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Abstract— Hydrocarbons, carbon monoxide, and other pol-
luting emissions produced by diesel engines are usually much
lower than those from gasoline engines. However, higher com-
bustion temperature in diesel engines cause substantially larger
percentage of nitrogen oxides (NOx) emissions. Selective cata-
lyst reduction (SCR) is a well proven technology for reducing
NOx emissions from automotive sources and in particular,
heavy-duty truck diesel engines. In this paper, we develop a
linear parameter varying (LPV) control design method for the
urea-SCR aftertreatment system to minimize the NOx emissions
and ammonia slippage downstream the catalyst. Performance
of the closed-loop system obtained from the interconnection of
the SCR system and the output feedback LPV control strategy
is then compared with other control design methods including
sliding mode, and observer-based static state feedback methods.

I. INTRODUCTION

The lean burn conditions of diesel combustion that yield

improved efficiency produce an exhaust containing an excess

of oxygen (up to 10%). While net-oxidizing exhaust enables

the comparatively straightforward oxidation of hydrocarbons

and carbon monoxide (CO) on precious metal catalysts, it

complicates the chemical reduction of nitrogen oxides (NOx)

to N2. This scenario has led to the vigorous development of

technologies for NOx reduction to meet the stringent NOx

limit mandated by the EPA. The NOx emissions are one

of the main air pollutants which are responsible for ozone

depletion, photochemical smog formation causing severe

respiratory problems to humans. Selective catalyst reduction

(SCR) is a well proven technology used in power generation

for more than 30 years. Power generation involves very slow

variation of operating conditions, allowing simple open-loop

controllers to efficiently tackle the task of control. However,

automobile engines work in a broad envelope of fast varying

conditions, making the use of advanced control techniques

desirable.

The SCR system operates as follows: the urea injector,

driven by a command signal from the controller, pumps the

mixture of compressed air and aqueous urea solution into

the exhaust stream through the nozzle. Ammonia (NH3) and

carbon dioxide are formed as a result of urea decomposition

and HNCO hydrolysis in the exhaust pipe [3]. The mixture of

ammonia, CO2, remaining urea, and the exhaust then enters

the SCR catalyst, where NH3 reacts with NOx from the

exhaust producing pure nitrogen and water. A sensor placed

at the catalyst outlet measures concentration of the unreacted

NOx and supplies this information to the controller, thereby
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closing the loop. The control problem consists of achieving

the appropriate regulation of the urea injection to minimize

NOx emissions without significant ammonia slip.

There have been some efforts in lumped parameter mod-

eling of the SCR reactions in the literature. These simplified

models are appropriate for model-based control, since they

reduce the complexity of the design. Tronconi and Forzatti

[1] develop one- and two-dimensional steady-state isothermal

models of SCR for different geometries of the catalyst.

Upadhyay and Nieuwstadt [6] derive lumped parameter

model of SCR by first assuming that the catalyst behaves

as an isothermal continuously stirred tank reactor (ICSTR)

and neglecting mass transfer, and next using method of

weighted residuals. The reaction mechanism involves the

DeNOx reaction, adsorption/desorption of NH3 and NH3

oxidation. This model considers the reduction of only NO by

ammonia. Since, in Fe-zeolite catalyst NO2 based reactions

are highly favored, and NO2 is more toxic compared to NO,

Devarakonda et al. [10] present a set of ordinary differential

equations (ODEs) to model the SCR reactions considering

both fast SCR reaction involving NO2 and the standard SCR

reaction.

Model-based control and optimization of the SCR sys-

tem have been the focus of few recent published papers.

Upadhyay and Nieuwstadt [8] present a model-based control

strategy using sliding mode control. A nonlinear observer is

designed using the measured NOx concentration downstream

the SCR catalyst for estimation of surface coverage fraction

and ammonia slip concentration. A similar control design

method which incorporates both the NO and NO2 conversion

efficiency in addition to the ammonia slip is proposed in [11].

Schar et al. [9] use a similar model as in [6] and design

a model-based feedforward controller to limit the ammonia

slip and a PI feedback controller for disturbance rejection

purposes. Chi et al. [7] present a more advanced SCR model

where the catalyst channel is discretized axially and radially.

A simplified first-order model of the system is then used

in [7] for control design purposes, where the parameters

are estimated in real-time using a model reference adaptive

controller.

In the present paper, we use a 3-state nonlinear model

developed in [6] and design a reduced-order adaptive LPV

controller to maximize the NO conversion efficiency and

minimize the NH3 slip. The simulation results of this pa-

per illustrate a comparison between the performance of

developed output feedback controller to that of static state

feedback and also sliding mode control, where the latter

methods require design of an observer for state estimation.
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II. SCR MODEL

The key requirement of an SCR catalyst is to selectively

reduce NOx to N2 in the presence of ammonia (NH3).

Typical SCR washcoats contain base metals such as Cu, Fe,

and zeolites that store ammonia to enable NOx reduction.

Ammonia is obtained by the thermal decomposition and

hydrolysis of externally supplied aqueous urea. The two key

reactions involved in the SCR NOx reduction process are as

follows:

4NH3 + 4NO +O2 −→ 4N2 + 6H2O

4NH3 + 2NO + 2NO2 −→ 4N2 + 6H2O.

The second reaction, which involves both NO and NO2 at

equimolar amounts, is much faster than the first reaction

with only NO. The NOx conversion is improved by the

presence of NO2 except at high temperatures where ammonia

oxidation limits NOx conversion.

The model we use in the present paper is borrowed from

[6], in which the NO and NH3 concentrations, as well as,

surface coverage fraction are three states of the developed

differential equations. The model is associated with the first

reaction described above. The complete model is as follows
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V
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V
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where CNO and CNH3
are concentrations of NO and NH3 in

mole/m3, respectively. The reaction rate for reaction i is rep-

resented by Ri = kiexp(
−Ei

RT
), i = ads, des, red, ox where

Ei is the activation energy and ki is the pre-exponential

term for the corresponding reaction. ΘSC is the maximum

ammonia storage, and θ is the surface coverage fraction. F ,

V , R, and T represent the constant flow rate through catalyst,

catalyst volume, universal gas constant, and temperature,

respectively. The input u is the concentration of ammonia

entering the catalyst and is the only controllable parameter.

The input d is the NO concentration upstream the catalyst

treated as an external disturbance. The only measurement

available is the concentration of NO downstream the catalyst

denoted by y.

The above system can be transformed into the quasi-LPV

form [4] with x as the state variable vector as follows




ẋ1
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As observed, the system matrix A has an affine dependence

on the second state, i.e., surface coverage fraction θ, and

therefore θ is considered as the scheduling parameter in the

quasi-LPV model and needs to be known in real-time. In the

system state-space representation, the system matrix A can

be represented as A(θ) = A0 + θA1 and rest of the system

matrices are parameter-independent.

III. LPV STATE FEEDBACK CONTROL DESIGN

APPROACH

In the SCR system the only measurement available is

the NO concentration downstream the catalyst. The con-

trol design objective is to maximize the NOx conversion

efficiency and minimize the ammonia slip, as well as, the

amount of urea to be injected. For the design purposes

of this paper, we consider ammonia as the control input;

however, it is noted that in an actual SCR system, the

concentration of urea is the control variable. We propose

to design an LPV state feedback controller combined with

an LPV observer. The controller is designed to minimize

the H∞ norm of the closed-loop system as the performance

measure. Observability and controllability of the system (1)

are discussed in [8]. The model introduced in (2) can be

rewritten as

ẋ = A(θ)x+B1d+B2u

y = C2x (3)

z = C1x.

The following state-space representation for the dynamics of

the LPV observer is considered

˙̂x = A(θ)x̂+B1d+B2u+ L(y − ŷ)

ŷ = C2x̂ (4)

ẑ = C1x̂

where L is the observer gain and is designed such that the

error system is stable and satisfies the specified performance

criterion. Substituting u = K(θ)x̂ and e = x − x̂ in the

above equations result in

˙̂x = (A(θ) +B2K(θ))x̂+B1d+ LC2e (5)

ė = (A− LC2)e.

The augmented system of the plant and the observer becomes

ζ̇ = Aζ + Bd (6)

ẑ = Cζ
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where

A =

[

A(θ) +B2K(θ) LC2

0 A(θ)− LC2

]

, B =

[

B1

0

]

C =
[

C1 0
]

, ζ =

[

x̂
e

]

.

Remark 1: It is noted that the disturbance term d is also

included in the observer state-space representation (4) since

it is possible to measure NOx concentration upstream the

catalyst.

The following lemma presents the synthesis conditions to

design the observer and a parameter-dependent state feed-

back controller to guarantee the closed-loop system stability

and H∞ performance.

Lemma 1: For the LPV system represented by (3) and the

stability margin ν, there exist an LPV observer (4) and a state

feedback controller such that the closed-loop system is stable

and a prescribed level of H∞ performance γ is guaranteed

if parameter-dependent matrices R(θ) > 0, P1(θ) > 0,

P2(θ) > 0, S(θ), and Q(θ) exist that satisfy the following

set of LMIs.

ATR+RA− CT
1
ST

− SC1 + 2νR < 0 (7)








AP1 +B2Q+ (∗)− Ṗ1 LC2P2

(⋆) AP2 − LC2P2 + (∗)− Ṗ2

(⋆) (⋆)
(⋆) (⋆)

B1 P1C
T
1

0 0
−γI 0
(⋆) −γI









< 0 (8)

[

P1 0
0 P2

]

> 0. (9)

Then, the LPV observer gain and the feedback controller

gain are determined by

L(θ) = R−1(θ)S(θ) (10a)

K(θ) = Q(θ)P−1

1
(θ). (10b)

In the above formulation (∗) denotes the transpose of the

terms it proceeds and (⋆) is used to denote the sub-matrices

lying under the main diagonal.

Proof of this lemma is based on the Bounded Real Lemma

LMI formulation corresponding to the H∞ norm of the

closed-loop system (6). To avoid the bilinear terms in the

matrix inequality associated with the closed-loop system, a

block-diagonal structure is enforced on the Lyapunov matrix

as in (9). The algebra led to the LMIs (7) and (8) is omitted

for brevity.

Remark 2: Due to the cross-product of the observer gain

L and the Lyapunov matrix in (8), the LMI (7) is first solved

independently to determine the observer gain. This is due to

separation principle in designing observer and controller for

a linear system.

IV. LPV OUTPUT FEEDBACK CONTROL DESIGN

APPROACH

The state feedback control approach proposed in Lemma

1 needs the estimation of all states, which is not desirable

for implementation purposes. Therefore, we next consider the

dynamic output feedback control design. The gain-scheduled

output feedback controller is represented with the following

state-space representation

ẋk = Ak(θ)xk +Bk(θ)y (11)

u = Ck(θ)xk +Dk(θ)y.

As discussed earlier, the surface coverage fraction θ is

assumed to be the scheduling parameter. However, the ratio θ
is not measurable in the actual system and must be estimated

in real-time. In this paper, we estimate θ using its steady-

state value to prevent the use of a full-state observer. From

the first equation in (1), we have the following at steady-

state:

−CNO(ΘSCRredθ +
F

V
) +RoxΘSCθ +

F

V
d = 0.

Therefore, θ can be estimated by

θ̄ =
F
V
(CNO − d)

−CNOΘSCRred +RoxΘSC

(12)

which implies that the knowledge of inlet and outlet NO

concentrations is sufficient to estimate θ at each time instant.

We use the basic characterization of the gain-scheduled

control design with guaranteed stability and H∞ perfor-

mance as presented in [2] for the quasi-LPV system rep-

resented by (2). Since, the dependence on the scheduling

parameter θ is affine the synthesis LMIs need to be solved

only at the two corners (i.e., maximum and minimum

allowable quantities for θ). The range of variation for θ
is between 0 and 1. For simplicity we have considered

constant basis functions for Lyapunov functions R(.) and

S(.) and the auxiliary controller matrices Âk, B̂k, Ĉk, and

Dk in the corresponding synthesis LMIs [2]. Therefore,

we have a finite number of decision variables to optimize.

Taking into account the above structure for the decision

variables, the only parameter-dependent controller matrix is

Ak characterized by

Ak(θ) = Ak0
+ θAk1

. (13)

In the controller representation (11), we have forced the

matrix Dk to be zero. The obtained controller is a full-

order one; however, it was observed that the dominant pole

of this system is constant for a fixed temperature and over

the range of variation of the LPV parameter θ. Therefore, we

determine a reduced-order controller that has the same DC

gain as the original full-order controller. We determined that

the reduced-order controller is a first-order transfer function

and since Dk is zero, it can be represented by

K(s) =
α(θ)

s+ p
(14)
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Fig. 1. Schematic of the adaptive control strategy for urea-SCR system

where p is the dominant pole of the obtained controller. In

order to have equal DC gains for both full-order and reduced-

order controllers, the following relation holds

α(θ)

p
= −CkA

−1

k (θ)Bk (15)

which indicates that the knowledge of p provides the param-

eter α scheduled based on θ. Interestingly, it was observed

that in the temperature range of SCR operation (200−500◦C)

a straight line well represents the dependence of the DC gain

α on scheduling parameter θ. This will be demonstrated in

the next section.

To improve the steady-state performance of the closed-

loop system, a feedforward term is added to the feedback

control output (as shown in Figure 1) by keeping the ammo-

nia slip at a desired level at steady-state using the following

law

uff =
V

F
[CNH3,desired

(

ΘSCRads(1− θ̄) + F
V

)

−ΘSCRdesθ̄] (16)

where CNH3,desired is the desired ammonia slip and θ̄ is the

real-time estimate of the LPV parameter using (12).

V. SIMULATION RESULTS

In order to satisfy the dual goals of maximizing NO

conversion efficiency and minimizing ammonia slip, we

chose z = a1x1 + a3x3 as the control output in (3). The

profile of NO concentration upstream the catalyst is shown

in Figure 2 with the temperature fixed at 300◦C. For the

simulation purposes, measurement noise was added to the

NO measurement downstream the catalyst. The feedforward

part of the output feedback controller is designed to keep

the ammonia slip around 10 ppm in all of the performed

simulations.

Figure 3 illustrates the result of state feedback controller

integrated with the observer designed using Lemma 1. The

three plots shown in Figure 3 correspond to NO concen-

tration downstream the catalyst, the released ammonia, and

injected ammonia.

Next, we demonstrate the results of using the designed

reduced-order LPV output feedback controller. After solving

the synthesis LMIs, the dominant pole is determined to be

at -16.5. Figure 4 shows the dependence of the controller

DC gain versus θ as in (15). It is interesting to note that

the gain is a linear function of θ, and hence α(θ) in (14)

can be adapted in real-time to changes of θ. The determined
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Fig. 2. NO concentration in SCR inlet
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Fig. 3. LPV state feedback control performance

reduced-order controller in (14) is applied to the SCR system

using the design configuration of Figure 1. Shown in Figure

5 is the closed-loop simulation result where an improvement

in NO reduction is observed compared to the state feedback

control. The ammonia slip of around 10 ppm is quickly

achieved due to the use of feedforward term resulting in

the improved steady-state performance. The reduced-order

controller (14) is scheduled based on the parameter θ =
θ̄ as in (12). In Figure 6 the approximation of θ by its

steady-state value θ̄ is depicted which shows that the steady-

state approximation is a very good estimation of the actual

coverage ratio to be used for control gain adaptation. To

compare the proposed LPV H∞ controllers of this paper

with the nonlinear control methods, we design a sliding mode

controller as described in [5]. In Figure 7 the result of closing

the feedback loop using sliding mode control following the

approach in [8], [11] is shown.

Next, we apply the proposed reduced-order output feed-

back control strategy in this paper for different exhaust tem-
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Fig. 5. Reduced-order LPV output feedback control performance
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Fig. 7. Sliding mode control performance
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peratures. We evaluate the closed-loop system performance

in terms of the NO conversion efficiency in Figure 8 for

temperatures fixed at 220, 300, and 400◦C. As expected, the

SCR catalyst performs better at higher temperatures. This

trend, however, changes at very high temperatures where

ammonia oxidation limits the NOx conversion.

Finally, we compare the performance (in terms of NO

conversion efficiency) of the closed-loop systems using a

sliding mode controller, an LPV state feedback controller,

and an adaptive reduced-order feedback/feedforward con-

troller. To design feedforward controller, the ammonia slip

is kept around 10 ppm and the NO conversion efficiency

for the three control design methods are compared in Table

I. The following metric is used to evaluate the conversion

efficiency:

DeNO =

∑

i CNO,in(i)−
∑

i CNO,out(i)
∑

i CNO,in(i)
(17)

The NO concentration profile (upstream the catalyst) used
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to evaluate the NO conversion efficiency is shown by solid

line in Figure 9. This emission profile corresponds to an EPA

Urban Dynamometer Driving Schedule (UDDS) which has

been developed for chassis dynamometer testing of heavy-

duty vehicles. The basic parameters of the cycle are duration

for 1060 seconds, distance of 5.55 miles, average speed of

18.86 mile/h, and maximum speed of 58 mile/h. The dashed

line in Figure 9 illustrates the NO concentration downstream

the catalyst using the adaptive control strategy proposed in

the paper. Figure 10 shows the ammonia injected (output

of the adaptive controller) to satisfy the dual objective of

keeping ammonia slip around 10 ppm and maximizing the

conversion efficiency, which in this case was calculated to

be close to 92%.

VI. CONCLUDING REMARKS

In this paper we addressed the LPV control design method

for urea-selective catalyst reduction aftertreatment system.

Both the state feedback and output feedback controllers

were developed and compared. The first method required an

TABLE I

COMPARISONS BETWEEN DIFFERENT CONTROL METHODS

Control Strategy DeNO %

Sliding mode control 91.90

LPV state feedback 90.97

Adaptive output feedback 91.97

observer for state estimation, but the latter one only used the

concentration of NO upstream and downstream the catalyst.

Elimination of the fast modes in the full-order LPV output

feedback controller resulted in a simple first-order control

strategy gain-scheduled as a function of the LPV parameter

(the surface coverage fraction at steady-state). Inspired by

the gain-scheduling control strategy proposed in this paper,

the authors are currently investigating the impact of exhaust

temperature on the structure of the reduced-order controller

as an additional LPV parameter. The proposed method can

also be readily extended to apply to the modified 3-state and

4-state models developed in [10].
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