
Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

101

Extreme Designing: Binding Sketching to an Interaction
Model in a Streamlined HCI Design Approach

Bruno Santana da Silva, Viviane Cristina Oliveira Aureliano, Simone Diniz Junqueira Barbosa
SERG, Departamento de Informática, PUC-Rio

R. Marquês de São Vicente, 225
Gávea, Rio de Janeiro, RJ, Brasil, 22451-900

+55 21 3527-1500 ext. 4353
{brunosantana, vaureliano, simone}@inf.puc-rio.br

ABSTRACT
This paper presents a streamlined approach to human-computer
interaction design called extreme designing. Extreme designing
follows on the footsteps of agile methods and is analogous to
extreme programming. However, it is not radically committed to
“user interface coding” (sketching or prototyping alone), but
instead proposes to combine user interface sketches with a more
structured representation such as an interaction model. By doing
so, it brings together the advantages of sketching and prototyping
as a communication tool, and of interaction modeling as a glue
that binds together the sketches to allow designers to gain a more
comprehensive view of and to reflection on the interactive
artifact, thus promoting a more coherent and consistent set of
design decisions.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User Interfaces –
Theory and methods.

General Terms
Design, Documentation, Human Factors.

Keywords
Streamlined approaches to HCI design, Communication-centered
design, Interaction design, Sketching, Semiotic engineering

1. INTRODUCTION
Interactive software development processes lie on a continuum
between prototype-driven (more agile, streamlined) processes and
specification-driven (model-based) processes. From the early
days, traditional software development processes have focused on
detailed software specifications. But, as business practices
become more dynamic and technology evolves ever so more
rapidly, in recent years, agile methods have received increasing

attention from the industry and academia alike. Moreover, as
software becomes increasingly more interactive and accessible to
a wider range of users, human-computer interaction (HCI)
concerns have come to play a major role in software development
as well, emphasizing the need for user involvement in the
development process and intermediate artifacts that promote
communication between designers, developers, and users.
Scenarios, storyboards and prototypes are increasingly being used
in a variety of software development processes, even those who
don’t follow user-centered design nor consider usability as high
priority.

Extreme programming [[6]] is an exemplar of an agile
development process that focuses on rapid development and code
production, driven mostly by user stories. When seen from an
HCI perspective, however, agile methods such as extreme
programming lack a coherent vision of the application’s emerging
behavior, where all user stories should fall into place. Such a
vision is essential for building an adequate and coherent user
interface, i.e. a user interface that reveals consistent interaction
patterns across the supported goals and tasks.

In this paper, we present a streamlined approach to interactive
software design that aims to promote the creation of alternative
design solutions that are not evaluated in an isolated fashion.
Instead, design fragments are put together making up interaction
threads that are then evaluated as a coherent whole. The proposed
approach combines the agility, power and flexibility of sketching
with the structure and a more comprehensive view of the product
provided by an interaction model.

This approach is grounded in the semiotic engineering of human-
computer interaction [[14]], a theory that explores HCI as
communication phenomena, be it among various users, or from
designer to user via the user interface.

In the next section, we briefly present the semiotic theory
underlying our work, followed by a description of the
communication-centered approach to interactive software design.
In the fourth section, we briefly present the philosophy of agile
methods and how they may fit into HCI-related processes. Next,
we present extreme designing, describing how sketches and
interaction models may be combined to form a streamlined HCI
design approach. We discuss how formative evaluation may take
place in this context, and finally conclude with some additional
remarks and directions for future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission from authors.
IHC 2006 – VII Simpósio Sobre Fatores Humanos em Sistemas
Computacionais. Novembro, 2006, Natal, Rio Grande do Norte, Brazil.

 ACM .2006 ISBN 1-59593-432-4/06/0011.

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

102

2. THE SEMIOTIC ENGINEERING OF
HUMAN-COMPUTER INTERACTION
Semiotic engineering takes on a communicative perspective to
HCI, viewing the user interface as a metamessage sent from
designers to users. One of the design issues it addresses is the
engineering of sign systems that convey what HCI designers and
users have in mind and what effect they want to cause in the
world of things, practices, ideas and experiences [[14]]. The
interface signs constitute a message sent from designers to users,
created in such a way as to be capable of exchanging messages
with users, i.e., allowing human-system interaction. In semiotic
engineering, the high-level message sent from the designer to
users can be paraphrased as follows [[14]]:

“Here is my understanding of who you [users] are, what
I’ve learned you want or need to do, in which preferred
ways, and why. This is the system that I have therefore
designed for you, and this is the way you can or should
use it to fulfill a range of purposes that fall within this
[my] vision.” (p.84)

In particular, semiotic engineering proposes a change of focus
from producing to introducing design artifacts to users [[13]].
Because semiotic engineering brings to the picture designers
themselves as communicators, we need to provide tools to better
support them in this communicative process, ultimately via the
user interface.

Traditional software development processes assume that the
conversations between users and designers occur in two stages:
early in the process, in analysis activities, and later when there is
a prototype or product, in user testing. Semiotic engineering
proposes that this conversation continues during interaction,
through the system [[13]]. The theory actually introduces an
ontological element called the designer’s deputy, who “speaks” to
users on behalf of the designer during their interaction with the
system. The theory also proposes a set of tools for designing help
systems, extensible applications, and multi-user applications.
These tools, however, are of a singular nature: they are not
defined mostly as construction tools used directly for generating a
software solution. Instead, semiotic engineering puts forth
epistemic tools, elaborated mainly to help designers reflect about
the product at hand [[14]].

The theory is in line with Schön's view of reflection-in-action, in
which the activities of framing and naming a problem are
considered essential for first understanding it from different
perspectives, before trying to work a solution for it [[31]]. In our
work, the elements for reflection are communicative in nature.

3. COMMUNICATION-CENTERED
DESIGN
Within semiotic engineering, the communication-centered design
approach emerged as an attempt to ensure that domain concepts to
be communicated to users are well represented and understood by
every team member1 before proceeding to later design stages

1 By “team members” we mean the project stakeholders and

designers (members of the development team from various

[[3]]. It argues for the need to promote the shared understanding
among the team members (for instance, by representing domain
concepts and their interrelationships), and to allow designers to
represent communication-centered concerns developed for
improving designer-to-user communication during interaction
[[13], [14]].

In order to address the communication-oriented concerns, Barbosa
and co-authors have used scenarios and sketches representing user
interface and interaction fragments, combined with an interaction
model that provides structure to these fragments, making up a
global view of the application’s apparent behavior, i.e., a
blueprint of the user-system interaction possibilities [[3]].

The basic assumption of the communication-centered approach to
design is that, in order to increase the chances of engineering
adequate signs at the user interface to convey the designers’
vision and thus properly introduce the design artifact, this vision
must first be established and communicated effectively among
team members themselves (Figure 1). In other words, if designers
are unable to convey their vision to each other and to every
stakeholder, they will hardly succeed in conveying it to users
(through the user interface).

If, on the other hand, they succeed in promoting designer-designer
communication via communication artifacts, they will be better
equipped to communicate with users through the user interface,
i.e., to engineer the user interface sign systems.

In this paper, we advocate a streamlined approach to
communication-centered design. The designers’ vision is to be
elaborated incrementally and in short cycles, supported by
sketches and interaction diagrams. In line with other agile
approaches, the use of detailed specification models is secondary
to the rapidity and brevity of the iterative design and development
cycles. Unlike most agile approaches, however, we maintain
enough documentation so as to create the designer-to-user
metamessage. This way, we take one step towards an agile
communication-centered approach to interactive software design
and development.

disciplines, such as software engineering, human-computer
interaction, graphics design, linguistics, psychology and so on).

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

103

system

user
interface

communication-
oriented concerns
(designer-to-user
communication)

individual
designer’s

understanding

individual
designer’s

understanding

individual
designer’s

understanding

design team’s
shared

understanding

users

domain
concepts and
relationships

What? How?
Who? When?

Why? Why not?
What if?

what

engineering of
user interface
sign systems

software design
and

specification

specification
models

how

individual
designer’s

understanding

scenarios, interaction model and sketches

Figure 1: Communication-centered design (adapted from [[3]]).

4. AGILE METHODS
Software development has come a long way from traditional
waterfall lifecycles. In the 80’s, Boehm and co-authors called
attention to the need for more prototyping over specification,
when it comes to highly interactive software [[10]]. In the late
90’s, several methodologies were proposed that emphasized
“close collaboration between the programmer team and business
experts; face-to-face communication (as more efficient than
written documentation); frequent delivery of new deployable
business value; tight, self-organizing teams; and ways to craft the
code and the team such that the inevitable requirements churn was
not a crisis.” [[1]]

The agile movement is best illustrated by the Manifesto for Agile
Software Development, which states that [[7]]:

“We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.”

Perhaps the most famous “product” of the agile movement so far
is the extreme programming approach [[6]], which comprises four
values ⎯communication, simplicity, feedback, and courage⎯
and five basic principles ⎯ rapid feedback, assume simplicity,
incremental change, embracing change, and quality of work.

Agile methods pay significant attention to users and their needs.
They bring users to the development process from the early
stages, when the requirements are discovered, and give them an
opportunity to speak up and say what they really need and want.
Is this “listening to users” in the agile methods enough to address
HCI issues?

4.1 Agile Methods and HCI
There have been many attempts to integrate software engineering
and human-computer interaction [[32]]. Recently, agile methods
have also come to the picture [[9], [12], [18]]. Blomkvist has
discussed both agile and user-centered design (UCD) principles,
and some ways in which they could be integrated [[9]]. In fact,
UCD has always advocated, by definition, a closer contact with
the user throughout the development process. Moreover, many
HCI processes are typically more iterative and prototype-based
than traditional non-HCI software development processes. As
such, most HCI approaches are in line with the agile principles
that focus on “individuals and interactions” and “customer
collaboration” (this one addressed more intensely by participatory
design methods).

However, agile methods usually make users responsible for
identifying and specifying requirements, like in the writing of
user stories in extreme programming. When requirements are
related to the user interface, users end up responsible for also
designing the user interface. We agree with Blomkvist [9] when
he states that:

“Customers/users participate in agile development by
writing and prioritizing system features (know as user
stories in XP) and specifying accepted tests. Users can
express what they need to a certain extent, but on their
own, it is difficult for them to actually design a new

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

104

system. User stories or use cases, which are often used
to specify user needs, fail to capture many aspects of
user interaction. (…) By letting the user write their user
stories themselves, there is a risk that the developers
will transfer the responsibility of the system’s usability
to the users/customers” (pp. 232–233)

5. EXTREME DESIGNING
In a way analogous to extreme programming, our work proposes a
new approach called extreme designing. Extreme designing is not
as radical as extreme programming, in the sense that we propose
to use a simple representation to relate and integrate different
portions of the software represented in sketches into a coherent
whole, as well as to incrementally answer design questions that
are fundamental to communication-centered design. Detailed
specification, however, is not an ultimate goal of extreme
designing.

Extreme designing is in line with the Agile Manifesto, but with a
major difference: our focus is on design and not development.
Therefore, we needed to change the concept of “working
software”. We advocate the use of a sketch-based prototype where
user-system interaction may be simulated, so that the portions of
the prototype may be evaluated with users before coding begins.
This is important for highly-interactive systems, in which the
users’ response to prototypes may greatly influence (for the
better) the resulting artifact [[10]].

In line with extreme programming, we also advocate the use of
user stories or short scenarios as a starting point for design.
Instead of moving from user story directly to code, however,
extreme designing inserts the activities of sketching, incremental
lightweight model building, formative evaluation and assessment
with users, before moving to code.

Moreover, instead of having user stories and sketches as the only
design documentation, extreme designing proposes the use of a
streamlined structuring representation that binds together the
stories and sketches into a more coherent whole. When building
this representation, designers reflect on important design issues
posed by semiotic engineering and described in the
communication-centered design approach [[3]]. We argue that,
without the connections provided by such a representation, the
designer-to-user communication may suffer, because conflicting
signs and messages may emerge from the fragments of the
application. By having a structuring representation that acts like a
glue language relating individual user interface sketches or
fragments, extreme designing provides a better resource for
designers to evaluate their message to users from various
perspectives, to create a coherent and consistent message, and to
avoid communication breakdowns and conflicts. Figure 2
illustrates the extreme designing approach.

It is important to note that, in extreme designing, the user, task
and context analyses are also conducted incrementally, pari passu
the design efforts. This is made possible by an intensive user
involvement and participation throughout the process.

Due to the grounding of communication-centered design in
semiotic engineering, we inspected the semiotic engineering
design models and decided to use, as a structuring representation,
MoLIC (Modeling Language for Interaction as Conversation)
diagrams. The need for a structured interaction model like MoLIC
in HCI design has been argued elsewhere [[3], [4]]. In this paper,
we only claim that the elaboration of such a model must be driven
by user stories and design questions incrementally and iteratively,
in short cycles, so as to not get in the way of more rapid design.

The next subsections briefly review the role of both sketching and
MoLIC in HCI design.

5.1 Sketching User Interfaces
The benefits of sketching in design activities are widely known
[[31]]. Far from being quick-and-dirty representations, user
interface sketches represent an overall arrangement and
organization of the user interface elements and widgets, focusing
more on content and structural aspects than on the look-and-feel
and visual details of the final product.

Some researchers have gone one step further and provided
software tools to support interactive sketching [[20], [21], [22]].
Plimmer and Apperley have conducted a study that shows that
interacting with digital sketches adds new characteristics to the
user interface design process [[28]]. Digital sketching allows
designers to make a larger number of revisions with the produced
drawings, once they are easily edited. In contrast with paper
sketches, pieces of a digital sketch can be more easily moved
around and reused in other sketches via copy-and-paste
mechanisms, instead of having to be redrawn entirely. Moreover,
in some of the tools, it is also possible to simulate the behavior of
the produced sketches by using storyboards.

We claim that sketches alone provide fragmented views of the
user interface, focusing on a single task or few tasks at a time.
When putting some or all users’ goals together, however, there are
many interdependencies among goals that emerge and that may
affect the user interface sketches. Moreover, the interaction paths
connecting the sketches are not always clear, and it is difficult to
assess their “completeness”.

Although no one can guarantee completeness of a representation,
we do need to provide means to inspect whether the user interface
sketches fully represent the range of goals and interactions that
users may have with the system. In extreme designing, we attempt
to do this by relating the sketches and user stories to a more
structured representation: an interaction model.

5.2 MoLIC: An Interaction Modeling
Language
As we have said, in line with Schön’s approach to design [[31]],
semiotic engineering focuses on epistemic tools which aim to help
designers name and frame an interactive problem, elaborate or
search for solutions to them, refine, test, and reflect on the unique
solution to the given problem, instead of generating or pointing
out solutions for types of known problems [[14]]. However, from
the conceptual solution to the concrete representation of the
solution, many decisions may be made that

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

105

user story or
scenario

interaction
diagram (MoLIC)

user interface
sketch

designers fit UI sketch or
fragment into interaction
diagram

incrementally built

user stories or
scenarios

user stories or
scenarios

user stories or
scenarios

prioritized
user story

users inspect
UI sketch

simulated
prototype coding, testing…

Extreme designing

“pair designing”

iterations

designers
elaborate and
inspect UI sketch

Figure 2: The extreme designing approach.

go unnoticed or unrepresented. Thus, the working solution may
not reflect the designers’ intentions when conceiving it.

This gap was discussed by Frederick Brooks [[11]], in what he
called, borrowing Aristotle’s terms, the essence-accident gap in
software engineering. More recently, this gap was revisited by
Dan Berry in what he called “the inevitable pain of software
development” [[8]], where methods and models adequate for one
side of the gap make the traversal to the other side harder and
more painful.

In order to help bridge the essence-accident gap, Barbosa, Paula
and Silva devised a modeling language that explicitly encourages
the reflection on the designers’ deputy’s discourse and a partial
representation of this discourse in an interaction model that
follows an “interaction as conversation” metaphor. The
representation language for the model is called MoLIC, which
stands for “Modeling Language for Interaction as Conversation”
[[4], [26], [34]]. Besides encouraging the designers’ reflection on
the interactive solution, MoLIC also serves as a concrete resource
for the interactive software construction.

When interaction is viewed as conversation, an interaction model
should represent the whole range of communicative exchanges
that may take place between users and the designer’s deputy. In
these conversations, designers establish when users can “talk
about” the signs we extracted from the user stories. The designer
should clearly convey to users when they can talk about what, and
what kinds of response to expect from the designer’s deputy.
Although designers attempt to meet users’ needs and preferences
as learned during user, task and contextual analyses (through

iterative cycles), designing involves trade offs between solution
strategies. As a consequence, users should be informed about the
compromises that have been made. For instance, MoLIC allows
the representation of different ways to achieve a certain result,
criteria to choose one from among them, and of what happens
when things go wrong. In fact, MoLIC was devised to encourage
designers to reflect on the communicative needs of users at
interaction time. And these communicative needs become more
relevant when “something wrong” occurs [[24]].

MoLIC supports the view of interaction as conversation by
promoting reflection about how the design decisions made at this
step will be conveyed to users through the interface, i.e., how the
designers’ decisions will affect users in their perception of the
interface, in building a usage model compatible with the
designers’, and in performing the desired actions at the interface.
This model has a diagrammatic representation used to define all
of the potential conversations that may take place between user
and system, giving designers an overview of the interactive
discourse as a whole.

6. FORMATIVE EVALUATION IN
EXTREME DESIGNING
With sketches related to MoLIC diagrams, designers may make
various kinds of inspections about the interactive discourse under
design, before spending time in developing a running prototype.
First, MoLIC allows designers to check whether the minimum
cycle of interaction is being preserved: “the application
[designer’s deputy] ‘says’ something to the user; the user ‘says’

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

106

something to the application (that triggers an action); the
application [designer’s deputy] ‘replies’ to the user” [[15]].

Because of MoLIC’s metaphor of interaction as conversation, we
may also resort to linguistic research in order to find tools that
prove to be interesting in the interaction design context. In
pragmatics, we find Grice’s Cooperative Principle (CP)
particularly relevant. CP states that [[17]]:

“Make your conversational contribution such as is
required, at the stage at which it occurs, by the
accepted purpose or direction of the talk exchange
in which you are engaged.” [[17], p.45]

This principle is supported by a number of conversational
conventions, or maxims:

Maxim of Quantity: Make your contribution as informative as is
required (for the current purposes of the exchange). Do not make
your contribution more informative than is required.

Maxim of Quality: Do not say what you believe to be false. Do
not say that for which you lack adequate evidence.

Maxim of Relation: Be relevant.

Maxim of Manner: Be perspicuous. Avoid obscurity of
expression. Avoid ambiguity. Be brief (avoid unnecessary
prolixity). Be orderly.
In addition, Grice proposes that a maxim such as “Be polite” is
also normally observed.

A MoLIC diagram may be inspected to check whether Gricean
maxims are being observed in the deputy-user conversation. The
maxim of quantity may be checked with respect to the number of
utterances in a topic, the number of signs in an utterance, and also
the number of outgoing utterances in a scene (number the choices
presented to the user for proceeding with the conversation).
Superfluous utterances should be relocated or removed from the
diagram. The maxim of quality is applied mainly to the deputy’s
utterances resulting from system processes, i.e., the system
feedback must accurately reflect the status and result of the
processing. This maxim is especially important to promote the
users’ perception of privacy and trust.

The maxim of relation may be observed intra-scene, checking
whether the utterances in a scene are closely related to the scene
topic, and between scenes, to check for abrupt changes in the
conversation thread, which may raise doubts or cause users to
hesitate.

Observing the maxim of relation is important to provide the
answers to the users’ doubts in a timely fashion. We can use the
results from communicability evaluation research [[27]] to
identify where, in the interaction, certain types of users’ doubts
[[2], [33]] may emerge and thus design appropriate deputy’s
utterances in response.

The maxim of manner is related to the content of the deputy’s
utterances, and thus need to be observed when defining the final
expression of every piece of content uttered by the deputy,
ranging from explicit instructions and messages to field labels and
tips.

By following an interaction-as-conversation metaphor, we may
also benefit from conversation analysis to assess the quality of the
interaction. Issues like turn-taking, adjacency pairs (such as
greeting–reciprocation, summons–acknowledgement, request–
compliance, assertion–agreement, question–answer, and so on),
inserted sequences, sequential placement, reformulations,
markedness of utterances, to name a few concepts, may further
illuminate interaction design using MoLIC [[19]] and sketches.

Grice’s principles can also be applied to sketches: the quantity of
signs in each sketch for instance, regards the maxim of quantity.
All the necessary goals should be depicted, but superfluous signs
should be avoided.

The maxims of quality and manner could be applied to the
adequate choice of signs to convey both information and
instructions at the user interface. The maxim of relation regards
the relations between the set of signs in a sketch and the signs
necessary for the user to achieve the corresponding (sub)goal.

Another way to guide a communication-based formative
evaluation is to resort to previous investigations on
communication problems that users commonly experience when
interacting with an application. These problems may be expressed
by their frequent doubts and needs for instructions and
information, i.e. help content. In the literature about help systems,
we find that users would like to receive answers to their most
frequent doubts, as summarized in Table 1 [[2],[33]].

Table 1. Taxonomy of users’ frequent doubts.

Types of
Questions

Sample Questions

Informative What kinds of things can I do with this
program?

Descriptive What is this? What does this do?

Procedural How do I do this?

Interpretive What is happening now? Why did it happen?
What does this mean?

Navigational Where am I? Where have I come from?
Where can I go to?

Choice What can I do now?

Guidance What should I do now?

History What have I done?

Motivational Why should I use this program? How will I
benefit from using it?

Investigative What else should I know? Did I miss
anything?

For designers to elaborate the designers’ deputy’s discourse, and
thus elaborate a MoLIC diagram, they need to incrementally form
an understanding of the domain and of the effects of their design
decisions on the final product (i.e. the user interface), considering
the user as an interlocutor in the conversation. By using these
potential user questions, we help designers to reflect while they
make important design decisions, engaging in reflection-in-action
[[31]] about user-system communication and thus enhancing
system’s accountability [[16]]. In future work, we would want to

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

107

encourage the representation of these design decisions, thus
building the design rationale of the envisaged application.

From the users’ point-of-view, we make use of communicability
and help utterances that allow users to better express their doubts
during interaction [[30]] (Table 2). By anticipating users’ doubts
during design, designers will be better equipped to deal with the
users’ communicative needs, either by designing applications that
avoid interaction breakdowns altogether, or by giving users better
chances for circumventing them [[36]].

Table 2. Communication-oriented utterances related to users’
doubts during interaction breakdowns.

Original Communicability
Utterances

(Additional) Help Utterances

What’s this?

What now? (What can I do?
What should I do? Where can I
go?)

What happened?

Why doesn’t it (work)?

Oops!

Where is it?

Where am I?

I can’t do it.

How do I do this? (Is there
another way to do this?)

What is this for? (Why should I
do this?)

Whom/What does this affect?

On whom/what does this
depend?

Who can do this?

Where was I?

Silveira and co-authors have described how draft answers to some
of these questions may be generated from design models [[34]].
We propose to analyze whether the answers to these questions are
clearly conveyed in the sketches, or across sketches in the
interaction model. In extreme designing, this is done in the
inspections carried out by both designers and users.

7. CONCLUDING REMARKS
In this paper, we have taken an alternative view to both
specification-based and prototype-based design processes.

By combining sketches with a global interaction model, a
communication-centered approach may promote agility and
coherence in design. Agility is promoted by shorter iterations and
by elaborating documentation in a “need-to-document” basis.
Coherence is promoted by the application blueprint provided by
MoLIC. By facilitating the communication among the design
team members, the combination of these two representations
allows user representatives in the design team to contribute not
only with operational and tactical knowledge about the
application (i.e., how it works), but also strategic knowledge. This
allows the whole design team to acquire a deeper understanding
of the application’s reason of being and thus clarify the design
team’s intentions to be conveyed at the user interface. This
knowledge may also promote design creativity and exploration of
various contexts to improve designer-to-user communication.

The semiotic engineering theory of HCI is an overarching theory
that accounts for a range of communicative processes during
interaction. Relying on the theory’s ontological stance, an
interaction model was devised to allow designers to reflect on and
build interactive solutions to users’ problems, focusing on the

content of the designer-to-user communication. The expression of
that communication is provided by the sketches, an efficient
representational tool to evaluate alternative ideas and present
them to users for discussion.

MoLIC has been used in the past few years in undergraduate and
graduate HCI courses, and a number of applications have been
designed, both for GUI (a neural network system, a hierarchical
plan editor, and a location-based instant messaging application for
mobile devices) and for the Web (a bulletin board, a discussion
forum, an annotation system, a conference-management system,
and a web content publication system).

Our experience using sketches linked to a MoLIC diagram has
provided evidence of some important benefits. First, the approach
enhances the understanding of the solution from design team
members of different disciplinary backgrounds. MoLIC has
served as a common representation for HCI designers,
psychologists, graphics designers, system analysts and
programmers to reflect and discuss about the solution being
designed [[5]].

MoLIC has been used to generate usage scenarios to promote
communication with users and draft UML diagrams as a first step
towards system architecture and specification [[28]]. It has also
been used for representing interaction design patterns that are
both rich in contextual information (as the original patterns) and
useful for representing the design solution (as typical software
design patterns) [[27]].

An interaction solution elaborated according to the extreme
designing approach may also be evaluated following a paper
prototyping method [[36]]. The test scenarios could be directly
extracted from MoLIC, as it provides an association between
users’ goals and interaction paths. Also, by using MoLIC as the
tissue that holds together the individual sketches, designers have
an indication of when a partial solution is sufficiently defined to
be used in user evaluation with paper prototyping, i.e., when a
range of interrelated goals is fully defined. This way, the
evaluation of certain parts of the application using paper
prototyping may be carried out as early as the designers deem that
it makes sense to do it, informed by the MoLIC diagrams.

We are currently developing a tool to support extreme designing.
One of the motivations for developing the tool may be borrowed
from Constantine and Lockwood’s statement: “We draw diagrams
only when we have to or when drawing them is faster then not
drawing them.” [[12], p.5]. The tool will let designers
incrementally build a MoLIC diagram and associate each element
of the diagram to one or more sketches, document alternatives and
the criteria for choosing among the alternatives. To enhance
communication between designers and users, the tool will let
users simulate the behavior of the application by navigating
through the sketches in the ways specified in the interaction
model. As for future work, we aim to integrate existing design
patterns into the tool, by creating a catalog integrating user
interface and interaction design patterns, as well as to derive
UML diagrams to better assist software engineers in building the
application.

8. ACKNOWLEDGMENTS
The authors thank CNPq and CAPES for the financial support to
their work. We thank our colleagues and students at the Semiotic

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

108

Engineering Research Group for interesting discussions on
various HCI issues and topics.

9. REFERENCES
[1] Agile Alliance, online. Available online at:

http://www.agilealliance.org/intro (last visited on June
2006).

[2] Baecker, R. M. et al., Readings in Human-Computer
Interaction: toward the year 2000. San Francisco:
Morgan Kaufmann Publishers, Inc. 1995.

[3] Barbosa, S. D. J.; Silveira, M. S.; Paula, M. G.;
Breitman, K. “Supporting a Shared Understanding of
Communication-Oriented Concerns in Human-
Computer Interaction: a Lexicon-based Approach” In
R. Bastide, N. Graham, J. Röth (eds.) Proceedings of
EHCI-DSVIS 2004, Schloss Tremsbüttel, Hamburg,
Germany, 2004.

[4] Barbosa, S. D. J.; Paula, M. G. “Designing and
Evaluating Interaction as Conversation: a Modeling
Language based on Semiotic Engineering” In J. Jorge;
N. J. Nunes; J. Falcão e Cunha (eds.) Interactive
Systems Design, Specification, and Verification – 10th
International Workshop, DSV-IS 2003, Funchal,
Madeira Island, Portugal, Lecture Notes in Computer
Science, Vol. 2844, 2003. pp. 16–33.

[5] Barbosa, S. D. J.; Paula, M. G.; Lucena, C. J. P.
“Adopting a Communication-Centered Design
Approach to Support Interdisciplinary Design Teams”.
ICSE 2004 Workshop Bridging the Gaps II: Bridging
the Gaps Between Software Engineering and Human-
Computer Interaction. Edinburgh, Scotland. 2004.

[6] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[7] Beck, K. et al. Agile Manifesto, 2001. Available online
at: http://agilemanifesto.org/ (last visited on June
2006).

[8] Berry, D. M., “The Inevitable Pain of Software
Development: Why There Is No Silver Bullet”,
Monterey Workshop 2002, Radical Innovations of
Software and Systems Engineering in the Future,
Venice, Italy, 2002.

[9] Blomkvist, S. “Towards a Model for Bridging Agile
Development and User-Centered Design”. In A.
Seffah, J. Gulliksen, M. C. Desmarais (eds.) Human-
Centered Software Engineering – Integrating Usability
in the Development Process. Springer, 2005. pp. 219-
244.

[10] Boehm, B. W., Gray, T. E., and Seewaldt, T.,
“Prototyping vs Specifying: A Multi-Project

Experiment,” IEEE Transactions on Software
Engineering, May, 1984, pp. 290-303.

[11] Brooks, F. P., “No Silver Bullet—Essence and
Accident in Software Engineering “, Proceedings of
the IFIP Tenth World Computing Conference, pp.69–
76. 1986.

[12] Constantine, L. “Process Agility and Software
Usability: Toward Lightweight Usage-Centered
Design”. In Information Age, Aug/Sep 2002.

[13] de Souza, C. S., “Semiotic Engineering: bringing
designers and users together at interaction time”.
Interacting with Computers, vol. 17, Issue 3, May
2005, pp.317–341.

[14] de Souza, C. S., The Semiotic Engineering of Human-
Computer Interaction. Cambridge, MA: The MIT
Press. 2005.

[15] de Souza, C. S., Barbosa, S. D. J., Silva, S. R. P.
“Semiotic engineering principles for evaluating end-
user programming environments”. Interacting with
Computers, 13 (4), 2001, pp.467-495.

[16] Dourish, P., Accounting for System Behavior:
Representation, Reflection, and Resourceful Action. In
M. Kyng and L. Mathiassen (eds.), Computers and
Design in Context. Cambridge, MA: The MIT Press,
pp. 145-170. 1997.

[17] Grice, H. P. “Logic and Conversation”. In Cole, P. and
Morgan, J. L. (eds.) Syntax and Semantics, vol. 3,
Speech Acts. New York, NY: Academic Press, 41-58.
1975.

[18] Gulliksen, J. Göransson, B.; Boivie, I.; Persson, J.;
Blomkvist, S.; Cajander, A. “Key Principles for User-
Centred Systems Design”. In A. Seffah, J. Gulliksen,
M. C. Desmarais (eds.) Human-Centered Software
Engineering – Integrating Usability in the
Development Process. Springer, 2005. pp. 17-36.

[19] Hutchby, I. and Wooffitt, R., Conversation Analysis.
Oxford: Blackwell. 1997.

[20] Landay, J. A. and Myers, B. A. “Interactive Sketching
for the Early Stages of User Interface Design”.
Proceedings of CHI 1995, pp.43-50.

[21] Landay, J. A.; Myers, B. A. Sketching Storyboards to
Illustrate Interface Behaviors. In Proceedings of CHI
1996, 1996, pp. 193-194.

[22] Landay, J. A.; Myers, B. A. “Sketching Interfaces:
Toward More Human Interface Design”. In IEEE
Computer, vol. 4, no. 3, 2001, pp. 56-64.

[23] Nielsen, J., Usability Engineering. Academic Press,
1993.

Anais do IHC 2006 – 19-22 de Novembro, Natal, RN, Brasil

109

[24] Norman, D. HCD harmful? A Clarification. jnd.org,
Available online at
http://www.jnd.org/dn.mss/hcd_harmful_a_clari.html
[last access in September 2005]

[25] Norman, D. and Draper, S. A. (eds.) User-Centered
System Design. Hillsdale, NJ: Lawrence Erlbaum and
Associates, 1986.

[26] Paula, M. G. Projeto da Interação Humano-
Computador Baseado em Modelos Fundamentados na
Engenharia Semiótica: Construção de um Modelo de
Interação. Dissertação de Mestrado. Departamento de
Informática, PUC-Rio, Março de 2003.

[27] Paula, M. G.; Barbosa, S. D. J. “Bringing Interaction
Specifications to HCI Design Patterns”. CHI 2003
Workshop Perspectives on HCI Patterns: Concepts
and Tools. Florida, USA, 2003.

[28] Paula, M. G.; Barbosa, S. D. J.; Lucena, C. J. P.
“Relating Human-Computer Interaction and Software
Engineering Concerns: Towards Extending UML
Through an Interaction Modeling Language”. Interact
2003 Workshop Closing the Gaps: Software
Engineering and Human-Computer Interaction.
Zürich, Switzerland, 2003.

[29] Plimmer, B.; Apperley, M. “Evaluating a sketch
environment for novice programmers”. CHI Extended
Abstracts 2003: 1018-1019.

[30] Prates, R. O., de Souza, C. S., Barbosa, S. D. J. “A
Method for Evaluating the Communicability of User
Interfaces”. ACM Interactions, 31–38, Jan-Feb 2000.

[31] Schön, D. A. The Reflective Practitioner: How
Professionals Think in Action. Basic Books. 1983.

[32] Seffah, A.; Gulliksen, J.; Desmarais, M. C. (eds.)
Human-Centered Software Engineering – Integrating
Usability in the Development Process. Springer, 2005.

[33] Sellen, A.; Nicol, A., “Building User-Centered On-line
Help”. In B. Laurel (ed.) The Art of Human-Computer
Interface Design. Reading, MA: Addison-Wesley.
1990.

[34] Silva, B. S. MoLIC Segunda Edição: revisão de uma
linguagem para modelagem da interação humano-
computador. Dissertação de Mestrado. Departamento
de Informática, PUC-Rio, Agosto de 2005.

[35] Silveira, M. S.; Barbosa, S. D. J.; de Souza, C. S.
“Model-Based Design of Online Help Systems”. In R.
Jacob, Q. Limbourg & J. Vanderdonckt (eds.)
Computer-Aided Design of User Interfaces IV. Kluwer
Academics Publishers, 2004, pp. 29–42.

[36] Snyder, C. Paper Prototyping. Morgan Kaufmann,
2003.

[37] Winograd, T. and Flores, F. Understanding Computers
and Cognition: A New Foundation for Design,
Addison-Wesley, Reading, MA. 1986.

