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Abstract: In this article we use the recently developed perturbed matrix method (PMM) to investigate the effect of
conformational fluctuations on the electronic properties of heme in Myoglobin. This widely studied biomolecule has
been chosen as a benchmark for evaluating the accuracy of PMM in a large and complex system. Using a long, 80-ns,
molecular dynamics simulation and unperturbed Configuration Interaction (CISD) calculations in PMM, we reproduced
the main spectroscopic features of deoxy-Myoglobin. Moreover, in line with our previous results on a photosensitive
protein, this study reveals a clear dynamical coupling between electronic properties and conformational fluctuations,
suggesting that this correlation could be a general feature of proteins.
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Introduction

Understanding the relationship between the conformational fluc-
tuations and the biological function of a protein is a longstanding
and fascinating problem in molecular biology. In this context,
particularly in the last 2 decades, a large amount of information has
been provided by theoretical and computational methodologies
such as classical molecular dynamics (MD) and Monte Carlo (MC)
simulations.1–5 Nevertheless, despite the important advances,
many questions remain still open, mainly for the intrinsic limita-
tions of the classical view of the molecules. In particular, of great
interest is the question as to whether and to what extent the
conformational fluctuations of a protein affect the electronic prop-
erties of its active site. An answer to the above question would
represent a fundamental breakthrough in the comprehension, at the
atomic level, of some crucial biochemical and biophysical pro-
cesses ranging from the spectroscopic behavior of a chromophore
into the active site, to the mechanism of an enzymatic reaction.
Actually, many aspects related to the electronic degrees of freedom
of different biologically relevant systems have been repeatedly
addressed in the last years using different quantum-mechanical

(QM) and mixed quantum-mechanical molecular-mechanics (QM/
MM) approaches.6–9 However, the evaluation of the coupling of
the electronic degrees of freedom with the motion of the overall
protein is a less investigated aspect.10 In this context, we have
recently proposed11,12 a method, the Perturbed Matrix Method
(PMM), which has, as a peculiar feature, the capability of merging,
through the very first principles of the quantum mechanics, the
unperturbed electronic properties of a portion of the biological
system with the classical molecular dynamics simulation of the
surrounding protein acting as a perturbing field. This method has
been recently applied successfully to a model system provided by
a light-harvesting Peridinin–Chlorophyll–Protein of Amphidinium
carterae.13 From this study an interesting correlation between the
protein conformational fluctuations and the electronic properties of
the chlorophyll has emerged. More precisely, the large concerted
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motions of the protein, even at a relatively large distance from the
reaction center and taking place on a relatively large time scale,
appear to sharply modulate the ground to first excited state energy
gap of the chromophore providing a new and stimulating view of
the relationship between the structure and the chemical determi-
nants, which are the basis of protein function. On the basis of these
findings we decided to investigate, with the same strategy, the
spectroscopic features of another important biological system: the
Myoglobin (Mb). Mb is a monomeric protein that transports mo-
lecular oxygen from hemoglobin to the terminal mitochondrial
oxidase in muscle. This function is carried out by reversibly
binding the oxygen at the ferrous heme covalently bound to the
protein at the proxymal histidine. This biologically relevant protein
has been extensively studied both theoretically1,14,15 and experi-
mentally.16–19 In this work we have focussed our attention in
particular on the deoxy form of Mb, hereafter termed as deoxy Mb.
The UV-Vis spectroscopic behavior of Mb in aqueous solution at
room temperature both in the oxy and deoxy form is very well
characterized.20,21 In particular, in addition to the �–�* porphyrin
absorption, i.e., the strong Soret band at 435 nm and the weak Q
band at 560 nm, the deoxy form shows additional bands such as the
porphyrin–iron charge transfer at 763 nm and the d–�* iron–
porphyrin charge transfer beyond 900 nm. In this article, by means
of a further application of our PMM methodology we will focus
our attention in trying to reproduce the above UV-Vis spectra with
the precise aim of elucidating the effect of the overall protein
conformational fluctuations on the transition energies and mo-
ments of deoxy Mb. A correct interpretation of such an effect
could be a further step in the direction of understanding the actual
role of protein structure and dynamics in biological activity.

Methods

In the first step of the present study we carried out a detailed
investigation on the structural and dynamical features of the deoxy
Mb. For this purpose we performed classical molecular dynamics
(MD) simulations of the above protein starting from the corre-
sponding crystal structure.22 The molecule was put into a cubic
box at a distance larger than 0.7 nm from the walls. The box was
then filled with water molecules described by the single-point
charge model.23 Water molecules were initially minimized using
the steepest descent procedure followed by 20 ps of MD run with
geometrical constraints applied to the protein. The overall system
was then slowly heated from 50 to 300 K, and a simulation of 80
ns was finally carried out in the NVT ensemble. The temperature
was kept constant by the isogaussian algorithm.24 Periodic bound-
ary conditions were systematically applied and long-range inter-
actions were treated using the Particle-Mesh Ewald method.25 The
algorithm LINCS26 was used to constrain bond lengths, and the
roto-translational constraints27 were also adopted in the simula-
tion. Finally, to speed up the calculation, an integration time step
of 4 fs was employed, using the Dummy Atoms technique.28 At
this purpose we have redistributed the water oxygen mass on the
hydrogen atoms to improve the stability of the simulation. In the
above run the GROMACS package was used for obtaining the
trajectory. The same program and a certain number of our own
routines, were adopted for analyzing the trajectory. In the second

step of the investigation we addressed the study of the unperturbed
electronic properties of the heme. For this purpose we selected, as
a portion of the system to be explicitly treated quantum mechan-
ically, the complex iron–porphyrin–imidazole in its average struc-
ture extracted from 80 ns of simulation. Single-structure calcula-
tions are justified by the extremely low flexibility shown by such
a complex along the simulation (vide infra). Both the singlet,
triplet, and quintet states were evaluated. For the latter one, which
from experimental evidences turned out to be the ground state of
deoxy Mb, we evaluated the ground and the first eight excited
states. These calculations were carried out at the CISD level of
theory29 using an active space containing 14 electrons in 16
orbitals. In this method the different configurations are generated
by singly and doubly exciting the active electrons. Both the re-
stricted and unrestricted formalism was adopted in conjunction
with two different basis sets. The Triple Zeta function by Ahl-
richs30 was used for the iron, whereas the minimal STO-3G31 for
all the remaining atoms. The choice of the above level of theory
was essentially driven by two factors: first, the dimension of the
system did not allow the application of a more accurate level of
theory; second, the results provided by the above basis set turned
out to reproduce the results found in the literature.32–34 In the final
step of the work we evaluated, through the application of the PMM
procedure described in the Theory section, the ground to excited-
states energy gap with the precise aim of evaluating, by also
calculating the corresponding transition dipoles, the related spec-
troscopical signal. All the quantum chemical calculations for the
unperturbed eigenstates were performed using the Gamess US
package.35

Theory

The time-independent Schroedinger’s equation, in matrix notation,
for a perturbed system is

H̃ci � �ici (1)

where H̃ � H̃0 � Ṽ, ci is the ith eigenvector of the perturbed
Hamiltonian matrix H̃, �i the corresponding Hamiltonian eigen-
value, H̃0 is the unperturbed Hamiltonian matrix and Ṽ is the
perturbation energy matrix. The Hamiltonian matrix and its eig-
envectors can be expressed in the basis set defined by the unper-
turbed Hamiltonian matrix eigenvectors, and hence, the element of
the Hamiltonian matrix is

Hl,l� � ��l
0�Ĥ��l�

0� � �l
0�l,l� � ��l

0�V̂��l�
0� (2)

where �l
0 is the lth eigenfunction of the unperturbed Hamiltonian

operator, �l
0 the corresponding energy eigenvalue, �l,l� the Kroe-

necker’s delta and V̂ the perturbation energy operator. From the
above equations it is evident that for obtaining the perturbed
eigenvectors and eigenvalues, and hence every property of the
perturbed Hamiltonian eigenstates, we only have to diagonalize the
matrix H̃, as given by eq. (2). For a system interacting with an
external electric field, we can express in general the perturbation
operator in eq. (2) in terms of the electric potential � as
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V̂ � �
j

qj��rj� (3)

with rj the coordinates of the jth charged particle and qj the
corresponding charge. Expanding � around a given position r0 we
have

��rj� � ��r0� � �
k�1

3

Ek�rj,k � r0,k�

�
1

2 �
k��1

3 �
k�1

3 ��Ek

�rk�
�

r�r0

�rj,k � r0,k��rj,k� � r0,k�� � · · ·

Ek � 	���

�rj,k
�

rj�r0

� 	���

�rk
�

r�r0

where k and k� define the three components of a vector in space
and r is the generic position vector. From these equations, defining
with qT the total charge, we readily obtain

��l
0�V̂��l�

0� � qT��r0��l,l� � E � ��l
0��̂��l�

0 � �
1

2
Tr
�̃Q̃l,l�� � · · ·

(4)

Qk,k�
l,l� � 
Q̃l,l��k,k� � �

j

qj��l
0��rj,k � r0,k��rj,k� � r0,k����l�

0� (5)

where

�k,k� � 	��Ek

�rk�
�

r�r0

(6)

�̂ � �
j

qj�rj � r0� (7)

Hence, the complete perturbed Hamiltonian matrix is

H̃ � H̃0 � ĨqT��r0� � Z̃1�E� � Z̃2��̃� � · · · (8)


Z̃1�l,l� � 	E � ��l
0��̂��l�

0 � (9)


Z̃2�l,l� �
1

2
Tr
�̃Q̃l,l�� (10)

From the last equations it is evident that a second-order expansion
of the electric potential, able to describe electric fields up to linear
behavior over the molecular size, requires the knowledge of the
total charge and the unperturbed dipoles and quadrupoles. Higher
order expansions can, in principle, be used, but would require
information on higher order multipoles that are typically very
difficult to obtain. Moreover, it is rather unusual that an applied
electric field is beyond the linear approximation over a molecular
size, at least neglecting local atomic interactions typically de-
scribed by short-range potentials such as the Lennard–Jones one.

A few considerations and assumptions are now necessary: (a)
we consider Born–Oppenheimer (BO) surfaces; (b) we assume
terms from quadrupoles on as very small and able to provide only
local atomic (short range) interactions; and (c) we consider only
the first vertical electronic excitations;

Hence, defining with rn the nuclear coordinates of the quantum
center and with x the coordinates of the atoms providing the
(classical) perturbing field we can write

H̃�rn, x� � H̃0�rn� � qT��r0, x�Ĩ � Z̃1�E�x�, rn� � V�rn, x�Ĩ

(11)

where V(rn, x) approximates the perturbation due to all the terms
from the quadrupoles on, as a simple short range potential. Hence,
the perturbed BO Hamiltonian eigenvalues �i are, within this
approximation,

�i � ��i � qT��r0, x� � V�rn, x� (12)

where

�H̃0 � Z̃1�ci � ��ici (13)

and ci is the ith perturbed eigenvector. We then have �i 	 �0 �
��i 	 ��0, which has been used for the calculation of the excitation
energy. Note that from the set ci we can, in principle, obtain any
possible perturbed property, for example, the perturbed transition
dipole �i, j � ��i��̂��j� is

�i, j � c*i
T�̃x

0cji � c*i
T�̃y

0cjj � c*i
T�̃z

0cjk (14)


�̃x
0�l,l� � ��l

0��̂x��l�
0� (15)


�̃y
0�l,l� � ��l

0��̂y��l�
0� (16)


�̃z
0�l,l� � ��l

0��̂z��l�
0� (17)

where obviously � is the perturbed Hamiltonian eigenfunction and
c*T is the transpose of the complex conjugated of c (typically from
quantum chemical calculations H̃ has only real elements and,
hence, c � c* is a real eigenvector).

We can also express the free energy change for an electronic
excitation of the quantum center, with all the environment mole-
cules in their electronic ground states as

A � 	kT ln�� e		�id�dxd�
d�x

� e		�0d�dxd�
d�x
� � 	kT ln�e		��i	�0���0 (18)

�e		��i	�0���0 �
� e		��i	�0�e		�0d�dxd�
d�x

� e		�0d�dxd�
d�x

�i � �i � �
 � �env,i

where � are the classical nuclear degrees of freedom of the quan-
tum center, � the conjugated momenta, �
 the (classical) kinetic
energy of the quantum center and �env,i the internal energy of the
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environment (excluding the interaction with the quantum center)
obtained when the quantum center is in the ith electronic state and
all the environment molecules are in their electronic ground states.
Note that in the case the environment energy is basically indepen-
dent of the electronic state of the quantum center, as we assume
neglecting atomic polarization, then �i 	 �0 � ��i 	 ��0. This
last equation has been used for the calculation of the excitation free
energy.

Results and Discussion

Molecular Dynamics Simulation

In the first part of our investigation we focus our attention on the
structural and dynamical features of deoxy Mb in aqueous solution
as provided by the 80-ns MD simulation. In this article we will
only remark the essential aspects of the MD simulations of the
deoxy Mb.

The time course of the root-mean-square deviation (RMSD) of
the C-alpha atoms with respect to the crystal structure shows that
within 5 ns a stable RMSD is reached, indicating that the system
is equilibrated. The analysis of the RMSD for each residue of the
backbone, reported in Figure 1, shows that the largest deviation
from the crystal structure is present in correspondence of the loop
EF and the N- and C-terminus. As already remarked in the Meth-
ods section, a necessary condition that allows the use of single-
structure unperturbed basis set in the PMM calculations, is the
rigidity of the quantum center. As reported in Figure 2, the heme
reveals basically a rigid structure with the only exception of the
two propionate groups, i.e., atoms 14–17 and 44–47, which, on
the other hand, sharply fluctuate. For this reason the above groups
were disregarded from the definition of the quantum center (vide
infra). Finally, to characterize in details the large amplitude mo-
tions of the deoxy Mb, the essential dynamics analysis36 was
carried out on the equilibrated portion of the trajectory. This
principal component procedure allows to separate the intramolec-

ular large collective motions (essential motions) from the remain-
ing small amplitude fluctuations (near constrained motions). In
fact, by diagonalizing the covariance matrix of the atomic posi-
tional fluctuations we obtain a set of generalized coordinates
corresponding to the eigenvectors of the matrix. Each eigenvector
represents the direction in configurational space associated with
the largest fluctuation (eigenvalue) in the space defined by the
eigenvector considered and the others with smaller eigenvalues.
Hence, from the diagonalization of the C-alpha covariance matrix
we characterized the deoxy Mb dynamics. The cumulative (nor-
malized) fluctuations, i.e., sum of eigenvalues, of the first 50
eigenvectors is reported in Figure 3 with the corresponding eig-
envalues. From such a figure it is possible to assess that the first 10
eigenvectors, i.e., the most important collective motions account-
ing for 75% of the total fluctuations, can be used to define the
essential subspace. From the same figure it is also clear that within

Figure 1. Root-mean-square deviation from crystal structure of C�

atoms. The values are averaged over the three spatial components.

Figure 2. Root-mean-square fluctuations of heme atoms. The values
are averaged over the three spatial components.

Figure 3. C� eigenvalues (circles) and normalized cumulative fluctu-
ation (squares) as obtained from MD simulation of Myoglobin. [Color
figure can be viewed in the online issue, which is available at http://
www.interscience.wiley.com]
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this essential subspace the first two eigenvectors represent by far
the dominant internal motions. For this reason their feature has
been reported in more details by showing, in Figures 4 and 5, their
components. From such figures it clearly emerges that loops pro-
vide the largest contribution to the internal motions of Mb. This
latter result can be better appreciated by observing Figure 6a and
b where we report the superposition of 10 configurations obtained
by considering C-alpha motions only due to the first and second
eigenvectors.

Quantum Chemical Calculations

We evaluated the unperturbed wave functions of the quantum
center, defined as the portion of the overall system whose elec-
tronic degrees of freedom should be explicitly taken into account.
From the previous MD analysis we found that a good candidate for
the evaluation of the unperturbed basis set is the imidazole–
iron(II)–porphyrin complex, hereafter indicated as FeP(Im), show-
ing the average structure reported in Figure 7. On this structure, we

carried out CISD calculations as reported in the Methods section.
First of all, we needed to evaluate the accuracy of the employed
level of theory. For this purpose we have calculated the ground
state of the singlet, triplet, and quintet FeP(Im), and we have
compared them with the computational data available in the liter-
ature. It should be initially mentioned that the FeP(Im) complex
has been widely investigated through several quantum-chemistry
methods, in particular based on Density Functional Theory

Figure 4. Components of the first C� eigenvector.

Figure 5. Components of the second C� eigenvector.

Figure 6. (a) Superposition of 10 configurations obtained from the
motion along the first C� eigenvector. (b) Superposition of ten con-
figurations obtained from the motion along the second C� eigenvector.

Figure 7. Average structure of the 5FeP(Im) complex obtained from
the MD simulation and used for the quantum chemical calculations.
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(DFT).32–34 From these calculations it emerged that the ground
state of the FeP(Im) in vacuo is a triplet state but, the energies of
the other magnetic states, i.e., singlet and quintet, are strongly
sensitive of the geometry. Of particular importance is the param-
eter “d,” which essentially defines the deviation of the iron from
the plane of the porphyrin ring. The absolute minimum in vacuo
shows a value of this parameter equal to 0.15 Å and is a triplet. On
the other hand, when “d” is shifted to 0.24 Å the ground state
becomes a singlet, whereas in correspondance of 0.33 Å the
ground state is a quintet. From the crystal structures of deoxy Mb
as well as from Infrared, Raman, Electron Spin Resonance, Nu-
clear Magnetic Resonance, and Mossbauer measurements we
know that the experimental value of the parameter “d” is equal to
0.42–0.61 Å, in agreement with the observation of the quintet state
as the ground state.37,38 Our simulation actually underestimates the
value of the parameter “d” with an average value of 0.26 Å. Such
a discrepancy is probably to be ascribed to some inaccuracy
present in the adopted force field. However, from our calculations,
as reported in Table 1, we correctly reproduced, in correspondence
of this geometry, the triplet state as the most stable with the singlet
and the quintet states lying 0.9 and 1.1 eV higher in energy.
Nevertheless, we decided to carry out our investigation on the
quintet state, as this is the experimental magnetic condition of
deoxy Mb. To evaluate the excited states of the quintet we per-
formed CISD calculations as described in the Methods section.
The results concerning the three electronic transitions, i.e., 0–1,
0–2, and 0–3, as well as their related transition moments, are
reported in Table 2. In the same table are also reported the
corresponding experimental values obtained in aqueous solution,
i.e., solvent and protein effects are included. We used such unper-
turbed basis sets for PMM calculations as described in the follow-
ing subsection.

PMM Calculations

In the previous two subsections we have described all the compu-
tational apparatus, i.e., the electronic characterization of the un-
perturbed heme and the dynamical characterization of the sur-
rounding protein, necessary for the application of the PMM
calculations. We could therefore address the central question of the
present investigation: do the large conformational (essential) mo-
tions of the protein affect the electronic properties of the quantum
center? First of all, we evaluated the reliability of the overall
procedure by calculating the electronic spectrum of the deoxy Mb

in solution and comparing our result with the available experimen-
tal data. As described in the Theory section, the eigenstates of the
quantum center are completely defined by diagonalizing the per-
turbed Hamiltonian matrix [see eq. (2)]. Within our approximation
the perturbation term is provided by the electric field (due to the
protein atoms) interacting with the unperturbed dipoles of the
quantum center. This is an approximation, which is accurate when
the perturbing electric field is essentially constant along the di-
mension of the complex [see eq. (4)], as indeed found out in our
simulation. For each step of the trajectory the perturbing electric
field was evaluated in the geometrical center of the FeP(Im)
complex using only the protein atomic charges to generate the
field. It must be remarked that we neglected the solvent effect, as
in our simulations it turned out to hardly modify the main per-
turbed electronic features of the heme (data not shown), which is
essentially buried in the protein. The 9 � 9 dimensional Hamil-
tonian matrix was built and diagonalized providing a “trajectory”
of perturbed eigenvalues, i.e., the perturbed electronic energies and
corresponding eigenvectors. We therefore obtained the ground to
the ith excited state perturbed energy difference. Obviously, the
above electronic energy gaps must be considered as the “vertical”
transition energies due to a photon absorption, which is typically
the experimentally observable event. At this purpose we have
followed, during the trajectory, only the 0–1, 0–2 and 0–3 tran-
sitions corresponding to the d–�*, Q, and Soret bands reported in
Figures 8, 9, and 10. It is interesting to observe, first of all, the
different effect of the perturbing field on these three electronic
transitions. In fact, for the d–�* transition, with unperturbed
excitation energy of 780 nm, we observed a rather marked red-shift
oscillating around a value of approximately 826 nm (experimental
value about 900 nm). On the other hand, for the other two transi-
tions, the perturbation produced oscillations around almost the
unperturbed excitation value. We finally obtained the actual elec-
tronic spectrum of deoxy Mb, by simply multiplying the excitation
energy distribution with the square length of the corresponding
perturbed transition dipoles (see Theory section). We, therefore,
compared the maximum of the calculated spectra, reported in
Figures 11, 12, and 13 corresponding to 830, 503, and 486 nm for
the d–�*, Q, and Soret bands, respectively, with the experimental
values (900, 560, and 435 nm, respectively). The agreement turned
out to be rather good. We could finally address the main point of
our investigation. We have just observed, by the width of the
electronic spectrum, that the fluctuating environment does affect
the eigenstates of the quantum center. Note that in our simulation
no quantum vibrations are present, and hence, any vibrational
effect is neglected in the model spectra. The energy distribution is
due to the protein fluctuations. To further outline and rationalize

Table 2. Vertical Wavelengths for the 5FeP(Im) Complex in Vacuum,
�0, and in Myoglobin in Water, �exp.40

Transition Type of transition �0 (nm) �exp (nm)

0 3 1 d3 �* 780 �900
0 3 2 �3 �* 497 560
0 3 3 �3 �* 487 435

Table 1. Relative Energies Calculated at CISD Level (Ahlrichs VTZ for
Fe2�, STO-3G for C, N, O, H) for the Ground States at Different Spin
Multiplicities for the FeP(Im) Complex.

Spin-state Energy (eV) Occupation pattern

3FeP(Im) 0.0 dz21 dxy
2 dxz

1 dyz
2 dx2	y20

1FeP(Im) 0.9 dz20 dxy
2 dxz

2 dyz
2 dx2	y20

5FeP(Im) 1.1 dz21 dxy
1 dxz

2 dyz
1 dx2	y21

These calculations were carried out on the average structure from MD
simulation.
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such a result we have, however, readdressed the question in terms
of correlation between the essential motions of the deoxy Mb and
the heme electronic properties. As already remarked we focused

only on the first two essential eigenvectors that account for a large
part of the C-alpha motion. In Figure 14, we have reported the
average d–�* transition energy as a function of the position along

Figure 9. Time course for the 0–2 excitation energy as obtained by PMM calculation during the MD
simulation.

Figure 8. Time course for the 0–1 excitation energy as obtained by PMM calculation during the MD
simulation.
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the first eigenvector. In Figure 15 we also reported the correspond-
ing standard deviation. From these figures it could be observed that
the first essential degree of freedom of the deoxy Mb sharply alters
this vertical excitation wavelength which, consequently, turned out
to span a region as large as 20 nm with a well defined minimum
value. The error bars resulted to be rather small but, at the same
time, the fluctuations around the average values, shown in Figure
15, turned out to be much more quantitatively important and
dependent on the conformational coordinate. These results clearly
show that large concerted motions of the deoxy Mb significantly

alter the ground to first excited state energy gap. To inspect the role
of the second eigenvector we have also reported, in Figure 16, the
average 0–1 energy gap as a function of the position in the plane
defined by the first two essential motions (eigenvectors). The
resulting surface again shows a clear coupling between these two
conformational motions and the excitation energy. Moreover, ac-
cording to eq. (14), we also evaluated the excitation Helmholtz
free energy. In Figures 17 and 18, the excitation Helmholtz free
energy is plotted as a function of the position along the first
eigenvector as well as in the plane of the first two eigenvectors. It

Figure 10. Time course for the 0–3 excitation energy as obtained by PMM calculation during the MD
simulation.

Figure 11. Spectral profile for the 0–1 transition. Figure 12. Spectral profile for the 0–2 transition.
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is evident that thermal excitation is not a spontaneous process but,
at the same time, there is a region of the first eigenvector, i.e., the
central part, where the free energy reaches a well-defined mini-
mum and the probability of excitation undergoes a slight increase.
Finally, we have carried out a detailed investigation on the actual
nature of the perturbing field. As for the atomic fluctuations, we
have performed an essential dynamics analysis of the fluctuating
electric field on the heme geometrical center. For this purpose, a
covariance matrix was built using the components of the electric
field generated by each residue of deoxy Mb. Hence, by diagonal-
izing this covariance matrix we obtain the set of eigenvectors and
eigenvalues that characterize the complex fluctuations of the elec-
tric field. In Figure 19 we report the corresponding cumulative
fluctuations. Not surprisingly, the first 10 eigenvectors basically
account for more than 75% of the overall electric field fluctuation.
Analyzing in more details the nature of the first two eigenvectors,
shown in Figures 20 and 21, it emerged that basically three

residues, i.e., Hys97, Lys96, and, to a minor extent the distal His64
mainly contribute to the electric field fluctuations. In other words,
these three residues can be considered, as the main source for the
perturbation on the quantum center, and hence, of the fluctuations
of the excitation energy. Interestingly, the analysis of the amino
acid sequence revealed that beyond the obvious conservation of
the distal histidine (His 64) involved in the oxygen binding to the
heme, Hys97 and Lys96 are also rather well conserved in the
primary sequence of many myoglobins.39

Figure 13. Spectral profile for the 0–3 transition.

Figure 14. Average excitation wavelength for the 0–1 transition as a
function of the position along the first C� eigenvector. In the figure the
error bars are also shown.

Figure 15. Standard deviation of the excitation wavelength for the
0–1 transition as a function of the position along the first C� eigen-
vector.

Figure 16. Average excitation wavelength for the 0–1 transition as a
function of the position along the first two C� eigenvectors.
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Conclusions

In this article we used a long MD simulation (80 ns) in combina-
tion with PMM calculations, to investigate the influence of con-
formational fluctuations on the electronic properties of the heme in
Myoglobin. Results showed a clear coupling between the main
collective internal motions of Myoglobin and the electronic prop-
erties of heme (heme molecular orbitals), confirming previous
results on a protein involved in photosynthesis.13 Such a coupling
support the idea that proteins conformational behavior may mod-
ulate the electronic levels that are important in the transition states
of the chemical reactions occurring inside the protein. Hence, these

results suggest a possible conformational regulation mechanism
for ligand binding to heme, based on the perturbation of the
reaction transition state. Moreover, the analysis of the electric field
fluctuations pointed out a few residues as key residues in modu-
lating heme electronic properties and, interestingly, such residues
are largely conserved in higher species. Finally, the comparison of
our calculated spectra with experimental ones indicated that PMM
approach can be reliable also in these large and complex systems.
Such results make the proposed procedure very promising for the
study of cromophores and chemical reactions in complex systems
where it is expected a relevant coupling between the electronic
behavior and molecular motions. In particular, for biochemical
systems, PMM approach could be important for understanding the
complex effects of conformational fluctuations and chemical co-
factors in enzymatic reactions.

Figure 17. Excitation energy (solid line) and free energy (dashed line)
for the 0–1 transition as a function of the position along the first C�

eigenvector. In the figure, the error bars are also shown.

Figure 18. Excitation free energy for the 0–1 transition as a function
of the position along the first two C� eigenvectors.

Figure 19. Normalized eigenvalues (circles) and cumulative fluctua-
tions (squares) for the electric field generated by each residue. [Color
figure can be viewed in the online issue, which is available at http://
www.interscience.wiley.com]

Figure 20. Components of the first electric field eigenvector.
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