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ABSTRACT

This paper proposes GAPLA: a Globally Asynchronous Lo-
cally Synchronous Programmable Logic Array architecture.
The whole FPGA area is divided into locally synchronous
blocks wrapped with asynchronous I/O interfaces. Data com-
munications between synchronous blocks are controlled by
2-phase handshaking signals under bundled-data delay as-
sumption. The size and shape of each locally synchronous
block are programmable so that different modules in a de-
sign can be effectively implemented. By dividing the FPGA
area into smaller blocks, the delays of long interconnect
wires, which could easily dominate other delays in conven-
tional FPGAs, only come into picture when there are com-
munications between blocks. Therefore, each block could
run at higher speed. The area overhead of adopting the
GALS style in GAPLA architecture is estimated to be very
small (about 7%). Experimental results show an up to 55%
performance improvement compared to the conventional FP-
GAs.

1. INTRODUCTION

As the logic size of FPGA grows, there are some challenges
facing by conventional FPGA architectures. First, the delays
of the long interconnect wires can easily dominate all other
delays. Several researchers address this problem by either
pipelining the long interconnect delay or modifying the syn-
thesis flow to allow the long interconnect to run for several
clock cycles [1, 2, 3]. In those approaches, interconnects are
treated as circuit components instead of conventional wires
which makes a high performance solution hard to achieve.
Also, these solutions are area-expensive. Second, to evenly
distribute the global clock signals all over the FPGA area re-
quires great efforts because of the clock skew. Third, FPGAs
are more likely to contain a multitude of modules running at
different clock frequencies since they have grown to suffi-
cient sizes. Data signals appear to be asynchronous in the
new clock domain when moving data across modules. Cur-
rent FPGA architectures and CAD tools provide very few or
even no support for asynchronous communications.

Introducing asynchronous concept into the FPGA archi-
tecture is a possible solution to the named challenges. In
terms of interconnect delays, performance is dictated by the
average of the interconnect delays rather than the worst-case
delay. Hence use of long wires does not necessarily lead
to a significant performance penalty. Clock distribution is
no longer a problem since the global clock signals are re-
moved. By adopting asynchronous design, FPGAs can pro-
vide architectural supports for communications across dif-
ferent clock domains. Different modules running at different
clock frequencies can be easily glued together.

This paper presents GAPLA: a novel GALS Programmable
Logic Array architecture. GAPLA architecture is based on
our asynchronous wrapper design which allows the synchronous
logic blocks to communicate with each other through a 2-
phase handshaking protocol under bundled data delay as-
sumption. The width of each data bundle and the size and
shape of each synchronous logic block are all programmable.
Thus, the borders of synchronous logic blocks are deter-
mined by the circuit functions to be implemented instead of
the architecture, which provides the most effective bundling
of data and prevents the waste of logic and communication
resources.

2. RELATED WORK

There are several GALS systems in the literature. Bormann
et al [4], Moore et al [5] and Muttersbach et al [6] invent dif-
ferent asynchronous wrapper designs which support 4-phase
handshaking data transfer. In a GALS FPGA design, com-
munications between synchronous logic blocks are through
long interconnect wires with long delays. A 4-phase hand-
shaking needs to go through the long interconnect wires 4
times to complete one data transfer and therefore produces
huge delays. In our GAPLA architecture, we propose a sim-
ple and efficient asynchronous wrapper design which sup-
ports 2-phase handshaking protocol.

Quite a few asynchronous FPGA architectures have been
proposed in the last decade [7, 8, 9]. Several of these ar-
chitectures adopt the GALS concept. STACC [7] is loosely
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based on Sutherland’s Micropipeline design. The clock sig-
nal of the data array is replaced by the handshaking control
signals of the timing array in a mircopipeline like structure.
PCA [8] is a self-reconfigurable programmable logic archi-
tecture. Data communications between logic blocks is re-
alized by a wormhole message passing mechanism through
the built-in-facilities. Royal et al proposes another GALS
FPGA architecture [9] and the idea of using GALS architec-
ture to limit the impact of long interconnect wire delay on
the total FPGA performance. One common problem of the
above architectures is that the size and shape of each syn-
chronous logic block are fixed. Thus, the architectures put
very strict constraints on the way applications are mapped.
In our GAPLA architecture, we allow the size and shape of
each synchronous logic block and also the data width of each
I/O port to be highly programmable. Therefore, a design can
be partitioned into modules of different sizes according to
their functions and all the modules can be efficiently imple-
mented.

3. THE GAPLA ARCHITECTURE

3.1. Architecture Overview

Figure 1 shows a block diagram of the GAPLA architec-
ture which contains asynchronous islands connected in a
mesh structure. Each asynchronous island contains a syn-
chronous logic block and 4 asynchronous wrappers. Each
asynchronous wrapper contains a local clock generator and
I/O port controllers. Logic tiles inside the island can freely
choose its clock from the four local clock signals. The clock
grouping module is used to merge two asynchronous wrap-
pers into one big wrapper to expand the I/O capacities of a
clock domain. The routing resources between asynchronous
islands contain horizontal and vertical routing channels for
both data and handshaking control signals. Adjacent asyn-
chronous islands are also directly connected to enable fast
communications. The boxes marked “RSB” are the Rout-
ing Switch Boxes. The RSBs route both the data and the
handshaking control signals.

3.2. Asynchronous Island Structure

3.2.1. Asynchronous Wrapper

An asynchronous wrapper contains a local clock generator
and I/O port controllers. The local clock generator is a ring
oscillator with programmable period. It can be paused by
requests from the port controllers. A port controller is an
asynchronous FSM working as a converter from the asyn-
chronous domain to the synchronous domain. It controls
the generation of the local clock to make sure that all the
timing constraints are met for correct data communication.
Metastability then can never cause the system to fail.

Some GALS local clock generators have been developed
[5, 10] which can provide very stable and accurate clock
signals. In the GAPLA design, we adopt the clock genera-
tor design of [5]. Figure 2 shows the clock generation and
pause module proposed in [5]. The gate marked with a “C”
is a Muller C-element. The ME block is a mutual exclusive
element. The signal is the request signal to pause the
next clock generation from port controller . The next rising
clock edge is delayed as long as one of is high. This
scheme allows multiple ports to be active at the same time.

ME ME

eclk

C

clk

delay

RC0 AC0 RCn ACn

clkallowed

Fig. 2. The local clock generation and pause scheme [5].

Figure 3 shows our port controller design which supports
2-phase asynchronous handshaking communication to re-
duce the communication time. For a 2-phase asynchronous
communication, a full handshaking cycle contains either Req+,
Ack+ or Req-, Ack-. The “+” and “-” represent the rising
and falling of the signals respectively. The output port con-
troller works as follows. Initially both the Req and Ack sig-
nals are low. The EN signal is set to high by the logic block
to indicate that data is ready to be sent out in the next clock
cycle. After clk+, the Req+ and the data are sent out. Req+
causes signal RC to high which stretches the next clk+. The
signal RC only returns to low after AC+ and Ack+. Ack+
indicates the asynchronous communication is accomplished
and data has been received by the next stage logic. After RC
returns low, the clock generator is freed. In the next clock
cycle, if the signal EN remains high, data is sent out again
along with Req-. The circuit then waits for Ack- to com-
plete the second data transmission. The input port controller
works in a similar way. A high EN signal, which causes
RC to be high, indicates that new data is required for the
logic to continue operation. A change in the Req signal,
which means new data has arrived, pulls down RC and frees
the clock signal to allow the incoming data to be latched.
An event in the Ack signal represents the successfully re-
ceiving of the incoming data. Both the input and the output
port controllers are demand-type, which means that once an
asynchronous communication is issued (by the EN signal),
the synchronous logic is stopped until the communication is
finished.

Bundled-data delay assumption is adopted for the data
signals of the asynchronous communications. A pair of hand-
shaking control signals (Req and Ack) together with the data
signals it controls is called a communication channel. The

288



Synchronous
Logic
block

C
lo

ck
 g

en
er

at
or

I/O
 p

or
t c

on
tr

ol
le

rs

Data

EN

CLK

Data

HS pairs C
lock generator

I/O
 port controllersDat

a

EN

Data

HS pairs

Clock generator

I/O port controllers

D
at a

EN

C
LK

Clock generator

I/O port controllers

D
at a EN C
LK

D
at

a H
S

pa
irs

Clock
grouping

Clock
grouping

Clock
grouping

Clock
grouping

Synchronous
Logic
block

C
lo

ck
ge

ne
ra

to
r

I/O
po

rt
co

nt
ro

lle
rs

Dat
a

EN

CLK

Data

HS pairs C
lock generator

I/O
 port controllersDat

a

EN

CLK

Data

HS pairs

Clock generator

I/O port controllers

D
at a

EN

C
LK

D
at

a

H
S pairs

Clock generator

I/O port controllers

D
at a EN C
LK

D
at

a H
S

pa
irs

Clock
grouping

Clock
grouping

Clock
grouping

Clock
grouping

Synchronous
Logic
block

C
lo

ck
ge

ne
ra

to
r

I/O
po

rt
co

nt
ro

lle
rs

Dat
a

EN

CLK

Data

HS pairs C
lock generator

I/O
 port controllersDat

a

EN

CLK

Data

HS pairs

Clock generator

I/O port controllers

D
at a

EN

C
LK

D
a t

a H
S pairs

Clock generator

I/O port controllers

D
at a EN C
LK

D
at

a H
S

pa
irs

Clock
grouping

Clock
grouping

Clock
grouping

Clock
grouping

Synchronous
Logic
block

C
lo

ck
ge

ne
ra

to
r

I/O
po

rt
co

nt
ro

lle
rs

Dat
a

EN

CLK

Data

HS pairs C
lock generator

I/O
 port controllersDat

a

EN

CLK

Data

HS pairs

Clock generator

I/O port controllers

D
at a

EN

C
LK

D
at

a

H
S pairs

Clock generator

I/O port controllers

D
at a EN C
LK

D
at

a H
S

pa
irs

Clock
grouping

Clock
grouping

Clock
grouping

Clock
grouping

RSB RSB RSB

RSB
RSB RSB

RSB RSB RSB

CLK

256
32

128 16 Asynchronous 
Island

Asynchronous 
Island

Asynchronous 
Island Asynchronous 

Island

Fig. 1. Block diagram of GAPLA architecture.

(a) (b)

Fig. 3. Circuit design of an (a)output and an (b)input port controller.
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number of data wires for each communication channel is
programmable in the GAPLA architecture. This is real-
ized by allowing the data width of each I/O port to be pro-
grammable as shown in Figure 4. The I/O port controllers
control the I/O data registers by providing the “Enable” sig-
nals to the registers. We allow the “Enable” signals gener-
ated from the I/O port controllers to be connected to the bi-
directional data registers through a connection matrix. Thus,
each I/O port controller can freely choose how many bits of
data are required for a communication. To simplify the con-
nection matrix design, each I/O port can only control up to
64 bits of data. In GAPLA architecture, an asynchronous
wrapper contains 8 input ports and 8 output ports. The total
data signal wires for all the I/O ports are 128 bits.
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Fig. 4. The programmable I/O port data width.

3.2.2. Synchronous Logic Block Structure

The synchronous logic block can adopt any existing syn-
chronous FGPA structure, but the size of each synchronous
logic block must be big enough to implement reasonable
functions. In the GAPLA design, we use the Xilinx Virtex
II FPGA structure. Each synchronous logic block contains
24 20 Virtex II CLBs and 24 multiplier blocks. The 4 clock
signals generated from the local clock generators are all dis-
tributed over the whole logic block. The logic controlled by
a clock signal is called a clock domain. The logic resources
are divided into 16 Clock Distribution Units (CDUs). The
clock of a CDU can be freely chosen from the 4 clock sig-
nals. Therefore, the size and shape of each local clock do-
main is programmable within the size of a synchronous logic
block. Figure 5 illustrates the clock distribution inside a syn-
chronous block.

3.2.3. Clock Grouping Module

The idea of grouping two asynchronous clock domains into
one clock domain is proposed in [11]. In GAPLA design,
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Fig. 5. Clock distribution of a synchronous block.

we adopt this idea to expand the I/O capacity of a clock do-
main. A C element can be used to group two clock genera-
tors to create a common clock signal [11]. The I/O capacity
of a clock domain is thus doubled using one clock grouping
module.

3.3. Inter-Island Routing Structure

The routing resources between asynchronous islands con-
sist of two types of interconnections. The first is the direct
and fast interconnections between adjacent islands. The sec-
ond is the horizontal and vertical global routing channels to
connect remote islands. The direct connections between ad-
jacent islands consist of 8 handshaking pairs and 64-bit data
and the global routing channels consist of 32 handshaking
pairs and 256-bit data as shown in Figure 1. To make the
bundled-data delay assumption valid, a predefined small de-
lay is added to each Req signal in the routing structure.

A Routing Switch Box (RSB) is used to connect the hor-
izontal and vertical routing channels at every corner. A RSB
contains two parts: one part to provide routings for hand-
shaking control signals called CRSB and one part to provide
routings for logic called LRSB. Besides the switching activ-
ities, the CRSB needs to provide three more additional func-
tions to the handshaking control signals, namely fanin/fanout
and arbitration and merge. Fanin/fanout function is required
when data communication is one-to-many or many-to-one.
Arbitration is needed when data from different sources com-
pete to communicate with one destination. Merge func-
tion is needed when data is broadcasting. A programmable
fanin/fanout module is proposed in [11]. Figure 6 shows
the structure of a CRSB. The central switch matrix is used
to route the handshaking pairs to different directions. Four
4-input fanin/fanout modules and two 4-input arbiter and
merge modules are put along the routing channels. They can
also be clustered to form modules with more inputs by pro-
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gramming the connections. The LRSB can adopt the routing
switch box design of the conventional FPGA architecture.

4. EVALUATING THE GAPLA ARCHITECTURE

4.1. Area Estimation

We have constructed the layout for some of the basic build-
ing blocks of the GAPLA architecture including the I/O port
controller, the fanin/fanout module and the arbiter etc in a
0.18 process to estimate the area cost of the proposed
architecture. The GAPLA adopts the local clock generator
for GALS system proposed in [5] which occupies the area
of approximately 2 . The area of each I/O port con-
troller is around 15 which is considerably small. The
16 I/O port controllers, the 128 I/O data registers and the
distribution matrix for the enable signals of the I/O data reg-
isters add up to around 6.5 . Most of this areas are occu-
pied by the distribution matrix. Thus, we estimate an asyn-
chronous wrapper could occupy the area of around 8.5
which is less than the area of a Virtex II CLB. For an asyn-
chronous island which contains 4 asynchronous wrappers
and 576 CLBs, the total area cost for the asynchronous wrap-
pers is around 35 which is less than 1%. In the rout-
ing structure, 320 wires (32 handshaking pairs and 256 data
wires) and the RSBs are added between every two adja-
cent asynchronous islands. In a Virtex II FPGA, there are
about 200 routing wires between every two column or row
of CLBs and those routing wires together with the routing
switch box occupy around 90% of the total FPGA area. In
the GAPLA architecture, the extra routing wires are added
for every 24 CLB columns or rows. Therefore, the area over-
head of the routing resources in GAPLA is estimated as

Thus, in total, the area cost of adopting a GALS style in
GAPLA architecture is estimated to be slightly less than 7%.

4.2. Performance Evaluation

When doing performance evaluation, the interconnect delay
between different clock domains are calculated as follows:
Communication overhead of the direct interconnections be-
tween adjacent asynchronous wrappers is one local clock
cycle since the direct interconnects are short and fast and
therefore won’t cause the clock signal to stretch. The wires
of the global routing channels have the delay of 2ns for the
extension of each asynchronous island based on the inter-
connect wire delay of the Virtex II FPGA. Therefore, for
two asynchronous wrappers that are one routing switch box
away to communicate with each other, the data will reach
the receiver in 2ns after it is sent out and the sender will
get the acknowledge signal in 4ns. If this interconnect delay
is less than one local clock cycle, then the communication
overhead is one local clock cycle, otherwise, the local clock
is stretched and the communication overhead is determined
by the interconnect delay. We have developed a systematic
CAD flow for the GAPLA architecture [13], and the follow-
ing are some experimental results using the CAD tools.

4.2.1. Circuits using both local and long interconnections

We implement several synthetic circuit examples generated
from a modified graph generator TGFF [12] program. The
program generates directed acyclic graphs (DAGs) and the
arcs between nodes in the graph are generated randomly.
Therefore, when synthesized into a FPGA, both local and
long interconnections are required. We randomly assign
each node in the generated graphs an arithmetic or logic op-
eration, and then the DAGs are synthesized with the priority
set to performance. The results are given in Table 1 and Ta-
ble 2.

The results show that significant performance improve-
ment is achieved by adopting the GAPLA architecture when
implementing large designs like ex3. When implementing
the relatively smaller designs like ex1, the GAPLA archi-
tecture shows a comparable performance to its synchronous
counterparts.

4.2.2. Systolic circuits

Systolic circuits primarily use local connections. For this
type of circuits, the GAPLA architecture is expected to give
comparable performance to conventional FPGA architectures.
As an example, we implement a fully pipelined DES (data
encryption standard) algorithm. The DES algorithm con-
tains two basic modules which can run in parallel: the data
encryption module which contains 16 encryption rounds and
the subkey computation module. The subkey computation
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Table 1. Implementation results on the Virtex II FPGA
Nodes Mults Clock Worst wire Area perf.

(ns) delay(ns) (CLBs) (ns)
ex1 100 26 7.19 4.62 691 194
ex2 576 102 12.96 6.24 2421 933
ex3 1160 216 16.55 9.279 5007 2383

Table 2. Implementation results on the GAPLA architecture
Part. Avg. Worst intra-clk Area perf. Perf.Improv.

clk domain wire dly (ns) (%)
ex1 2 6.23 4.06 960 184 5.1
ex2 8 6.14 4.72 3840 517 44.6
ex3 16 6.37 4.91 7680 1083 54.55

module only needs to run once for one key. The data en-
cryption module is partitioned into 3 parts. The throughput
of the implementation is 213M/s and the pipeline latency is
84.51 ns. To compare, we also implement this algorithm into
the Virtex II FPGA. The pipeline throughput and latency of
the Virtex II implementation are 208M/s and 75.02ns. The
pipeline latency of the GAPLA implementation is higher
due to the asynchronous communication overhead.

5. CONCLUSIONS

This paper proposes the GAPLA, a globally asynchronous
locally synchronous FGPA architecture. The GAPLA archi-
tecture is based on our asynchronous wrapper design which
supports 2-phase handshaking communication protocol with
bundled-data delay assumption. The logic size and shape
of each clock domain in the GAPLA architecture are pro-
grammable and the data width of each asynchronous bundled-
data communication channel is also programmable. These
features give more flexibility to the GAPLA architecture.
The GAPLA architecture is suitable to implement designs
with multiple modules working under different clock fre-
quencies like the system-on-a-chip design. It also shows sig-
nificant performance advantages when implementing large
designs where the long interconnect wire delay dominates
other delays. The area overhead of adopting a GALS design
style in the GAPLA architecture is considerably small.
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