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Abstract

■ An essential component of skill acquisition is learning the en-
vironmental conditions in which that skill is relevant. This article
proposes and tests a neurobiologically detailed theory of how such
learning is mediated. The theory assumes that a key component of
this learning is provided by the cholinergic interneurons in the
striatum known as tonically active neurons (TANs). The TANs are
assumed to exert a tonic inhibitory influence over cortical inputs to
the striatum that prevents the execution of any striatal-dependent

actions. The TANs learn to pause in rewarding environments, and
this pause releases the striatal output neurons from this inhibitory
effect, thereby facilitating the learning and expression of striatal-
dependent behaviors. When rewards are no longer available, the
TANs cease to pause, which protects striatal learning from decay.
A computational version of this theory accounts for a variety of
single-cell recording data and some classic behavioral phenom-
ena, including fast reacquisition after extinction. ■

INTRODUCTION

During skill learning, a response elicited by a specific stim-
ulus might be rewarded, but if this same stimulus is en-
countered outside the training session, why doesnʼt the
absence of reward extinguish the skill response? This ar-
ticle proposes and tests a computational theory of such
context-sensitive learning. Briefly, we propose that a key
component of this learning is provided by the tonically
active cholinergic interneurons in the striatum (tonically
active neurons [TANs]).
The striatum is known to contribute to many aspects of

motor, cognitive, and limbic processing, and a huge litera-
ture suggests that the striatum is critically important in skill
learning (for reviews, see e.g., Ashby & Ennis, 2006; Yin &
Knowlton, 2006; Doyon & Ungerleider, 2002; Packard &
Knowlton, 2002). In humans, approximately 96% of all
striatal neurons are medium spiny neurons (MSNs; Yelnik,
Francois, Percheron, & Tande, 1991), which receive corti-
cal input and send axons out of the striatum to BG output
structures. The TANs are cholinergic striatal interneurons
that have extensive axon fields allowing them to project to
large striatal regions (e.g., Calabresi, Centonze, Gubellini,
Pisani, & Bernardi, 2000; Kawaguchi, Wilson, Augood, &
Emson, 1995).
TANs are tonically active in their resting state, and they

have a prominent modulatory effect on MSNs (Pakhotin &
Bracci, 2007; Gabel &Nisenbaum, 1999; Akins, Surmeier, &
Kitai, 1990; Akaike, Sasa, & Takaori, 1988; Dodt & Misgeld,
1986). These effects are both pre- and postsynaptic.1 With
respect to cortical input, however, the predominant effect
of TAN activity on MSN activation is inhibitory. For exam-

ple, Pakhotin and Bracci (2007) reported that a single
TAN spike caused a significant reduction in the excitatory
postsynaptic current induced by cortical (glutamatergic) in-
put. On the basis of these and other results, they concluded
that after a TAN pause, MSNs “will transiently becomemuch
more responsive to cortical inputs” (p. 399) and that the
resumption of TAN firing “will cause an abrupt reduction
of MSN excitation” (p. 399).

Thus, MSNs are especially responsive to cortical input
during TAN pauses. To understand the behavioral signifi-
cance of this phenomenon, it is therefore critical to study
the environmental conditions that cause TANs to pause. In
fact, it is well established that TANs pause to the delivery
of reward and to stimuli that predict the delivery of reward
(Apicella, Legallet,&Trouche, 1997; Aosaki, Tsubokawa, et al.,
1994; Kimura, 1992; Apicella, Scarnati, & Schultz, 1991). They
also pause to novel stimuli (Blazquez, Fujii, Kojima, &
Graybiel, 2002). Another important result is that whereas
most MSNs fire to a restricted set of stimuli from a sin-
gle sensory modality (e.g., Caan, Perrett, & Rolls, 1984),
many TANs respond to stimuli from a number of different
modalities (Matsumoto, Minamimoto, Graybiel, & Kimura,
2001). Thus, a TAN might respond to the discriminative
cue associated with reward, but it is also likely to respond
to other visual, auditory, and olfactory cues (for example)
that occur incidentally at the time of reward delivery.

The TANs receive their strongest excitatory glutamater-
gic input from the caudal intralaminar nuclei of the thala-
mus (Smith, Raju, Pare, & Sidibe, 2004; Sadikot, Parent, &
Francois, 1992; Cornwall & Phillipson, 1988), which in-
cludes the center-median (CM) and the parafascicular (Pf )
nuclei. TheCM/Pf complex receives input froma number of
places, including theOFC, the pedunculopontine tegmentalUniversity of California, Santa Barbara
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nucleus, and the ascending reticular activating system (Van
der Werf, Witter, & Groenewegen, 2002)—structures that
are well known to participate in reward processing and
arousal.

The TANs are also prominent targets of substantia nigra
dopamine cells. Two features of this dopaminergic input
are relevant to the model proposed here. First, dopamine
cell responses and TAN pauses are temporally coincident
(Cragg, 2006; Morris, Arkadir, Nevet, Vaadia, & Bergman,
2004). Second, long-termpotentiation (LTP) inTANs requires
elevated levels of dopamine (Suzuki, Miura, Nishimura, &
Aosaki, 2001; Aosaki, Graybiel, & Kimura, 1994). These re-
sults suggest that TANs may learn to pause to cues that
signal reward via reinforcement learning at CM/Pf–TAN
synapses. In support of this idea, simultaneous single-unit
recordings from CM/Pf neurons and TANs show that al-
though an intact CM/Pf response is required for the TANs
to pause, the CM/Pf response to environmental cues is
relatively constant, regardless of the reward contingencies
of the task, whereas the TANs pause primarily to reward-
predicting cues (Matsumoto et al., 2001). Because TAN
pauses are primarily driven by the CM/Pf complex, it there-
fore seems reasonable that plasticity at CM/Pf–TAN synap-
ses allows the TANs to learn to pause in the presence of
cues that predict reward.

To test these ideas formally, we constructed a compu-
tational model with the overall architecture shown in Fig-
ure 1. The idea is that, in the absence of CM/Pf input, the
TANʼs high spontaneous firing tonically inhibits the MSN re-
sponse to cortical input.2 When cells in the CM/Pf complex
fire, reinforcement learning at the CM/Pf–TAN synapse
quickly causes the TAN to pause when in a rewarding envi-
ronment. This releases the MSNs from tonic inhibition,

thereby allowing them to respond to cortical inputs and
thus to gate learning at cortical–striatal synapses.

METHODS

Activation Equations

The activation of all sensory cortical units and the CM/Pf
unit was either off (with activation 0) or on (with activa-
tion 1500) during the duration of stimulus presentation
(note that we did not specifically model sensory inputs
to the CM/Pf ). Our model of changes in the membrane
potential of striatal MSNs was adapted from a model pro-
posed by Izhikevich (2007). The model includes two
coupled differential equations for each medium spiny unit.
The first equation models fast changes in membrane po-
tential (measured in mV), and the second equation mod-
els slow changes in the activation and inactivation of
various intracellular ion channels (e.g., Na+ and K+). We
supplement the Izhikevich model by assuming that the
key inputs to the MSNs include (1) excitatory inputs from
sensory cortex, (2) inhibitory input from the TAN, and (3)
inhibitory input from other MSNs. Specifically, our com-
plete medium spiny unit model assumes that the mem-
brane potential in striatal unit J at time t, denoted SJ(t),
is determined by

50
dSJðtÞ
dt

¼
X
K

wK ; JðnÞIK ðtÞ − βSTðtÞ − γS

X
M≠J

f ½SMðtÞ�

þ ½SJðtÞ þ 80�½SJðtÞ þ 25� þ E − uSðtÞ

þ σSεðtÞ; ð1Þ

Figure 1. The neural
architecture of the proposed
model in a task with two
response alternatives.
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100
duSðtÞ
dt

¼ −20½SJðtÞ þ 80� − uSðtÞ ð2Þ

where βS, γS, E, andσS are constants,wK,J(n) is the strength
of the synapse between sensory cortical unit K and striatal
cell J on trial n, IK(t) is the input from sensory unit K at
time t, T(t) is the membrane potential of the TAN at time
t, and ε(t) is white noise. The third term on the right in
Equation 1 models the inhibitory input using a standard
model of lateral inhibition (e.g., Usher & McClelland,
2001). Note that this model assumes that the total amount
of lateral inhibition on medium spiny unit J is an increas-
ing function of the total amount of activation in all MSNs.
The fourth term is the quadratic integrate-and-fire model
(Ermentrout, 1996). To produce spikes, when SJ(t) =
40 mV, then SJ(t) is reset to SJ(t) = −55 mV. The last term
models noise. Equation 2 models the slow changes in var-
ious intracellular ion channels. When Equation 1 produces
a spike (i.e., when SJ(t) = 40 mV), uS(t) is reset to uS(t) +
150. All specific numerical values in Equations 1 and 2 and
the numerical values used in the resetting procedures are
taken from Izhikevich.
The function f [SM(t)] in Equation 1 is called the alpha

function and is a standard method for modeling the post-
synaptic effects of a spike in a presynaptic cell (e.g., Rall,
1967). When a presynaptic cell generates an action po-
tential, synaptic vesicles open and the neurotransmitter
is released, diffuses across the synapse, and binds to post-
synaptic receptors, which initiates events that eventually
effect the membrane potential of the postsynaptic cell.
The alpha function models the time course of these ef-
fects. The idea is that every time the presynaptic cell
spikes, the following input is delivered to the postsynaptic
cell:

αðtÞ ¼ t
λ
exp

λ − t
λ

� �
: ð3Þ

This function has a maximum value of 1.0, and it decays
to .01 at t = 7.64λ.
The model described by Equations 1 and 2 accurately

accounts for patch–clamp data collected from MSNs in the
rat (i.e., see Figure 8.37 of Izhikevich, 2007) in the sense
that it displays both the up and the down states that char-
acterize MSN firing patterns, and it displays realistic spiking
behavior.
The TANs are more challenging to model because of

their unusual dynamics. For example, when excitatory in-
put is delivered to the TANs, they fire an initial burst and
then pause (Reynolds, Hyland, & Wickens, 2004; Kimura,
Rajkowski, & Evarts, 1984). We developed a model of
TAN firing that displays these same qualitative properties
by modifying the Izhikevich (2003) model of intrinsi-
cally bursting cortical neurons. Specifically, we assumed
that changes in the TAN membrane potential at time t,

denoted T(t), are described by the following two coupled
equations.

100
dTðtÞ
dt

¼ vðnÞPf ðtÞ þ 1:2½TðtÞ þ 75�½TðtÞ þ 45�
þ 950 − uTðtÞ; ð4Þ

100
duTðtÞ
dt

¼ 5½TðtÞ þ 75� − uTðtÞ þ 2:7vðnÞRðtÞ;
ð5Þ

where v(n) is the strength of the synapse between the Pf
and the TAN on trial n, and Pf(t) is the input from the CM/
Pf at time t. The constant 950 models spontaneous firing,
and the function R(t) = Pf(t) up to the time when CM/Pf
activation turns off, then R(t) decays exponentially back
to zero (with rate .0018). To produce spikes, when T(t) =
60 mV, then T(t) is reset to T(t) = −56 mV and uT(t) is re-
set to uT(t) + 150. In a later section, we will consider the
dynamical behavior of this model that allows it to mimic
the unusual firing properties of TANs.

Note that we modeled the effects of CM/Pf activation as
purely excitatory. In fact, the evidence is good that gluta-
mate inputs from the CM/Pf also synapse on GABAergic
interneurons in the striatum, which then synapse on TANs.
As a result, CM/Pf activation also can induce an inhibitory
input to the TANs (Zackheim & Abercrombie, 2005; Suzuki
et al., 2001). We chose not to model this indirect inhibitory
effect because TANs pause when positive current is injected
directly into the cell (e.g., see Figure 4). Thus, whereas the
inhibitory input may potentiate the TAN pause, it is appar-
ently not necessary to induce the pause.

For all other units in the model, we excluded the slow
regulatory term ui(t) and instead modeled membrane po-
tential with the standard quadratic integrate-and-firemodel.
For example, activation in the globus pallidus at time t, de-
noted by GJ(t), is described by

15
dGJðtÞ
d t

¼ −αG f ½SJðtÞ� þ 71

þ 0:7½GJðtÞ þ 60�½GJðtÞ þ 40�; ð6Þ

where αG is a constant. The first termmodels the inhibitory
input from the striatum, the second term ensures a high
tonic firing rate, and the last term is the quadratic integrate-
and-fire component that is the same as in Equations 1 and
4. Spikes are produced after GJ(t) = 35 by resetting to
GJ(t) = −50.

Similarly, activation in the thalamus at time t is given
by

dVJðtÞ
d t

¼ −βT f ½GJðtÞ� þ 71

þ :7½VJðtÞ þ 60�½VJðtÞ þ 40�; ð7Þ
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where βT is a constant, and f [GJ(t)] is the alpha function
from Equations 1 and 6. Spikes are produced after VJ(t) =
35 by resetting to VJ(t) = −50. The first term models the
inhibitory input from the globus pallidus. The ventral
anterior and the ventral lateral thalamic nuclei of the thal-
amus also receive a variety of excitatory inputs (e.g., cer-
ebellum, pFC). We modeled these via the constant 71.
For our purposes, the most important of these excitatory
inputs may be from pFC (e.g., Anderson & DeVito, 1987).
pFC input is critical because it is thought that striatal fir-
ing, by itself, does not trigger a motor response. When
the striatum fires, it disinhibits the thalamus (i.e., by re-
ducing pallidal inhibition), but it does not excite the thal-
amus.3 For this reason, random sensory stimuli that are
encountered as one moves through the world could cause
the striatum to fire, but this firing will typically not elicit an
unintended motor response. In a skill-learning task, in-
structions from an experimenter about how to respond
could cause the cortical input to thalamus to increase,
thereby priming the relevant response goals. Because of
the tonic inhibition from the globus pallidus, however, this
cortical input is not enough to trigger a response. Instead,
the striatum must first inhibit the globus pallidus, an event
that would allow the thalamus to trigger one of the primed
motor response goals.

Activation in the Jth unit in premotor cortex at time t,
denoted by CL(t), t is given by

dCJðtÞ
dt

¼ βC f ½VJðtÞ� − γC

X
K≠J

f ½CK ðtÞ� þ 69

þ :7½CJðtÞ þ 60�½CJðtÞ þ 40� þ σCεðtÞ; ð8Þ

where βC, γC, and σC are constants, and ε(t) is white noise.
As in other units, spikes are produced after CJ(t) = 35 by
resetting to CJ(t) = −50. The second term on the right
models lateral inhibition in the same way as in Equation 1.
In tasks with two possible responses, evidence suggests
that cortical units in premotor areas are sensitive to the
cumulated difference in evidence favoring the two alter-
natives (e.g., Shadlen & Newsome, 2001). We used a
more biologically plausible method that is known to sim-
ulate this difference process—that is, we placed a sepa-
rate threshold on the activation of each unit but included
lateral inhibition between the units (Usher & McClelland,
2001).

Learning Equations

Following standard models, we assumed that synaptic
plasticity at all cortical–striatal synapses and at the CM/
Pf–TAN synapse is modified according to reinforcement
learning that requires three factors: (1) strong presynaptic
activation, (2) postsynaptic activation that is strong enough
to activateN-methyl D-aspartate (NMDA) receptors, and (3)
dopamine levels above baseline (e.g., Reynolds & Wickens,

2002; Arbuthnott, Ingham, & Wickens, 2000; Calabresi,
Pisani, Mercuri, & Bernardi, 1996). If postsynaptic activation
is strong but dopamine is below baseline, then the synapse
is weakened. The synapse is also weakened, regardless of
dopamine level, if postsynaptic activation is below theNMDA
threshold but above the α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) threshold (i.e., the AMPA
receptor is a low-threshold glutamate receptor).
Let wK,J(n) denote the strength of the synapse on trial n

between cortical unit K and striatal unit J. We model rein-
forcement learning as follows:

wK ; Jðnþ 1Þ ¼ wK ; JðnÞ þ αw∫IKðtÞd t ∫½SJðtÞ�þd t− θNMDA
� �þ

� ½DðnÞ−Dbase�þ½wmax−wK ; JðnÞ�
− βw∫IKðtÞd t ∫½SJðtÞ�þd t− θNMDA

� �þ
� ½Dbase−DðnÞ�þwK ; JðnÞ
− γw∫IKðtÞd t θNMDA− ∫½SJðtÞ�þd t

� �þn

− θAMPA

oþ
wK ; JðnÞ: ð9Þ

The function [ g(t)]+ = g(t) if g(t) > 0, and otherwise
[ g(t)]+ = 0. The integrals in Equation 10 are all over the
time of stimulus presentation. Thus, ∫[SJ(t)]+dt is the total
positive medium spiny activation during stimulus presenta-
tion. Dbase is the baseline dopamine level, D(n) is the
amount of dopamine released after feedback on trial n,
and αw, βw, γw, θNMDA, and θAMPA are all constants. The first
two lines describe the conditions under which LTP occurs
(striatal activation above the threshold for NMDA recep-
tor activation and dopamine above baseline) and lines 3–
6 describe conditions that produce long-term depression
(LTD). The first possibility (Lines 3 and 4) is that postsynap-
tic activation is above the NMDA threshold but dopamine is
below baseline (as on an error trial), and the second pos-
sibility (Lines 5 and 6) is that striatal activation is between
the AMPA and the NMDA thresholds. Note that synaptic
strength does not change if postsynaptic activation is be-
low the AMPA threshold.
Note that these learning equations do not depend on stri-

atal acetylcholine (ACh) levels. The evidence is good, how-
ever, that ACh does modulate corticostriatal LTP and LTD
(Bonsi et al., 2008; Wang et al., 2006; Centonze, Gubellini,
Bernardi, & Calabresi, 1999). In vitro results seem to sug-
gest that (1) steady-state ACh levels are required for normal
corticostriatal LTP and (2) reduced ACh levels are required
for LTD. An obvious assumption is that that a TAN pause is
associated with reduced ACh levels, so these results seem
to imply that corticostriatal LTP cannot occur during a TAN
pause, only LTD. This creates a paradox, however, because
the environmental conditions known to cause TANs topause
(e.g., the appearance of cues that predict reward) are the
same as the conditions thought to promote corticostriatal
LTP. For example, in conditioning tasks, an animal is re-
warded for associating a motor response with a sensory
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cue. Many such studies have shown that MSNs learn to fire a
burst to the presence of the cue (e.g., Carelli, Wolske, &
West, 1997; another example occurs in the Figure 8 data
of Barnes, Kubota, Hu, Jin, & Graybiel, 2005), and pre-
sumably this increase in MSN activation is mediated by LTP
at corticostriatal synapses.
One possibility is that a TAN pause may not cause a sim-

ple reduction in striatal ACh levels. The TAN response to
sensory cues associated with reward is multiphasic. Fre-
quently, the TAN pause is preceded by an initial burst
(as, e.g., in Figure 4) and also followed by a rebound burst
(as, e.g., in Figure 6). Thus, ACh levels may fluctuate rap-
idly during the course of a TAN pause. As a result, an in-
formed model of the role that ACh plays in corticostriatal
LTP (and LTD) may require a better understanding of the
temporal dynamics of the ACh signal and of corticostriatal
LTP and LTD. Lacking such data, we opted for a simpler
model that ignores the role of ACh. Even so, as the next
section will show, for the applications we considered, this
simplified model was sufficient.
We assumed that learning at both cortical–MSN synapses

and at Pf/TAN synapses is mediated by this same model.
We allowed the learning rates to differ at these two synapse
types, but we assumed the same numerical values for
θNMDA and θAMPA. The numerical values for all parameters
are given in the Appendix (i.e., see Table A1).

Dopamine Model

The Equation 9 model of reinforcement learning requires
that we specify the amount of dopamine released on every
trial in response to the feedback signal [the D(n) term].
Themore that the dopamine level increases above baseline
(Dbase), the greater the increase in synaptic strength, and
the more it falls below baseline, the greater the decrease.
Although there are a number of powerful models of

dopamine release, Equation 8 requires only that we spec-
ify the amount of dopamine released to the feedback sig-
nal on each trial. The key empirical results are as follows
(e.g., Tobler, Dickinson, & Schultz, 2003; Schultz, Dayan,
& Montague, 1997): (1) the midbrain dopamine cells fire
tonically; (2) the dopamine release increases above base-
line after unexpected reward, and the more unexpected
the reward, the greater the release; and (3) dopamine re-
lease decreases below baseline after unexpected absence
of reward, and the more unexpected the absence, the
greater the decrease. One common interpretation of
these results is that over a wide range, dopamine firing
increases with the reward prediction error (RPE):

RPE ¼ obtained reward − predicted reward: ð10Þ

A simple model of dopamine release can be built by
specifying how to compute obtained reward, predicted re-
ward, and exactly how the amount of dopamine release is
related to the RPE. Our solution to these three problems is
as follows.

Computing Obtained Reward

None of the applications considered in this article vary
reward valence. Thus, we can use a simple model to com-
pute obtained reward. Specifically, we defined the ob-
tained reward Rn on trial n as +1 if correct or reward
feedback is received, 0 in the absence of feedback, and
−1 if error feedback is received.

Computing Predicted Reward

We used a simplified version of the well-known Rescorla–
Wagner model (Rescorla & Wagner, 1972) to compute
Predicted Reward on trial n, which we denoted as Pn. Ac-
cording to this account,

Pnþ1 ¼ Pn þ :075ðRn − PnÞ: ð11Þ

It is well known that when computed in this fashion, Pn
converges exponentially to the expected reward value
and then fluctuates around this value until reward contin-
gencies change.

Computing Dopamine Release from the RPE

We assumed that the amount of dopamine release is re-
lated to the RPE in the manner reported by Bayer and
Glimcher (2005). Specifically, we assumed that

DðnÞ ¼
1 if RPE > 1
:8 RPE þ :2 if −:25 < RPE ≤ 1
0 if RPE < :25

8<
:

Note that the baseline dopamine level is 0.2 (i.e., when
the RPE = 0) and that dopamine levels increase linearly
with the RPE. However, note also the asymmetry between
dopamine increases and decreases. As is evident in the
Bayer and Glimcher (2005) data, a negative RPE quickly
causes dopamine levels to fall to zero, whereas there is a
considerable range for dopamine levels to increase in re-
sponse to positive RPEs.4

RESULTS

Global Dynamics

Figures 2 and 3 illustrate an application of the model to a
simple conditioning task in which the participant must
execute some specific response (e.g., button press) when
a certain sensory cue is presented (e.g., a tone) to receive
a reward. Figure 2 shows activation in each brain region
in the model during one trial early in training—before the
model has learned to reliably respond to the sensory cue.
Note that the CM/Pf and the sensory cortex activations are
both modeled as simple square waves that are assumed
to coincide with the stimulus presentation. Because the
TAN has not yet learned that the cue is associated with
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reward, it fails to pause when the stimulus is presented.
As a result of the tonic inhibition from the TAN, the MSN
does not fire to the stimulus, although stimulus presenta-
tion does move it from the down state to the up state. In
the absence of any inhibitory input from the striatum, the
globus pallidus does not slow its high spontaneous firing
rate, and therefore the thalamus is prevented from firing to
other excitatory inputs. The premotor unit fires at a slow
tonic rate, but note that this rate does not increase during

stimulus presentation. As a result, the model does not re-
spond on this trial.
Figure 3 illustrates a trial in this same experiment, but

later in training. Now the TAN pauses when the stimulus
is presented, which allows the MSN to fire a vigorous burst,
which inhibits the globus pallidus. The pause in pallidal
firing allows the thalamus to respond to its other excit-
atory inputs, and the resulting burst from the thalamus
drives the firing rate in the premotor unit above the

Figure 2. Model results from
a trial early in training before
the TAN has learned that the
environment is rewarding.
Note that the 1-sec presentation
of the stimulus (from 800 to
1800 msec) does not cause
the TAN to pause, and therefore
the MSN does not fire to
stimulus presentation. As a
result, the firing rate of the
premotor unit (pre-SMA/SMA)
does not change after stimulus
onset.

Figure 3. Model results from a
trial late in training. Now the
TAN pauses after the 1-sec
stimulus presentation (from 800
to 1800 msec), releasing the
MSN from its tonic inhibition.
This allows the MSN to fire to
the stimulus, which causes the
firing rate of the premotor unit
(pre-SMA/SMA) to increase
well above its baseline level.
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response threshold. The model now responds to the sen-
sory cue.

Single-unit Recordings from TANs

We begin by testing the model of the TANs against some
basic single-unit recording data. The goal is to test whether
our model of TAN activity is qualitatively consistent with
spiking behavior recorded from real TANs. See the Appen-
dix for technical details of all simulations.

The Patch–Clamp Data of Reynolds et al. (2004)

Reynolds et al. (2004) collected in vivo intracellular re-
cordings from single TANs of anesthetized rats. The re-
sults of one such recording are shown in the top panel
of Figure 4. In this experiment, a suprathreshold positive
current of 100-msec duration was injected into the cell
(denoted by the small gray bar in the figure). Figure 4
shows that the TAN responded with an initial burst fol-
lowed by a prolonged after-hyperpolarization that caused
a pause in firing that persisted for approximately 900 msec.

Note that these data show that excitatory input alone is
enough to induce a TAN pause. In other words, although
CM/Pf activation may have both excitatory and inhibitory
effects on TANs, the Figure 4 data suggest that the excitatory
inputs by themselves may be sufficient to induce a pause.

The bottom panel of Figure 4 shows the response of the
modelʼs TAN to these same experimental conditions. Note
that the model also fires a burst to the injected current and
then pauses for roughly 900 msec. Thus, the model dis-
plays the same temporal dynamics as real TANs. Figure 5
shows the phase portraits from the Figure 4 application,
which explain why the model exhibits its pronounced
pause to excitatory input. When the input is turned off,
the voltage resetting mechanism in the model moves the
modelʼs state to a region where the derivative on voltage is
negative (bottompanel). Voltage thendecreases until thede-
rivative is zero (i.e., the set of all (u,v) pairs where the de-
rivative of voltage is zero is called the v-nullcline). The state
then slowly drifts down the v-nullcline until eventually it
breaks free. This prolonged period where voltage does
not change produces the pause in firing.

The Learning Data of Aosaki, Tsubokawa, et al. (1994)

The Figure 4 data of Reynolds et al. (2004) clearly show
the characteristic short-term dynamics of TANs, but they
fail to show several other well-documented features of
the TANs that will be critical to our later modeling. Most
obviously, they do not show the high spontaneous firing
rate of TANs that inspired their name, and second, they
do not show the ability of the TANs to learn to pause to a
stimulus that predicts reward. Figure 6 shows data from
Aosaki, Tsubokawa, et al. (1994) that illustrate both of
these properties. In this experiment, monkeys received a
juice reward when a click occurred. This click-reward pair-
ing was repeated many times while extracellular record-
ings were collected from 858 TANs in two animals. At the
beginning of training, the animals ignored the clicks, and
only a small percentage of TANs responded to the clicks
(i.e., 17%). During training, the number of TANs that
paused to the clicks gradually increased, until eventually
well over half of the TANs were pausing. Individual TANs
learned to pause after as little as 10 min of training, and
the pause response was maintained over the course of a
4-week intermission. In addition, when other sensory cues
were substituted for the click, TANs that paused to the
clicks quickly learned to pause to the new stimulus.

The top panel of Figure 6 shows the spike histogram for
a single TAN before and after conditioning. Note the high
spontaneous firing rate before the click is presented and
that before conditioning the TAN does not respond to the
click. After conditioning, however, the TAN pauses about
90 msec after the click for a duration of 189 msec. The
bottom panel of Figure 6 shows the responses of the mod-
elʼs TAN under these same conditions. Note that the mod-
elʼs TAN has a high spontaneous firing rate, that it initially
does not respond to the click, and that after training, it

Figure 4. Patch–clamp recording from the TAN of a rat (top; from
Reynolds et al., 2004; reprinted with permission from the Society
for Neuroscience; permission conveyed through Copyright Clearance
Center, Inc.) and simulated responses of the TAN model described
in Equations 4 and 5 (bottom) during a patch–clamp experiment
when positive current is injected into the cell for 100 msec (denoted
by the solid gray rectangle).
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pauses to the click with roughly the same lag and duration
as the monkeyʼs TAN.5

These applications suggest that our model of TAN fir-
ing mimics the most important properties of real TANs.

Striatal-dependent Behaviors

Instrumental Conditioning

A wide variety of evidence implicates the striatum in in-
strumental conditioning (e.g., Yin, Ostlund, Knowlton, &
Balleine, 2005; OʼDoherty et al., 2004). In a typical experi-
ment, a reward-neutral environment is suddenly altered
so that rewards become available when certain instru-
mental behaviors are emitted (acquisition phase). During
extinction, the environment is changed again so that any
potential to retrieve rewards is eliminated. Finally, dur-
ing reacquisition, the environment is changed once more
so that the instrumental behavior is again rewarded.

The conditioning literature has naturally focused on how
the strength of the association between the instrumental
behavior and the reward varies during these different con-
ditions, but it is widely recognized that secondary associa-
tions are also learned to a variety of environmental cues
(e.g., Kamin, 1969). In this section, we examine the role
that the TANs might play in these phenomena.
As a model experiment, we considered a task in which

an animal must produce a single instrumental response
(e.g., a lever press) at the onset of a sensory cue (e.g., a
tone) to retrieve a reward. To model initial learning, ex-
tinction, and reacquisition in this task, we constructed a
version of the model with a single unit in sensory cortex,
which was either active or not depending on whether the
sensory cue was present. Similarly, because only one re-
sponse was possible, there was only one unit in all other
brain regions. We assumed that a response was emitted
when the integrated premotor unit activity crossed a
threshold. Because there is only one choice for the model

Figure 5. Phase portrait of the
TAN model when applied to
the data shown in Figure 4. The
top panel is the same as the
bottom panel of Figure 4
(without any noise). The middle
panel is the phase portrait
during the time when positive
current is injected into the cell
(i.e., from 1700 to 1800 msec).
The gray parabola shows the
v-nullcline where the derivative
of voltage is zero. Below the
v-nullcline voltage increases
with time until it reaches 60 mV,
at which point it is reset to
−56 mV. Above the v-nullcline,
voltage decreases with time.
The bottom panel shows the
phase portrait after the current
has been turned off. Note
that the v-nullcline has now
dropped. The earlier v-nullcline
is shown for reference in light
gray. The numbers in all
panels denote the same points
in time. Note that at Time
Point 5 (i.e., 1800 msec),
voltage decreases to the
v-nullcline and then slowly
follows down the nullcline
until it eventually breaks free
and increases. During this
long period on the v-nullcline,
voltage is constant, and
TAN firing is paused.
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to make, feedback is never negative. Indeed, because the
model can either respond and collect a reward or fail to
respond and thereby fail to collect a reward, feedback is
always either positive or neutral. Figures 2 and 3 show
the architecture of this version of the model and predicted

neural activations in each unit during a typical trial early in
learning (Figure 2) or much later after the instrumental
behavior is well learned (Figure 3).

The behavioral performance of the model in this ex-
periment is shown in the top panel of Figure 7. Note that

Figure 6. (Top; from Aosaki,
Tsubokawa, et al., 1994;
reprinted with permission from
the Society for Neuroscience;
permission conveyed through
Copyright Clearance Center,
Inc.) Frequency histograms of
TAN spikes during extracellular
recordings from an experiment
in which monkeys were
conditioned to expect a juice
reward when they heard
a click. (Bottom) Frequency
histograms of TAN spikes
from simulations of the model
under these same experimental
conditions.

Figure 7. (Top) Performance
of the model in a hypothetical
conditioning experiment during
conditioning, extinction, and
reacquisition phases. (Bottom)
Strength of the Pf/TAN synapse
(broken line) and the sensory
cortex–MSN synapse (solid line)
on each trial of this simulated
experiment.
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the model learns to respond reliably to the cue during
initial conditioning, that the cue is gradually ignored dur-
ing extinction, and that the behavior is quickly reacquired
after the reward is reinstated. The most important result
in Figure 7, however, is that reacquisition is considerably
faster than the initial learning of the behavior. This is one
of the most widely known results in the conditioning lit-
erature. It is famous because it is a ubiquitous empirical
phenomenon that is seen in almost all conditioning–
extinction–reacquisition experiments (for an exception,
see Ricker & Bouton, 1996) and because it has posed a
difficult challenge for learning theories. For example, fast
reacquisition has long been known to disconfirm any the-
ory that assumes learning is purely a process of strength-
ening associations between stimuli and responses (e.g.,
Redish, Jensen, Johnson, & Kurth-Nelson, 2007). In such
models, response rate is completely determined by the
strength of these associations. Conditioning increases
the strength from some initial value, and extinction de-
creases it back to its starting point (if the extinction phase
is long enough). Thus, at the beginning of the reacquisition
phase, the strength of the stimulus–response association is
the same as at the beginning of the initial conditioning
phase. As a result, relearning must follow the same course
as initial learning.

The bottom panel of Figure 7 shows how the model ac-
counts for fast reacquisition. This graph shows the strengths
of the CM/Pf–TAN synapse (broken line) and of the sen-
sory cortex–MSN synapse (solid line) for each trial in the
experiment. Note that the CM/Pf–TAN synaptic strength
increases before the cortex–MSN synaptic strength. Of
course, it must rise earlier because the cortical–medium
spiny cell synapse cannot be strengthened until the TAN
has begun to pause. In addition to increasing sooner, how-
ever, note that the CM/Pf–TAN synaptic strength also rises
at a greater rate. We hypothesize that this is because TANs
are more broadly tuned than MSNs.6 For example, con-
sider an experiment where an animal must press a lever
when a tone is presented to retrieve a food reward. The
MSN that is conditioned in this experiment will fire to the
tone, but it is unlikely to fire to other cues that are present,
especially those from other sensory modalities (e.g., visual
and olfactory cues from the testing chamber). As men-
tioned previously, however, TANs are so broadly tuned
that theywill respond to stimuli frommultiple sensorymod-
alities (Matsumoto et al., 2001). For this reason, the TANs
will have many more opportunities to experience synaptic
plasticity than the MSNs, and as a result, we hypothesize
that they learn more quickly when placed in a rewarding
environment.

Note next in Figure 7 that during extinction, the CM/Pf–
TAN synaptic strength drops all the way to its precondi-
tioning baseline level, but the sensory cortex–MSN synaptic
strength drops only a small amount, where it remains
throughout the extinction period. As the CM/Pf–TAN syn-
aptic strength weakens, it becomes less and less likely that
CM/Pf activation will induce the TAN to pause. In the ab-

sence of a TAN pause, Figure 2 shows that the MSN will
not fire. In Equation 9, this corresponds to a trial in which
the postsynaptic activation is below the AMPA receptor
activation threshold. As a result, under these conditions, syn-
aptic strength does not change. Thus, the TANs have the
desirable property that they protect prior cortical–striatal
learning during periods when the environment has changed
in such a way that rewards are no longer available.
Figure 7 also shows that reacquisition time is essentially

equal to the time it takes the TANs to learn that rewards
are again available. At that point, the TANs begin pausing
again, and the protected cortical–MSN synaptic strengths
allow performance to jump nearly to its preextinction level.
Finally, note that during reacquisition, the cortical–MSN
synaptic strength grows to an even larger level than it
reached during initial acquisition. As a result, the model
predicts that after the end of the reacquisition period,
the neural representation of the learned behavior is stron-
ger than it was after initial acquisition.
We know of no single-unit recording data from exactly

this experiment. Even so, Barnes et al. (2005) reported
that single-unit recording results from a similar experiment
in which seven rats were trained to run down a T-maze to
obtain a food reward. When the animals reached the inter-
section point, either a high- or a low-pitch tone sounded,
which instructed them whether to turn right or left for the
reward. Barnes et al. recorded from single (striatal) MSNs
during sessions of acquisition, extinction, and reacquisi-
tion. The top panel of Figure 8 shows relative firing rates
averaged across the MSNs that responded to the auditory
tone.7

Using the same version of the model that was used to
generate Figure 7, we computed this same relative firing
rate statistic (averaged across 70 simulated animals) from
the spikes elicited from the MSN of the model in response
to the stimulus cue (see the Appendix for modeling de-
tails). Results are shown in the bottom panel of Figure 8.
Note that the model correctly captures many properties
of the data. These include (1) an increase in firing rate
during acquisition, (2) a reduction in firing rate during
extinction, (3) increasing firing rates during reacquisition,
(4) lower relative firing rates during extinction than during
reacquisition or the end of acquisition but higher than
baseline (i.e., Sessions 1 and 2), (5) higher relative firing
rates during reacquisition than during acquisition, and
(6) numerical firing rates during the entire experiment
that are close to the observed relative firing rates. Only
one parameter was estimated during this simulation
process (baseline firing rate in the absence of any cues),
and this parameter value only affected the last of these
six properties.

Category Learning

Next we focus on the ability of the model to account for be-
havioral and single-unit recording data from the category-
learningexperimentofMerchant, Zainos,Hernandez, Salinas,
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and Romo (1997). In this experiment, a rod was dragged
against a monkeyʼs finger at one of 10 different speeds.
The animals were trained to push one button if one of the
five low speeds occurred and to press a different button
if they received one of the five high speeds. After ex-
tended feedback training, the animals reliably learned these
categories.
After training, the animals completed an additional ses-

sion during which single-unit recordings were collected
from the putamen. Within the putamen, the responses
of 695 cells were characterized in detail. Of these, 196 re-
sponded to the movement onset of the rod, regardless of
category membership, 258 responded to the animalʼs arm
movement, regardless of response, and 165 responded to
the category membership of the stimulus. The neurons in
this latter category responded to all stimuli in one category
but not to any stimuli in the contrasting category. An ex-
ample from two such cells is shown in the left column of
Figure 9.
These same neurons, however, exhibited dramatically

different behavior when the monkeys were presented
with the same stimuli under passive conditions—that is,
when no rewards were available and when their arms were
restrained to prevent a response and the device housing
the response keys was removed. Under these conditions,
as illustrated in the right column of Figure 9, these same
category-specific neurons showed no response to stimu-
lus presentation.

According to the theory proposed here, in the passive
conditions, the TANs quickly learned that there are no re-
wards available and therefore failed to pause when the cate-
gorization stimuli were presented. In the absence of such
a pause, the MSNs were tonically inhibited and therefore
unable to respond to any cortical stimulation. To test this
prediction rigorously, we constructed a version of the model
with 10 sensory cortical units,8 one tuned to each stimulus,
and two pathways through the striatum, globus pallidus, thal-
amus, and premotor cortex (i.e., as in Figure 1). To model
the passive condition, we simply removed feedback deliv-
ery from the model (i.e., we set Rn = 0 in Equation 11).

Themodel easily learned the tactile categories. Figure 10
describes the behavioral performance of themodel and the
monkeys. The left column of Figure 11 shows the category-
specific firing in the modelʼs striatal output units.9 Compar-
ing Figure 11 with the Merchant et al. (1997) data shown
in Figure 9 suggests that the major discrepancy between
the model and the data is in the timing of onset and offset
of spiny cell firing relative to the stimulus onset and offset.
However, it is important to note that we made no attempt
to model these temporal dynamics. For example, Merchant
et al. varied the duration of each stimulus so that the dis-
tance the rod traveled across the monkeyʼs finger was con-
stant. We used the same duration for all stimuli. Also, we
made no attempt to model the delay between the time
when the rod was first applied to the monkeyʼs finger
and the time when cells in somatosensory cortex began

Figure 8. (Top) Relative firing
rates of a rat MSN during
conditioning, extinction, and
reacquisition of an instrumental
response (adapted from Barnes
et al., 2005). (Bottom) Relative
firing rates of the MSN of
the model under similar
experimental conditions.
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to fire to this stimulation. Making these two changes would
improve the correspondence between Figures 9 and 11.

Our main goal in this article is not to construct the
most accurate model possible of the active categorization
condition but instead to account for the striking differ-
ence between the active and the passive conditions. The
right column of Figure 11 shows that the model provides a
reasonable account of this difference. During active catego-
rization, the TAN learns to pause after stimulus presen-
tation. This allows the medium spiny unit to respond to
sensory input and themodel to eventuallymake a response.
In the passive condition, the TAN quickly unlearns its pause
response. The medium spiny unit is consequently toni-
cally inhibited and cannot respond to sensory input. Thus,

the difference between the two conditions is driven by
the modelʼs TAN unit. These results support the hypoth-
esis of Ashby, Ennis, and Spiering (2007) that the TANs
might be responsible for mediating the difference in firing

Figure 9. Single-unit recording data from two neurons in the
putamen of a monkey as a stylus is dragged across its finger at 1
of 10 different speeds (from Merchant et al., 1997; reprinted with
permission from the American Physiological Society). The left column
shows responses during an active categorization task in which the
low speeds required one response and the high speeds required a
different response, and the right column shows responses during
passive reception of the stimuli when no response was required.
The values from 12 to 30 indicate stylus speed (mm/sec), and each
row is a different trial. Small dots denote spikes, and large dots
denote the animalʼs response. The top panel shows responses of a
cell that responds to the low speed stimuli during categorization,
and the bottom panel shows responses of a cell that responds to
the high speeds.

Figure 10. Accuracy of the monkeys and the model on each of the
ten stimuli in the category-learning experiment of Merchant et al.
(1997).

Figure 11. Simulated responses of an MSN in the model under the
same experimental conditions that were used to collect the data in
Figure 8. The values from 12 to 30 indicate stylus speed (mm/sec), and
each row is a different trial. Small dots denote spikes and large dots
denote the modelʼs response.
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properties of category-specific neurons in the Merchant
et al. (1997) data.

DISCUSSION

Many sensory cues are typically present during skill acquisi-
tion. It is quite common to encounter some of these in later
contexts where the skilled behavior is no longer appropri-
ate. In this article, we showed how cholinergic interneurons
in the striatum might protect cortical–striatal synapses dur-
ing these periods when rewards for the skilled behavior
are not available. The idea is that the TANs exert a tonic in-
hibitory influence over cortical input to striatal MSNs that
prevents the execution of striatal-dependent actions. How-
ever, the TANs learn to pause in rewarding environments,
and this pause releases the striatal output neurons from in-
hibition, thereby facilitating the learning and expression of
striatal-dependent behaviors. When rewards are no longer
available, the TANs cease to pause, which protects striatal
learning from decay. We showed that the resulting model
was consistent with a variety of single-cell recording data
and that it also predicted some classic behavioral phenom-
ena, including fast reacquisition after extinction.

Relations to Other Theories

There have been a number of other proposals that the
TANs learn to pause in environments associated with re-
ward (e.g., Apicella, 2007; Shimo & Hikosaka, 2001; Sardo,
Ravel, Legallet, & Apicella, 2000). However, to our knowl-
edge, none of these have been developed into predictive
theories.
There have also been several computational models that

have provided accounts of acquisition and extinction on
the basis of a computational model of dopamine release
that is similar to the dopamine model used here (Redish
et al., 2007; Kakade & Dayan, 2002; OʼReilly & Munakata,
2000). The former two of these models assume extinction
is exclusively an unlearning phenomenon and do not ac-
count for fast reacquisition. In the OʼReilly and Munakata
(2000) model, however, once the strength of what in our
model is the cortical–striatal synapse falls low enough for
the behavior to disappear, this synaptic strength is no longer
weakened by further extinction trials. This allows the model
to predict fast reacquisition because the first rewarded trial
after extinction brings the synaptic strength above thresh-
old and therefore reinstates the behavior. The TANs endow
our model with a similar property.
Tan and Bullock (2008) recently developed a Hodgkin–

Huxley-type computational model of TAN firing that is
more detailed than the model proposed here. For exam-
ple, Tan and Bullock specifically modeled changes in sev-
eral specific ion concentrations, along with the effects on
TAN activation of dopamine and of GABAergic interneu-
rons. On the other hand, they did not specifically model
activity in striatal MSNs, nor did they model activity in any
cells outside the striatum. Thus, their empirical applica-

tions are limited to data collected from single TAN units
(e.g., no behavioral data were modeled). The major differ-
ence between their model and ours is that they account
for intrinsic and learned TAN responses via modulation
of TAN activity by GABAergic, and dopaminergic input
rather than by synaptic plasticity (as we assume). Because
the evidence of LTP at TAN synapses is good (Suzuki et al.,
2001; Aosaki, Graybiel, et al., 1994), it seems likely that
TAN pauses are modulated by all of these factors. In any
case, Tan and Bullockʼs model may best be seen as a de-
tailed theory of TAN responses within classical conditioning
paradigms. Our model, however, is primarily concerned with
how TAN responses act to gate learning at corticostriatal
synapses and how this function influences behavior in instru-
mental conditioning paradigms and more general striatal-
dependent behaviors.

Limitations

It is important to acknowledge the rather severe limitations
of the theory proposed here. First, with respect to its inter-
actions with cortex, it is important to note that the striatum
is organized into a set of functionally separate, parallel
loops (Alexander, DeLong, & Strick, 1986). Which loop a
particular subregion of striatum is in is determined primar-
ily by the cortical regions that project to it. The theory de-
veloped here concerns the learning of stimulus–response
associations and therefore applies to striatal regions receiv-
ing input from sensory areas of cortex (e.g., see Figure 1).
This excludes anterior regions of striatum, which are inner-
vated primarily by areas of frontal cortex. For example,
tasks that activate pFC also commonly activate the head
of the caudate nucleus because pFC projects strongly to this
anterior region of the striatum. pFC and its striatal targets
(e.g., dorsal striatum, head of the caudate nucleus) have
their own role in context processing, which is beyond the
scope of this article. For example, there is considerable evi-
dence that a pFC—head of the caudate circuit—plays a crit-
ical role in attentional switching between different contexts
(e.g., Robbins, 2007). There is also evidence that the TANs
play a critical role in this process (Ragozzino, 2003), so a
theory that attempts to account for such switchingmay pos-
tulate a role for the TANs similar to the one proposed here.

It is also important to note that the theory proposed here
ismeant to apply only to initial skill (or habit) learning. With
overtraining, skills eventually come to be executed auto-
matically. Following similar suggestions in the literature
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Miller,
1981, 1988), Ashby et al. (2007) proposed a model in which
the development of automaticity is mediated by a transfer
of control from the cortical–striatal pathways emphasized
here to cortical–cortical pathways from the relevant areas
of sensory cortex to the areas of premotor and motor cor-
tices that mediate the selection and execution of the appro-
priate motor program. For example, several studies have
reported evidence that with overtraining, skills of the type
modeled here become independent of both dopamine and
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the striatum (e.g., Bespalov, Harich, Jongen-Rêlo, van Gaalen,
&Gross, 2007;Choi,Balsam,&Horvitz, 2005;Turner,McCairn,
Simmons, & Bar-Gad, 2005; Carelli et al., 1997). It would
be straightforward to augment the present model with the
cortical–cortical pathways proposed by Ashby et al. (with
cortical–cortical plasticity mediated by Hebbian learning).
This augmentedmodel should be used tomake predictions
about the effects of overtraining on the tasks considered in
this article.

Third, we have greatly oversimplified the neuroanatomy
of the BG, omitting, for example, the GABAergic inter-
neurons, the striosomes (i.e., patch compartments), the
ventral striatum, and the indirect and hyperdirect path-
ways. However, rather than build the most complete model
of the BG that was possible, our goal instead was to focus
on the effects of the TANs on MSNs. For all regions down-
stream of the striatum, we simply tried to construct the
simplest reasonable model that could account for the lim-
ited behavioral phenomena considered in this article. It
seems likely that if the model was extended to more com-
plex behaviors, then more biological detail would be
needed in downstream areas. This generalization will be
a goal of future research.

APPENDIX: SIMULATION METHODS

General Methods

Eachmodeling applicationwas based on the network struc-
ture illustrated in Figures 1 or 2, depending on whether
there were two or one response alternatives, respectively.
Solutions to all differential equations were estimated using
Eulerʼs method. In single-response applications, the model
made a response whenever the output of the premotor
unit crossed a threshold. In the two-response application,
the model responded A or B depending on whether the
output from premotor unit A or premotor unit B crossed
a threshold first. If the output from neither premotor unit
crossed the threshold during the trial, then the model re-
sponded A if the maximum output value of the premotor A
unit was greater than the maximum output value of the
premotor B unit. The behavioral simulations were repli-
cated 100 times, and the results were averaged.

Parameter Estimation

We began by estimating the intrinsic firing properties of
each cell (e.g., the numerical values of 80 and 25 in Equa-
tion 2) followed by the synaptic strengths between units
(e.g., βS in Equation 2). The parameters in the learning
equations were estimated last. The parameter estimates
from all applications are listed in Table A1.

It is important to point out that although the model in-
cludes many numerical parameters, its performance is
qualitatively inflexible. There is a range on each parame-
ter that allows the model to make responses and to learn.
For numerical values outside this range, the behavior of the

Table A1.

Single-response
Model

Two-response
Model

Equation 1

βS 125 125

γS — 1.25

E 100 100

σS 5 5

wK, J 0.2 Uniform (0.2, 0.225)

Equation 3

λ 100 100

Equations 4 and 5

v(n), n = 0 0.2 0.2

Equation 6

αG 0.4175 0.4175

Equation 7

βT 0.275 0.275

Equation 8

βC 0.35 0.35

γC — 0.1

σC 10 10

Response threshold 4.5 5.0

Equation 9 (MSN)

αw 0.07 × 10−9 1.0 × 10−9

βw 0.02 × 10−9 0.9 × 10−9

γw 0.005 × 10−9 0.005 × 10−9

Equation 9 (TAN)

αw 0.6 × 10−7 0.8 × 10−7

βw 0.1 × 10−7 0.2 × 10−7

γw 0.005 × 10−7 0.005 × 10−7

Equation 9 (General)

θAMPA 10 10

θNMDA 25 25
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network collapses (e.g., a unit never fires, no matter what its
input, or it always fires). Within the range of reasonable pa-
rameter values, the model tends to always make the same
qualitative predictions. For example, the TANs always inhibit
the MSNs, so when the TAN activity decreases, the MSNs
becomemore responsive to cortical input. Different numer-
ical values of the parameters within the reasonable range
tend to change the predictions of the model only slightly.
For example, learning and extinction rates may change, but
not whether the model learns or extinguishes. Thus, we
believe that all of the predictions derived in this article fol-
low in a necessary fashion from the general architecture
of the model and do not depend in any critical way on our
ability to find exactly the right set of parameter values.
To verify these observations more formally, we imple-

mented the following sensitivity analysis for the most
complex empirical application reported in this article—
namely, our demonstration that the model accounts for
fast reacquisition after extinction of an instrumental behav-
ior (i.e., top panel of Figure 7). The analysis proceeded as
follows. For each of the nine most important parameters
in the model (Equation 8 response threshold, θAMPA and
θNMDA from Equation 9, Equation 9 values of αw, βw, and
γw for corticostriatal learning, Equation 9 values of αw, βw,
and γw for CM/Pf–TAN learning), we successively changed
the parameter estimate from the value used to generate
the predictions shown in the top panel of Figure 7 by
−1%, −10%, +1%, and +10%. After each change, we sim-
ulated the behavior of the model in the same conditions
used to generate Figure 7. Next, after each new simulation,
we computed the correlation between the learning curve
shown in the top panel of Figure 7 and the learning curve
produced by the new version of the model. In all ex-
cept one case, these correlations exceeded .99, suggest-
ing that the model makes the same qualitative predictions
for a wide range of each of its parameters. The only ex-
ception occurred for a +10% increase in the response
threshold parameter (i.e., the threshold for a cortical unit
to initiate a motor response). In this case, the correlation
was .74. Importantly, however, even in this case, the
model predicted that reacquisition was faster than orig-
inal acquisition.

Specific Notes on Model Fitting

When updating cortical–striatal synaptic strengths, we
summed the total positive medium spiny activation dur-
ing stimulus presentation to obtain the postsynaptic activ-
ity sum. When updating CM/Pf–TAN synapses, we only
summed the first 200 msec after stimulus presentation
to obtain the postsynaptic activity sum. This was necessary
because the TAN pauses for most of the stimulus presen-
tation. By limiting our sum to the first 200 msec after stim-
ulus presentation, we were essentially capturing the short
burst of spikes that tends to precede each pause.
The data from the Barnes et al. (2005) experiment were

based on an average of 38 trials per block for six blocks

during acquisition, 33 trials per block for five blocks during
extinction, and 38 trials per block for six blocks during re-
acquisition. Acquisition and reacquisition occurred with
continuous reinforcement. During extinction, four animals
received rewards on 3–9% of trials in each block, and three
animals never received a reward. We simulated this experi-
ment with the single-response version of the model (as in
Figures 2 and 3) to ensure that the same model was used
to generate both Figures 7 and 8. To generate predictions,
the model was run through the entire experiment for 70
iterations (i.e., 228 trials of acquisition, 165 trials of extinc-
tion, and 228 trials of reacquisition). In all iterations, the
model received continuous reinforcement during acquisi-
tion and reacquisition. For 40 iterations, themodel received
a reward on 5% of extinction trials, and for the other 30
iterations, it never received a reward during extinction.
Spike frequencies were converted to relative firing rates
in the following way. First, note that Barnes et al. defined
relative firing rate as the proportion of total spikes recorded
while the animal was in the maze that were produced in re-
sponse to the auditory cue. We assumed that the Session 1
data from the acquisition period could be used to estimate
baseline firing levels (i.e., before significant learning has oc-
curred). Figure 8 shows that this value is roughly .10 (actu-
ally slightly less), which means that 10% of the total spikes
before learning are produced to the tone. Suppose the ab-
solute number of spikes produced to the tone before learn-
ing was B0, then the total number of spikes produced while
the animal is in the maze (before learning) is 10B0. Let N
equal the number of spikes produced by the model in re-
sponse to the tone. As mentioned before (see footnote 9),
our model of MSNs has a baseline firing level of 0. So be-
fore learning, n = 0 (or a very small number). Thus, on
each trial, we assumed the number of spikes recorded in
response to the tone was N + B0, and the total number
of spikes recorded for the entire trial wasN+10B0. Figure 8
was produced with a value of B0 = 6.5.
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Notes

1. Evidence suggests that the postsynaptic effect of ACh is to
stabilize MSN membrane potential while it is either in the up or
down state (Gabel & Nisenbaum, 1999). In contrast, the presyn-
aptic effects seem to be mostly inhibitory (mediated by musca-
rinic M2 receptors on the axons of cortical pyramidal neurons;
e.g., Calabresi et al., 2000).
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2. We modeled the inhibitory effect of TANs on activation at
cortical–striatal synapses as postsynaptic. Asmentioned above, the
most significant inhibitory effect may be presynaptic (Pakhotin &
Bracci, 2007; Calabresi et al., 2000). Modeling the inhibitory ef-
fects as postsynaptic simplifies the model because it allows us to
model cortical input as a simple square wave. We are confident
that none of the simulations reported in this article would change
in any significant way if we changed the model by replacing the
square-wave model of cortical input with a more realistic spiking
model and making the TAN inhibition presynaptic rather than
postsynaptic. Note also that our model ignores postsynaptic ex-
citatory effects of ACh. These are poorly understood, and it is not
clear what role they play in cortical–striatal dynamics or how they
should be modeled.
3. This is the classical view of the basal ganglia (i.e., as providing a
brake on cortex). Thalamic neurons frequently fire a rebound burst
when released from inhibition, however (Sherman & Guillery,
2006), so another possibility may be that striatal firing initiates an
excitatory input from thalamus to cortex. We believe that the qual-
itative behavior of our model would not change if we had included
rebound spiking in our model of thalamus.
4. Bayer and Glimcher (2007) recently reported evidence that
negative RPEs may be coded by the duration of the pause in
dopamine cell firing. This suggests that the dynamic range of
positive and negative RPEs may be more balanced than we have
modeled. However, we also constructed a model with equal dy-
namic range for positive and negative RPEs and found that the
modelʼs qualitative behavior and ability to account for the data
were unaffected.
5. Note that in the data of Aosaki, Tsubokawa, et al. (1994),
the TANs fire a burst at the end of the pause and then quickly
reduce their firing to baseline levels. We chose not to model
this feature of the data of Aosaki, Tsubokawa, et al. (1994) be-
cause the data of Reynolds et al. (2004) shown in Figure 4 do
not display this property. If we had incorporated a rebound
burst into the model, then Figures 4 and 6 would change of
course, but none of the other predictions reported in this arti-
cle would change in any way.
6. We did not explicitly model this broad tuning. Instead, we
mimicked the effects of broad tuning by setting the learning
rates higher on the CM/Pf–TAN synapse than on the sensory
cortex–MSN synapses (i.e., see Table A1 for specific numerical
values of all parameters).
7. The relative firing rate plotted in Figure 8 is defined as the
number of spikes elicited by the auditory tone divided by the
total number of spikes recorded during the entire time the an-
imal was running in the maze.
8. We assumed that the response of each unit decreased as a
Gaussian function of the distance in stimulus space between
the stimulus preferred by that unit and the presented stimulus.
Specifically, if a stimulus with stylus speed xs mm/sec was pre-
sented, then the response of the unit maximally tuned to speed
x mm/sec was exp[−(x − xs)

2 / 2.5].
9. The Izhikevich (2007) model of MSN activation used in this
article gives a good account of patch–clamp experiments, but
the model predicts that MSNs never fire spontaneously. In fact,
MSNs do not have a high spontaneous firing rate (e.g., Wilson,
1995). Nevertheless, they do sporadically fire in the absence of
significant stimulation. This is easily seen in Figure 9. We chose
to model this spontaneous activity by adding a Poisson process
to the spike trains that were generated from Equations 1 and 2.
In the present application, this noise process added, on aver-
age, three spikes per second. We augmented the model in this
way only for the two applications where we fit the model to
spike trains from MSNs (i.e., this application and the application
to the data of Barnes et al., 2005). Note, however, that even
without adding these extra random spikes, the model still ac-
counts for the most important qualitative properties of the data

of Merchant et al. (1997)—namely, category-specific respond-
ing during the active condition and no response to these same
stimuli in the passive condition. It is also important to note that
adding or not adding this extra noise source would not affect
any other applications in this article.
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