

Application customization has been extensively researched
in the field of Programming by Demonstration (PBD), and
Version Space Algebra has proven itself to be a viable means

of quickly learning precise action sequences from user demon-

strations. However, this technique is not capable of han-
dling user error in domains with actions that depend on pa-
rameters that accept myriad values. Activities such as im-
age, audio and video editing require user actions that are
difficult for users to precisely replicate in different circum-
stances. Demonstrations that are off by a single pixel or a
split-second cause traditional composite Version Spaces to
collapse.

We present a method of incorporating error tolerance into
Version Space algebra. This approach, termed Error-Tolerant
Version Spaces, adapts Version Space Algebra to domains
where the tactile capabilities of the user have a much greater
chance of prematurely collapsing the hypothesis space that is
being learned. The resulting framework is capable of quickly
learning in domains where perfectly consistent user input
can not be expected. We have successfully applied our tech-
nique in the domain of image redaction, allowing our users
to quickly specify redactions that can be reliably applied to
many images without the entry of explicit parameters.

Author Keywords
Smart Environments, Error Tolerance, Version Spaces, Pro-
gramming by Demonstration

ACM Classification Keywords
D.2.2 Design Tools and Techniques: User Interfaces; H.1.2
Models and principles: User/Machine Systems

General Terms
Algorithms, Experimentation, Human Factors

*This work was supported by the Air Force Research Labora-
tory’s Information Directorate (AFRL/RI), Rome, NY, under con-
tract FA8750-09-C-0099.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1UI'10, February 7-10, 2010, Hong Kong, China.

Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

Aaron M. Novstrup
Stottler Henke Associates, Inc.

1107 NE 45th, Suite 310, Seattle, WA, USA

anovstrup @stottlerhenke.com

INTRODUCTION

The field of Programming by Demonstration (PBD) endeav-
ors to enable non-programmers to augment computer inter-
faces by teaching autonomous agents to perform complex
actions that have been demonstrated by users. In its simplest
form, programming by demonstration exists in rote record-
ing and playback features in many different environments.
Microsoft Office’s macro recorder, Emacs macros, and myr-
iad other applications provide recording and playback fea-
tures that watch a carefully-crafted sequence of user actions
and then allow that precise sequence to be repeated at a later
time. This approach is definitely of value; however, this form
of rote learning does not account for the context of the user
actions, nor does it generalize to new circumstances. There-
fore, it is possible to do a great deal of damage with recorded
macros if they are not created with great care. PBD aims to
mitigate this risk by learning “programs” that can run ro-
bustly in new execution contexts by generalizing from mul-
tiple demonstrations [2, 5].

Many approaches have been proposed for different forms
of PBD—we focus on one technique in particular: Version
Space Algebra [3].

VERSION SPACE ALGEBRA

Version Space Algebra maintains a set of all possible hy-
potheses for a given problem domain. These hypotheses are
represented in a decomposed form, spread across a hierarchy
of version spaces. “Leaf” version spaces are generally triv-
ially simple, consisting of hypotheses about singular values
(such as integers, ratios, or strings). These axiomatic ver-
sion spaces are combined to create more complex composite
version spaces by using the following operations:

Union A union of version spaces contains the full set of all
valid hypotheses in each of the component version spaces.

Join A join of version spaces contains the cross-product of
the valid hypotheses in the component version spaces.

Transform Transforms are used to convert the input and
output types of version spaces to match those of other
unioned version spaces, or to provide semantics to the tu-
ples that result from a join operation.

The complete description of these operators is out of scope
for this paper. Such a description can be found in Tessa Lau’s
seminal work [3].

https://core.ac.uk/display/357233431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning is achieved by training the top-level composite ver-
sion space on a demonstrated (input, output) pair, where the
input contains the context of the demonstration, and the out-
put is the desired output state. The top-level version space
decomposes the example into sub-input and sub-outputs as
necessary, and trains its composite version spaces on the de-
composed inputs and outputs. This process continues to the
leaves, where the axiomatic version spaces are either nar-
rowed (if the new example is consistent, but different from
past examples), collapsed (if the new example is not consis-
tent with past examples) or unchanged (if the new example
exactly matches past examples). A version space collapse
indicates that a hypothesis was discarded and that collapse is
propagated up the version space hierarchy, possibly causing
other composite version spaces to collapse as well, if they no
longer contain valid hypotheses. Lau et. al have shown that
this hierarchical structure enables extremely fast learning. In
one case, they demonstrated the ability to learn text editing
tasks in as little as 1-2 demonstrations [4].

Version Space Algebra has one Achilles’ heel that prevents
this technique from being applied to many domains: user
error during demonstrations can cause version spaces to col-
lapse prematurely. For example, consider the task of draw-
ing rectangles on images of various sizes. This task is partic-
ularly important in the area of information redaction. Draw-
ing subsequent rectangles to redact similar content on a se-
ries of images at varying resolutions is both time consuming
and difficult to do consistently. A user can easily specify the
first example by manually dragging a selection tool to spec-
ify a rectangular region. The first example will narrow the
set of possibilities significantly, but not sufficiently to learn
ausable “program” for drawing rectangles. At least one sub-
sequent example must be provided in a different context. In
this domain, that means that the user must provide a consis-
tent example on an image of a different size. To do so, the
user must draw precisely the same rectangle on a new im-
age. This is extremely difficult to do reliably in all but the
simplest cases. Errors of one pixel are sufficient to cause the
version space to collapse prematurely, resulting in no benefit
at all.

In this paper we present an approach to Version Space Al-
gebra that is tolerant of these types of user error. We start
by discussing the limited related work in this area, then we
present our initial approach to error tolerant version space
algebra, we briefly discuss our specific use cases, and finally
we conclude and discuss our goals for subsequent research.

RELATED WORK

User demonstration error can occur in any programming by
demonstration domain; however, different approaches are
necessary for different domains. Chen and Weld developed
CHINLE, a learning system that incorporates techniques for
handling errors in demonstrations within widget-based in-
terfaces [1]. CHINLE allows users to detect and fix errors
during training by providing the user with a view of the
sequence of demonstrations. This view allows the user to
retract or correct incorrect demonstrations. This approach
works well when the user can readily identify these incor-

rect demonstrations, but that is not always the case. We are
concerned with demonstration errors that are the result of
tactile difficulty in precisely specifying an action. In such a
situation, it is unlikely that the user will be able to identify
an incorrect example from a list of recorded demonstrations.

Numerous PBD techniques have focused on reducing the er-
ror of inference engines. Opsis [6] presents users with the
choice to create new examples based on old examples, but
no generalization is done at all. Rather, “imitation” is used
to directly generate programs from user input. Peridot [7, 8]
helps users generate interface widgets, including shapes of
various sizes and purposes. Peridot uses inferred graphical
constraints to allow sloppier user actions, but this is greatly
helped because Peridot only needs to deal with the relation-
ships that are typical in user interfaces. In contrast, Error-
Tolerant Version Spaces have no such restrictions.

ERROR-TOLERANT VERSION SPACE ALGEBRA

We focus on the domain of image manipulations, and par-
ticularly drawing or selecting shapes on an image. This
task (shape drawing) arises any time a user needs to spec-
ify a selection area, perform a crop, resize, or place an im-
age or other shape within an existing image repeatedly in a
predictable way, such as when redacting content. This ap-
proach is also applicable to any task where the set of valid
user inputs is very high and the parameters to user actions
are ordered—such as pixel locations or color selection. In
our sample domain the set of inputs is represented by com-
binations of pixel locations with respect to the loaded image
dimensions. Other example use cases include adjusting vol-
ume controls, specifying temporal coordinates in video or
audio editing, and any application that involves input mech-
anisms that acquire ordered inputs. The rest of this paper
focuses on the task of training an agent to redact rectangular
regions of a given input image. To further simplify the text,
we only consider selections in one dimension'.

Error-Tolerant Version Spaces are grounded on the idea that
each demonstration is based on a single true hypothesis but
the demonstrated values may be perturbed from the true hy-
pothesis by a certain error for the given context of the ex-
ample. Therefore, error-tolerant version spaces narrow the
set of valid hypotheses more conservatively than Lau et. al’s
Version Spaces [3]. This is accomplished by the addition of
two version space functions:

similar similar(D, H) encodes the assumption that for some
distance metric d, d(D, H) < ¢ for any demonstration
D, a true hypothesis H, and error tolerance €. If d < ¢
is true, then similar(D, H) returns true. The purpose
of similar is to conservatively narrow the set of valid
hypotheses—during training—to the intersection of those
hypotheses that are similar to the user’s demonstrations.

filter the filter function transforms a set of hypotheses into
a (generally smaller, or unit) set of values that represent
the most likely valid hypotheses when a version space is

"Two-dimensional selections are simply a combination of two one-
dimensional selections.

Region1DVS

>4 -Join
D> U - Union
SizeVSs LocationVS
U U
IntvVs RatioVS OffsetVS OffsetVS OffsetVS

SizeVS /SizeVS Sizeéls\izeVS SizeVS\SizeVS

SizeVS SizeVS SizeVS

Figure 1. Version Space for one-dimensional regions. IntVS and Ra-
tioVS are axiomatic version spaces, the repeated SizeVS instances have
been elided for clarity.

evaluated on a real input. We expect that filter will often
either be the identity function (in which case no filtering
is done) or it will be a strict aggregator (for example, to
select the most conservative of, or the average of the in-
coming hypotheses).

Figure 1 shows a simple version space for learning one-
dimensional regions. Regions may have a fixed size or a size
relative to the size of the image, and they may be located ei-
ther a fixed or relative offset from the front (left/top) edge of
the image, the back (right/bottom) edge of the image, or the
center of the image. The region may be anchored to the lo-
cation based on the front (left/top) edge, back (right/bottom)
edge, or center of the region. This version space is made
error tolerant by using a definition of similar to narrow the
hypotheses spaces of each of the axiomatic version spaces
(IntV'S and RatioV'S). These particular axiomatic ver-
sion spaces typically only exist in one of three states: (a)
Any value, (b) a specific value, or (c) nothing (collapsed).
The “Error-Tolerant” versions contain a boundary-set repre-
sentable region that is determined by intersecting the regions
around each example based on the evaluation of similar
(and thus on the distance metric d and error tolerance ¢).

DISCUSSION

Our solution is motivated by a simple model of the errors
that users are expected to make, which is based upon our
experience implementing and using Error-Tolerant Version
Space Algebra for image redaction tasks.

We assume that the size and location of a demonstration are
within a fixed, known error bound. Specifically, with an er-
ror bound of 2 pixels, we can make some assumptions about
the true demonstration that the user meant to provide. For
example, if a demonstrated region has a width of 10 pix-
els, and is centered at 15 pixels from the edge of the image,
we can conclude that the true size is no less than 8 and no
more than 12. We can also conclude that the left offset of
this demonstration was meant to be between 8 and 12 pix-
els from the left edge of the image, because the demonstra-
tion showed a left offset of 10 pixels. We make no assump-
tions about the distribution of errors. In particular, we do not

(a)

|

| |

0] i l
|

!]

(c)

(d)

Figure 2. A sequence of demonstrated selections (dashed rectangles),
and the valid regions learned from the examples (shaded regions). The
outer rectangles represent image borders.

assume that small errors are more likely than large errors,
nor do we assume that errors are more likely to be biased in
one direction or the other (e.g. making the selection slightly
larger than necessary, rather than slightly smaller).

It is important to note that this error model leads to different
conclusions than other (also reasonable) models. For exam-
ple, perhaps users tend to make larger errors with larger im-
ages, in which case we would require a relative rather than
fixed error tolerance. Alternatively, the error tolerance could
apply to the individual end points. In that case, we would
assume that the true left endpoint is at least 8 and no more
than 12 and the true right endpoint is at least 18 and no more
than 22 when the target is the fixed region (10,20) and the er-
ror tolerance is 2 units. Note that the region covered by the
union of the accepted hypotheses in this second error model
is smaller (8 to 22) than the error model we chose to use (8
to 24). This is a point of consideration for certain use cases
and demonstrates how the choice of error model can affect
the learning properties of the algorithm.

Figure 2 displays a series of two demonstrations on two im-
ages of different sizes. In Figure 2 (a), a region is learned
around the demonstrated rectangle. In Figure 2 (b), a second
demonstration is given; however, because of the changed
size, the user is unable to precisely match the same region.
Despite the discrepancy, the version space does not collapse.
Figure 2 (c) shows that the error tolerant regions around both
of the demonstrations do intersect on all sides. Because this
intersection is non-empty, the version space still contains hy-
potheses, which are depicted by the shaded region in Fig-
ure 2 (d).

Note that the intersection in Figure 2 (d) is a region, not
an individual hypothesis. Instead of collapsing, as a nor-
mal version space would, the error-tolerant version space
has reduced to a set of tightly clustered hypotheses. A di-
rect comparison between standard and error-tolerant version
spaces is impossible, since standard version spaces collapse
when given imprecise demonstrations. Nonetheless, it is true
that because error-tolerant version spaces do not narrow as
quickly, they can require more training examples. The pre-
cise number is entirely dependent on the similarity measure
used, the error tolerance, and the nature of the examples.
In general, however, the maximally acceptable erroneous
demonstrations must be observed before the error-tolerant
version space achieves perfect learning.

In practice, this has not proven to be a problem, but that may
depend greatly on the details of the domain in which this
technique is employed. We expect that in the error-tolerant
domains where these version spaces are applicable, it may be
sufficient to quickly converge to a set of hypotheses clustered
around the “true” hypothesis. In preliminary experimental
work, we sampled truncated Gaussian models of input re-
gion size and user error to generate training/test data. Our
results indicate a sizable, but not unreasonable, increase in
the number of training examples required to achieve accept-
able error as compared to standard version spaces utilizing
perfect demonstrations (from an average of two examples
with standard version spaces to an average of thirteen with
error-tolerant version spaces). These results have been con-
firmed on a smaller scale by our practical experience with
our image redaction tool, where we have found that four or
five examples are usually sufficient. We also noted that even
with perfect examples, the standard version spaces collapsed
prematurely in over 90% of the trials due to rounding errors
in the RatioVS.

CONCLUSIONS AND FUTURE WORK

Investigations continue into techniques that will improve upon
this research, and we are particularly motivated by the fol-
lowing issues that arose during the development of Error-
Tolerant Version Space Algebra:

Redaction error models revealed dependencies When learn-

ing conservative redactions on images, we found that the
necessary error model revealed dependencies between the
component version spaces used to represent redaction size
and redaction locations. Because each version space main-
tained a range of valid hypotheses during most of the learn-
ing process, the conservative result (that covered all demon-
strations) was not present in the cross-product of the size
and location hypotheses, rather the bounds on the location
had to be used independently with the largest size possible
to ensure complete coverage.

Learning improves with error In fact, learning the correct
hypothesis requires examples that exhibit the maximum
error, as mentioned above. This is undesirable, since it
may take significant time for that to happen. However, the
degree of error in the generated results is bounded by the
error tolerance. Therefore, the executing version spaces
always generate results that are within the error tolerance.

Learning does not improve with repeated demonstrations
It is reasonable to expect the learning algorithm to con-
verge on the correct hypothesis as evidence accumulates.
However, because error-tolerant version spaces only con-
sider whether a hypothesis is similar to the user’s demon-
strations, they gain no information from demonstrations
that are semilar to all of the remaining hypotheses. We
envision a probabilistic approach to address this short-
coming. It is also worth noting that when traditional ver-
sion spaces encounter similar or repeated demonstrations,
they either collapse or also learn nothing, respectively.

We have presented an approach to learning with Version
Space Algebra when user demonstrations are subject to a
form of error that has not previously been addressed. This
approach greatly increases the applicability of Version Space
Algebra by maintaining version spaces that would have oth-
erwise collapsed prematurely.

REFERENCES

1. J. H. Chen and D. S. Weld. Recovering from errors
during programming by demonstration. In /UI 08
Proceedings of the 13th international conference on
Intelligent user interfaces, pages 159-168, New York,
NY, USA, 2008. ACM.

2. A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
D. Maulsby, B. A. Myers, and A. Turransky, editors.
Watch what I do: programming by demonstration. MIT
Press, Cambridge, MA, USA, 1993.

3. T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld.
Programming by demonstration using version space
algebra. Machine Learning, 53(1-2):111-156, 2003.

4. T. A. Lau, P. Domingos, and D. S. Weld. Version space
algebra and its application to programming by
demonstration. In ICML ’00: Proceedings of the
Seventeenth International Conference on Machine
Learning, pages 527-534, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

5. H. Lieberman. Your Wish is My Command.:
Programming By Example (Interactive Technologies).
Morgan Kaufmann, 1st edition, February 2001.

6. A. Michail. Imitation: An alternative to generalization in
programming by demonstration systems. Technical
report, University of Washington School of Computer
Science and Engineering, TR# UW-CSE-98-08-06,
2006.

7. B. A. Myers. Creating user interfaces by demonstration.
Academic Press Professional, Inc., San Diego, CA,
USA, 1988.

8. B. A. Myers. Peridot: creating user interfaces by
demonstration. pages 125-153, 1993.

	Introduction
	Version Space Algebra
	Related Work
	Error-Tolerant Version Space Algebra
	Discussion
	Conclusions and Future Work
	REFERENCES

