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Energy transfer from an emitting molecule to an absorbing half-space is considered from the 
viewpoint of electromagnetic theory. The lifetime of a dipole emitter in the presence of a mirror is 
determined through a calculation of the complex Poynting vector in the dielectric surrounding the 
dipole. This method has the advantage over previous approaches to this problem in that the radiative 
and nonradiative components of the lifetime expression may be rigorously separated. The influence on 
emitter lifetime of a mirror of finite thickness is also described. A simple .expression is derived 
describing the energy transfer rate in these layered systems. It is shown that nonradiative energy 
transfer results from coupling of the near field of the dipole to the surface plasmon modes in the 
metallic absorber. The Forster energy transfer rate law is discussed in the context of the present 
theory. 

I. INTRODUCTION 

The lifetime of an emitting molecule located near a 
partially absorbing mirror has been analyzed recently 
in terms of a simple mechanical model. 1-5 The mole­
cule is represented as an oscillating dipole whose re­
flected electric field produces a time dependent force 
which is incorporated into the equation of motion of the 
dipole. The equation is solved to find a damping (or 
lifetime) term which depends on the distance of the di­
pole from the mirror. At large distances (equal to or 
greater than the wavelength of the radiation), the damp­
ing shows an oscillatory behavior; while at short dis­
tances, the damping grows larger owing to nonradiative 
transfer of energy from the dipole to the partially ab­
sorbing mirror. 

In this paper, we consider the general problem of the 
transfer of energy from an excited molecule to a metal 
or a dielectric. This problem has been treated previ­
ously by Kuhn1 using an approximate image method. We 
derive these results from a more general viewpoint 
which is exact within the classical framework and fur­
ther does not require the use of the mechanical model 
for the emitting molecule. We consider the energy flux 
from a dipole emitter in the presence of the mirror by 
calculating the Poynting vector in the dielectric sur­
rounding the dipole. 6,7 The present method has the ad­
vantage in that it is now possible to separate the damping 
term into its radiative and nonradiative components. 
The latter represents primarily short-range energy 
transfer from the near field of the dipole. 

For the case of a thick mirror, a simple expression 
is derived showing the dependence of the energy transfer 
rate on the optical constants of the system. This rate 
is maximized at the emitter frequency at which the 
imaginary part of the refractive index of the absorber 
(metal mirror) is equal to the refractive index of the 

nonabsorbing dielectric in which the dipole is embedded, 
or equivalently, the real parts of the two dielectric con­
stants are equal in magnitude and opposite in sign. This 
requirement appears in the theory of surface plasmons 
and, for the idealized case of real dielectric constants 
only, defines the frequencies of the nonradiative and 
radiative surface plasmon modes. 8,9 At the frequency of 
the nonradiative surface plasmon mode, the reflectivity 
for the photon field is maximized and trivial (radiational) 
energy transfer is minimum. 

The theory is extended in this paper to treat partially 
absorbing mirrors of finite thickness. It is demonstrated 
that a (mirror) film which is relatively thin and thus 
somewhat transparent to the photon field can be suffi­
Ciently thick for the purposes of the energy transfer cal­
culation so as to be indistinguishable from an infinitely 
thick film. In fact, these thin films can produce a great­
er energy transfer rate than a thicker film, and for a 
given dipole-film geometry, there is actually an opti­
mum mirror film thickness which maximizes the trans­
fer rate. 

The paper is set out as follows: In Sec. II, results 
are derived for the energy flux through planes parallel 
to the mirror surface; the equivalence to the results 
from the mechanical model is shown. In Sec. III, the 
nonradiative effects are considered and discussed in 
some detail. The short-range energy transfer is shown 
to be equivalent to near field coupling of the dipole to 
surface plasmon modes in the mirror. In Sec. IV, the 
effects of finite metal film thickness are considered. 
In Sec. V, a derivation of the Forster energy transfer 
rate law is given from the present theory. 

Throughout this work we will be primarily concerned 
with nonradiative energy transfer. In the discussion of 
the emitter/mirror systems, we will restrict the pre­
sentation to the vertical dipole (1. e., dipole oriented 
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perpendicular to the mirror), since the analysis is more 
straightforward and the mathematics less cumbersome 
than in the horizontal dipole case. This restriction has 
no effect on the conclusions reached herein and is con­
sistent with the emphasis of this report, in that the only 
important differences between the horizontal and verti­
cal cases involve radiative effects. The radiative as­
pects of the problem will be discussed in more detail 
in a later paper. 

II. THE LIFETIME OF A DIPOLE EMITTER NEAR 
AN INTERFACE: ENERGY FLUX METHOD 

The energy flux method to be described in this sec­
tion requires there be a negligible shift in the emission 
frequency due to the presence of the mirror and the in­
trinsic damping of the dipole. Though the mechanical 
model discussed previously4 does not require a negligi­
ble frequency shift as an initial assumption, the calcula­
tions using that model are straightforward only if this 
condition is met. Calculations using the mechanical 
model have shown that the shift is completely negligible 
for all cases of any physical significance4 and may there­
fore be safely ignored with either approach. We will 
demonstrate here that either of the two methods may be 
used to determine the effects of the mirror on the life­
time of an emitting dipole. The energy flux method, 
however, allows the separation of these effects into 
their radiative and nonradiative components. 

The case of a vertical dipole (i. e., dipole perpendic­
ular to the mirror plane) will be considered. The geom­
etry of the problem is shown in Fig. 1. The dipole is 
located at a distance d from the mirror and has a dipole 
moment given by 

J.J. = exp(- iwt - bt/2) , (2.1) 

where l/b is the lifetime of the dipole in the presence 
of the mirror. We have chosen the amplitude at t=O 
as unity for convenience. The dielectric containing the 
dipole has a real refractive index nl and a propagation 
constant kl = 21Tnl/A. The metal has a complex refrac­
tive index na(==nz +iK2 ) and a propagation constant given 
by ka = 21Tn2 / A• The total energy flux through planes 
parallel to the mirror, above and below the dipole, will 
be calculated. Both planes are infinite in extent and 
thus account for all the energy flowing away from the 
dipole. The total energy flux out of the upper and lower 
planes will be labelled Ft and F~, respectively. Fol­
lowing Sommerfeld, 6 these are calculated using the com­
plex Poynting vector, S *, and integrating the normal 
component over the plane7

: 

F". =Re 1 S*. ndA , 
:At,. 

where 

S* = (C/81T)E x H* 

The electric and magnetic fields are given by 

E = (l/n~)(~II + grad div II) 

and 

H = - i(w/c) curl II) , 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where II is the Hertz vector for this boundary value 

-----------1~ -----------------
t t ... 

t (Dipole) n l 

~ ~.x 

" . X 
FIG. 1. Geometry of the dipole-metal system for a vertical 
dipole; d is the distance from the dipole to the surface. The 
dashed lines represent the planes through which the flux is 
computed. 

problem. 7 Using cylindrical coordinates (r, e, z) and 
noting that in this case II is along the z axis, we have 

S = ;:~ [~~~']t:;) . (2.6) 

We find that II .. is given as4,6,7 

felklRl elklRa I~ 1 
II .. =e .. J.J.L~- Ii';" + 0 fle-l.rJO(1)r)d1)J ' (2.7) 

where Rl is the distance from the dipole to the point at 
which II .. is being calculated (r, e, z), R2 is the distance 
from the image dipole to that point, and Jo is the zeroth 
order Bessel function. The term fl is defined by the 
following: 

f1 = 21)~ e- 1d /(~l + k~m) , (2.8) 

where 

1 == - i(k~ _ ~)1/2 (2.9) 

and 

m == - i(~ - if)1/2 . (2.10) 

The branch of the square root in the definition of 1 or 
m has been taken so that the real part is positive for all 
values of the integration variable 1). It is more conve­
nient to write 

II .. =e .. J.J. [gle- IIl J o(1)r)d1) , (2.11) 
o 

where 

gl = (1)/l)(e 1d 
- e- 1d

) + fl, z?:-d, 

gl = (1)/1) e- 1d (e2 11l -1) +f1> O~z<d. (2.12) 

We then find upon integrating S* • n over the plane: 

F, = e-bt Re(iw/4n~) [ i~ d1)d1)' Z(1)')gl (1)') it (1) 

x expf- [Z* (1)')+ l(1)]z}1)o(1) -1)') . (2.13) 

After some manipulation and noting that F, divided by 
the energy of the dipole (which we take as I /..I. 12 for con­
venience) is simply the rate constant b, associated with 
energy loss through the upper plane, we have 

b, =~ f glit(l- rZ)l/2 TdT , (2.14) 

where T=1)/k l . 

It is useful to normalize this result to that for a di-
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pole in the absence of a mirror. In that case we may 
integrate Eq. (2.14) to yield for the radiative compo­
nent of the. intrinsic damping 

b~=2bY=wkil3~, (2.15) 

where b~ is the rate constant in the absence of the mir­
ror. We may also take into account at this point an un­
specified nonradiative (thermal deactivation) contribu­
tion to the intrinsic damping and write for the total 
damping in the absence of the mirror 

bO=wkil3n~+b~~=wkil3qn~. (2.16) 

We have used the usual definition for a quantum yield 
q = b~/(b~ + b~~). 

The normalized rate constant for energy loss through 
the upper plane is then 

;b - b. 3q rt *(1 Z)1/2 d (2 17) '=lJl=="4-J
o 

glgl -T T T. • 

A similar prescription may be follwed for the rate con­
stant b l associated with the net energy flow through the 
lower plane in Fig. 1. Normalizing in the same manner, 
we find 

bl = to = - ~ [J
o

1 
f1N (1 - TZ)l ~ TdT + 2 1m ~ '" fT e-li T2dT] , 

(2.18) 
where (in the T representation) 

It = 2Te-,i ~z/(~m +~l} , (2.19) 

l= _i(1_TZ)1/2 , (2.20) 

m= - i(~/~ - TZ)l/Z , (2.21) 

and 

d=k1d. (2.22) 

For comparison to our earlier results from the 
mechanical model4 it is useful to rewrite Eqs. (2.17) 
and (2.18) as 

b.==q _ 3q 1m £1 (B+ BB*l) T3dT +3qlm £1~_ &)e-2/dT3dT 
(2.23) 

and 

b. = 3q 1m i 1 (B + BB*l)T3dT + 3q Im[ Be-2/; T3dT, (2.24) 
o 1 

where B=~z/{k~ +~l} [or, in terms of dielectric con­
stants B= €z/{(lm + (zl)]. The total, normalized damp­
ing constant, including the intrinsic nonradiative com­
ponent bn,./bo (or 1-q), is then 

.,... - 0 '" ... 
b=b/b =b.+b.+{l-q). (2.25) 

With slight changes in notation and some minor 
manipulation, we have from our earlier work with the 
mechanical model 

hmlOb= 1 + 3qlm{[ -~ + (~)iJ efa;} 

Noting that the second term in Eq. (2.26) may be re-

written as - 3/2 Img exp{ - 2lJ)T3dT /l, it is straight­
forward to show the equivalence of Eqs. (2.25) and 
(2.26). 

The above discussion merely serves to show that the 
mechanical model correctly reproduces.the solution 
to Maxwell's equations. Though the two approaches 
give identical expressions for the lifetime of the dipole 
in the presence of a mirror, the energy flux method is 
advantageous Since, as will be se~n shortly, the radia­
tive and non radiative (energy transfer) components in 
Eq. (2.25) may be rigorously separated. 

Obviously, we already have enough information to cal­
culate an observed quantum yield: qobS== h./b. This, 
however, is not the quantum yield as it is usually de­
fined, namely q=number of photons emitted per lumi­
nescent state created by the incident light or, in other 
words, the radiative decay rate constant divided by the 
total decay rate constant. (The ratio of this and the 
number of photons emitted/ the number absorbed is 
merely the inverse of the probability of creation of the 
luminescent state.l,S,lO) Here we must, of course, dis­
tinguish between the "real" photons associated with the 
radiation field of the dipole and the "virtual" photons 
associated with the near field of the dipole. A certain 
fraction of the photons emitted by the dipole will be ab­
sorbed in the mirror, Le., "trivially" transferred to 
the mirror. Equation (2.23) must take this into account, 
and in fact, the second term in that equation is due 
SOlely to the absorption of real photons in the mirror. 
This particular assignment for the second term may be 
seen qualitatively from the following observations: (i) 
it is independent of d; (2) it equals zero for a perfect 
reflector and q/2 for a nonreflecting mirror (no bound­
ary); and (3) it reappears in the equation for b. with the 
opposite sign so that a cancellation of terms results in 
Eq. (2.25), as it should. 

These arguments then allow us to separate our ex­
pression for 5, the total damping rate constant, into 
its radiative (5,.) and nonradiative (bn,.) components: 

(2.27) 

and 

(2.28) 

Note that we have included in Eq. (2.28) the intrinsic 
nOn radiative component, which is of course not related 
to the presence of the mirror. The quantum yield is 
then simply S~/S and differs from the observed quantum 
yield by a factor [given by the second term in Eq. (2. 23)] 
that is independent of the distance between the dipole 
and the mirror. We note that our separation of b into 
b~ and bn,. differs from that adopted by Kuhn1 in the 
treatment of this factor. 

We can quantify the preceding argument by a direct 
calculation, using the Fresnel formulas, of the absorp­
tion of photons from the radiation field of a dipole 
placed in front of a mirror. The calculation is straight­
forward and verifies the above conclusions. Alter-
nat ely , we may calculate the 'photon flux through the 
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upper plane by again using Fresnel formulas and COn­
sidering only the radiation field of the emitter. This is 
basically the approach adopted by Kuhni and by Drex­
hageiO and will be but briefly summarized here. It in­
volves looking at the interference between a primary 
ray exiting directly from the dipole and a reflected ray 
from the metal. We simply calculate the amplitude 
which results, convert to intensity, and integrate over 
all angles. After normalization by the result for a 
dipole in the absence of the mirror, we obtain 

b: = ~i"211 + RII el24cosel2 sin3 0dO, 
4 0 All 

(2.29) 

where 0 is the angle between the primary ray and a 
normal to the mirror plane, i. e., for the vertical di­
pole case, the direction of the dipole. RII/ All is the 
ratio of amplitudes for the reflected and incident ray. 
After changing variables (let COs 0 = ill and noting that 
R,r/ All = (~l - k~m)/ (~ 1 + ~m), it is straightforward to 
show that 6: = 6.. Therefore, all the terms in Eqs. 
(2.23) and (2.24) except one may be derived from the 
far field Of the dipole. The one exception must, there­
fore, have its origins in the near field of the dipole and 
we conclude that it represents the normalized rate con­
stant for non radiative energy transfer to the mirror: 

bET = 3qIm f'" Be-21i T 3dT • 
1 

(2.30) 

This equation shows the correct behavior in the various 
limiting cases and also, as will be discussed in the next 
section, varies as rr3 at small values of d, as would be 
expected from simple considerations of the dimension­
ality Of the problem. We note, however, that a calcu­
lation of the total transfer of energy to the mirror via 
the electromagnetic field of the dipole would proceed 
from Eq. (2.24) and would therefore include the energy 
transferred by the far field of the dipole in addition to 
bET. 

A completely analogous derivation can be made for 
the horizontal dipole case (i. e., dipole parallel to the 
mirror). The mechanical model and present method, 
of course, give identical results. As in the vertical 
case, the radiative and non radiative components are, 
respectively, the 0 -1 and 1 - 0() portions of the integral 
expression for the total decay rate as given in Ref. 3. 
In both the horizontal and vertical dipole cases, the 0-1 
portions of the integrals give precisely the formulas 
of DrexhageiO which were obtained through the inter­
ference method. 

III. NONRADIATIVE EFFECTS 

A. Energy transfer rate constant in the limiting case of 
small distance 

Nonradiative energy transfer has been discussed by a 
number of authorsll•12 as an effective decay channel for 
an emitting molecule located near a metallic surface. 
For example, Vaubel et al. ll find that the experimentally 
determined energy transfer rate constant in the anthra­
cene-aluminum system may be expressed as 

(3.1) 

where d is the distance in centimeters between the 
emitter and the mirror. As we have recently pointed 
out,4 the same large increase in decay rate at small 
distances is seen in the Eu+3/metal systems examined 
by Drexhage. 13 Since the energy transfer rate was not 
the emphasis of that work, there is not sufficient data 
availabele to derive a limiting form for the dependence 
on d in the small distance range. 

Simple considerations of the dimensionality of dipole­
dipole transfer (Forster transfer)14 predict the cubic 
dependence. However, this approach is not adequate to 
predict the value of f3, even qualitatively, for the lay­
ered systems because of the presence of the interface 
between emitter and receiver. In this section, we 
present the derivation of a simple expression for f3 
which is widely applicable to experiments involving 
emission near metallic electrodes or other absorbing 
media. 

In Eq. (2.30) we have an expression for bET valid at 
all distances. For small a (:= kid) this term dominates 
the total damping constant in Eq. (2.25). We have, in 
fact, shown numerically that the total damping varies as 
d-3 in this region, and will now derive f3, the coeffi­
cient of d -3. We proceed by evaluating the integral in 
(2.30) in the limit of small d. Since the leading term 
is proportional to d- 3

, we multiply by d 3 and then let d 
approach zero. This leads to 

for a vertical dipole and 

• A 3q (-~0 hmbET=~8 3 1m ~ 
4~O M· /zf+'1 

for a horizontal dipole. Thus, in general, we may 
write 

_3q A3ar ngKg J 
f3- 32 ~ L<~+n~ -K2g)g+4n~KU 

(3.2) 

(3.3) 

(3.4) 

where ki = 2rr~/A, kg = 2rriig/A, and ng:= ng + iK2 • The 
quantity a is a parameter varying with orientation and 
equals 1 for a horizontal dipole, 2 for a vertical dipole, 
and 4/3 for randomly oriented dipoles. Equation (3.4) 
requires that the system be describable in terms of the 
optical constants of the two media. If the emission is 
not confined to a narrow band, Eq. (3.4) may be re­
written as an integral over the emission spectrum in a 
fashion analogous to the well-known Forster expression 
(see Sec. V). Note that Eq. (3.4) allows a ± 33% esti­
mate of f3 without any knowledge of the dipole orientation. 
This expression differs from one derivable from the 
approximations of Kuhni and shows a sharper and larger 
peak in f3 vs K2 than would that approximate expression. 
The two expressions agree in the limit of weak absorb­
ers (K2 small). 

Though the effects of energy transfer in layered sys­
tems have been noted in many instances, only a few 
quantitative evaluations of f3 have been made. These are 
shown in Table I along with the theoretical estimates 
from Eq. (3.4). (We have taken q= 1 as a good approx­
imation for each of these systems.) The agreement is 
good in the Eu+3/metal systems where the comparison 
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TABLE I. Comparison of theory and experiment for energy 
transfer rate parameter {3. 

System nl n2 
a K

2
& {3(Theory)b {3 (Exptl)b 

Eu 0i3/Au 1.5 0.22 3.22 4.9 5.0c 

Eu 0i3/Cu 1.5 0.33 3.14 7.9 7.2c 
Eu 0i3/Ag 1.5 0.06 4.11 0.53 "" 0.19C,d 
Anth/Au 2.1 1.46 1.96 7.5 "" 2. 6e 

Anth/AI 1.5 0.43 4.64 0.77 5.2 f 

"optical constants taken from Johnson and Christy15 and Hass 
and Waylonis. 16 

btJnits on {3 are 10-18 cm3; the dipole is assumed to be parallel 
to the mirror, i. e., e = 1. 

"1<:. H. Drexhage, private communication (see also Ref. 10). 
d1nsufficient data in small distance range so that only a lower 
limit estimate could be made. 

"Indirect measurement12 allowing only a lower limit estimate 
of p. 

fDirect fluorescence measurement; however, the system was 
actually anthracene/fatty acid spacer/aluminum. 11 

is straightforward, but not as good in the anthracene/ 
metal systems. In the latter case, other effects may be 
important, such as exciton diffusion and a complex n1 
over much of the emission range. 

B. Dielectric constant matching and surface plasmons 

The equation for the energy transfer rate constant 
for small distances exhibits an intersting resonance be­
havior. If, in Eq. (3.2) or (3. 3), ~ + 14 is zero or near 
zero, the rate constant becomes very large. In terms 
of the dielectric constants of the two layers, f:1 and f:2, 

10 3 I 
, 
" 

I 

\ 
I '\ ., 
I' \ , 

'" I I . , 
E I i \ , 
U I • 

\ 
, 

!!1 10 2 , I I , 
'Q I i \ 

, , 
i , 

<Q , 
/ 

, n2=0.24 
I 

/ 
/ 

n2= 0.06 10 1 / 

n2= 0.015 

10° 

1.0 1.52 2.0 3.0 
K2 

FIG. 2. The short range energy transfer rate parameter fj as 
a function of K 2, the imaginary part of the refractive index of 
the metal. The dipole is assumed to be that of the Eu 0i3 com­
plex emitting at 612 nm in a fatty acid layer of refractive index 
nl =1.52. 

A(nm) 

Silver mirror 
n 1 = 1.52 

FIG. 3. The energy transfer rate parameter {3 vs wavelength 
for dipole emitters of varying wavelength. The metal is silver; 
the dielectric containing the dipole has a refractive index 1. 52 
(fatty acid layers). 

this translates into a matching condition, 

f:1 +f:2 =0, 

where 

and 

(3.5) 

(3.6) 

(3.7) 

To illustrate the dramatic increase in the energy 
transfer rate near the matching condition [Eq. (3.5)], 
we have computed {3 for the Eu+3 complex (with dipole 
perpendicular to the mirror) on the fatty acid layer near 
metal mirrors of varying~. The results are shown in 
Fig. 2 for various values for~. These results indicate 
the sensitivity of {3 to the optical constants of the metal 
near the matching condition. 

In Fig. 3 the calculated values of {3 are presented for 
emitter/silver systems with ~ = 1. 52 (fatty and layers), 
9= 2 (vertical dipole), q = 1, and \ variable. As the 
wavelength of the emission is swept through a small 
range, a resonance is seen in {3. Consequently a sharp 
dip in the lifetime and quantum yield would result. 
This striking effect should be observable with an ad­
sorbed molecule which emits at about 360 nm. This 
resonance wavelength in the emitter/silver system in­
creases slightly as n1 is increased (\ ~400 nm for ~ 
n1 = 2.0). For the hypothetical case of a Drude electron 
gas metal, we have f:2(w) = 1 - w~/ w2

, where w p is the 
bulk. plasmon frequency. Thus, for this case, the res­
onance occurs at w=wJ(1+f:1)1/2. 

This resonance or matching condition was first noted 
by Sommerfeld in the radio wave case and is related to 
his famous surface wave. 6 We note that the denomi­
nator 141 + kf m in the expression for the electric field4 

has a zero which gives rise to a term which becomes 
large for small d and near the dielectric matching con­
dition. This latter condition is well known from the 
theory of surface plasmons8 where it is the equation for 
the dispersion relation of the surface plasmon modes. 
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The interpretation is now straightforward: the short 
range dipole field is coupling to the surface modes 
causing them to oscillate and thus absorb energy. 17,18 

The normal condition that surface plasmons are not 
coupled to the radiation field (because the phase velocity 
of these modes is less than light for all k and w) is not 
violated here because the short range dipole field is not 
a radiation field and contains all Fourier components 
(i. e., k vectors). 

Another manifestation of this coupling of surface 
waves to the short range field is the distance depen­
dence of the energy flux through planes in the metal. 
For the radiation case this is governed by the skin depth 
and hence has an exponential dependence on distance. 
However, for the short range field, a different depen­
dence occurs. If a plane is drawn parallel to and a dis­
tance dz below the surface of the metal, and the flux 
through it computed as in Sec. II, we find for small d 
and dz that 

~ 3q9 (-~ ) 
b(dz) = 8kr(d + d

Z
)3 1m kf + ~ . (3.8) 

This is in agreement with Eq. (3.2), and contrasts 
markedly with the radiation case. We note once again 
the strong dependence on the matching condition. 

IV. FILMS OF FINITE THICKNESS 

Many experiments in photoconductivity and fluores­
cence quenching which have been done on single crystals 
of aromatic moleculesll •1Z have used semitransparent 
films of evaporated metals. It becomes important to 
investigate the effect of the finite film thickness on the 
various energy transfer rates and on the emitter life­
time. Bucher et al. 19 have discussed a theory for this 
effect based on the short range dipolar field only. This 
present section gives the theory including the entire 
dipole field and so is an exact classical theory. We dis­
cuss limiting cases at the end of this section. 

Figure 4 illustrates the geometry of the problem. 
The dipole is again embedded in a nonabsorbing medium 
of refractive iudex n1, the absorber is characterized by a 

Here d= k1d and s = k1s, where s is the thickness of the 
film. From the mechanical model4 we then have 

(4.8) 

Figure 5 shows the calculated results through this 
formalism for the normalized lifetime (l/b) vs dipole­
emitter distance for various thicknesses of film. Op­
tical constants are for the Eu+/ Ag system, 15 nz = 0.06 
+i4.11; the emission wavelength is 6120 A. Media 
above and below the metal are taken to be the same, 
Le., ~=na=1.52. 

The first point to note is that for s 2: 1.0 the lifetime 
versus J curves are indistinguishable. Actually for 

----------, . -r ~ _. ------------
t t .. 

d * (Dipole) n I 

j j ... 

~~~x ~ Metol n 

Z=-$ 

FIG. 4. Geometry of the dipole-thin metal mirror system; d 

is the dipole-mirror distance and s is the metal thickness. 

refractive index nz(complex), and below the film is a 
region of refractive index ri3 • The Hertz vectors in the 
three regions are given by (vertical dipole case): 

Il1=e.1l [~{ f e,<i-d> -f e-I<i+d> +f1e-'i} Jo(Tr)dT, (4.1) 

Il2 =e.1l fa" {fze"z+fa e-";} Jo(Tr)dT , (4.2) 

and 

Ila = e.1l l~ f 4 e"i Jo(Tr) dT , 

where 

1= _i(1_TZ)1/Z, 

m = - i[(E2/E1) _ T2]1 /z , 

and 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(For notational convenience here and in the equations to 
follow, we have replaced the square of the refractive 
indices with the dielectric constants.) On fitting the 
appropriate boundary conditions at each of the two 
boundaries and using the relationship which connects the 
Hertz vector with the electric field, 6.7 we find for the 
reflected field at the dipole 

(4.7) 

S 2: 0.5 (corresponding to a thickness of about 320 A for 
this case) there is no significant difference in lifetime 
vs J. This is reasonable, since the calculated trans­
mission for a photon field for·such a film is around 10%. 
Secondly, it is shown that for §= 0.1 (or s = 64 A, cor­
responding to photon field transmission of 58%) the re­
duction in lifetime of the emitter is actually greater 
than in the "thick" film case up to a distance, d, of 
about 1.5, or a physical distance of about 960 A. Using 
the energy flux method described in Sec. II, it can be 
shown unequivocally that, as was the case for an in­
finitely thick metal, the dOminating effect as the small 
d range is nonradiative energy transfer to the absorbing 
film. Calculations for the example given in Fig. 5 show 
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FIG. 5. The effect of the thickness of the metal mirror on the 
lifetime of the dipole. The two curves represent the normal­
ized lifetime (l!b) vs distance, 3 =kjd. The dashed curve is 
fors=O.l; the full curve for s~1.0, where s=kls. 

that it is the large increase in bET which accounts pre­
cisely for the large decrease in the normalized life­
time as the film thickness s decreases from 00 to O. 1. 

Using the procedure outlines in Sec. ill, {3, the co­
efficient of the d-3 (energy transfer) term, may be eval­
uated (vertical dipole case): 

(3 == bET d3 = ~ Im[Ezl'" e -z T 7Zd7 
kl 0 

(4.9) 

where we have taken n1 =n3 for convenience. Note that 
Eq. (4.9) correctly reduces to Eq. (3.2) for s = 00 and 
gives {3= 0 for s = O. 

Results are shown in Fig. 6 for a range of values of 
nz. The real part is selected as 0.06 and the imaginary 
part covers a span from the value 4.11 (silver film) to 
the "matching" value of 1. 52. The family of curves 
shows an interesting development. The monotonically 
decreasing curve (with decreasing sid) which describes 
the matching condition is seen to develop a peak as Kz 
moves away from the matching condition. This peak in 
the case of the silver film (-«2 = 4.11) is seen to be quite 
high, rising more than 2 orders of magnitude over the 
value for a thick film. Further, since the energy trans­
fer region is of the order of 100 A, it is clear that the 
corresponding film is a very thin one for maximum rate 
of energy transfer. 

In the limit that d is small, and sid is much less than 
1, a formula for bET can be derived which resembles 
that of Kuhnl and Bucher et al. 1S In this case, the re­
sult is 

(4.10) 

where 

(4.11) 

A=41T-«2 S/ X , (4.12) 

and a is a geometric factor which is equal to (1/41T){9)1/4 
for a vertical dipole. This expression is quite similar 
to that of ·Kuhnl and reduces to it for the case nl = nz» -«2. 
However, for na«nu for example, do computed from 
(4.11) will be very different from that computed with the 
formula of Kuhn. In addition, the transition from the 
d -4 (small sid) behavior to the d -3 behavior (large s) is 
not monotonic, as shown in Fig. 6. 

Another limiting case of interest is that for nl =nz» Ka 
and for general sid. We find this case 

(4.13) 

Thus there is a smooth transition from d-3 to d-4 in this 
case. 

Bucher et aZ. 1S have examined the effect of increasing 
the absorptivity of evaporated gold films on the energy 
transfer rate. The absorptivities of the films used in 
their experiments correspond to gold thicknesses in the 
range of 1-50 A. However, an evaporated gold film of 
thickness less than 200 A is not formed in a homoge­
neous layer, but in small islands. These islands may 
be distributed randomly and may be relatively thin, so 
that a substantial part of the surface is covered by thin 
gold layers. It is not clear how the present theory 
should be modified to take the inhomogeneity into ac­
count. However, the results of the experiments of 
Bucher et aZ. 1S are in qualitative agreement with Eq. 
(4.10). This may indicate that the effect of the inhomo-

I 
i 
i 
i 
i 
i 
i 
i 
i 
i 

i 
i 

i 
i 

K2=1.52 -- ----------

FIG. 6. The effect of thickness of metal mirror on the energy 
transfer rate parameter, {J; S is the mirror thickness, dis 
the dipole-mirror separation, and K2 is the imaginary part of 
the refractive index of the metal. In all cases nj = ns = 1. 52 
and n2 = O. 06. 
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geneity is relatively small for these experimental con­
ditions. 

V. FORSTER TRANSFER THEORY FROM CLASSICAL 
ELECTRODYNAMICS 

As Kuhn1 has pointed out, the classical theory of an 
oscillating dipole in an absorbing dielectric can also be 
used to derive the expression for the rate of energy 
transfer from an excited molecule to a host molecule of 
the dielectric. In this section, we reiterate this using 
a different approach which shows the complete equiva­
lence of the classical and quantum methods. The ex­
cited molecule is represented by the oscillating dipole 
(or a set of dipoles each oscillating at a different fre­
quency) and the molecule in the absorbing dielectric will 
be represented by a unit cell volume of the classical 
continuous dielectric. 

The rate of energy (heat), Q, absorbed at a point R 
per second per unit volume by a classical dielectric, 
when an electric field oscillating at frequency w is im­
pressed on it at point R, is given as2(} 

dQ = ~ E(R). C"(w) • E*(R) 
dt 41T ' 

(5.1) 

where C"(w) is the imaginary (absorptive) part of the 
dielectric constant of the dielectric. The electric field, 
for I RI small compared to k(= 21Tn!X), can be written as 

E(R) = n2~3 ",. (1 - 3RR)elk1RI , (5.2) 

where n is the refractive index of the dielectric medium. 
Thus, Eq. (5.1) reduces to 

dQ =~-b ",. (1 - 3RR)'C "(W), (1 - 3R~ •. p. , 
dt 41T n'lC 

(5.3) 

where", is the transition dipole moment (represented by 
the oscillating dipole) for the excited guest molecule for 
frequency w. 

We may proceed from here in two ways: (a) Equation 
(5. 3) can be interpreted immediately as the overlap of 
the host absorption [proportional to C"(w)] and the guest 
emiSSion (proportional to JI.'" for the oscillating dipole); 
the expression can then, be summed over all emission 
frequencies of the guest with the appropriate weighting 
factors. This reproduces the final Forster rate ex­
pression; or (b) we can proceed in the same spirit as 
Forster. a We will proceed in the latter manner and 
return to (a) at the end. 

We note that the absorptive part of the dielectric con­
stant can be written approximately as21 

CII(w)=!~l:" dte-iwt(p.M"'M(t»M, (5.4) 

where V is the volume of the dielectriC; JJ.M is the dipole 
moment operator of the dielectric medium, and JJ.M(t) is 
exp(iHMt)JJ.M exp(- iHMt), where H}I is the HamiltOnian 
of the medium and the average is over the states of the 
medium with appropriate weights. We take to the low­
est order 

(5.5) 

and 

HM = L h~J,{) , (5.6) 
I 

where JJ.~J,{) is the dipole moment operator for molecule 
i in the medium and h~Ml is the Hamiltonian for the ith 
molecule in the medium. We have then 

(5.7) 

where we have assumed that all the host molecules are 
identical and we need only consider the single molecule 
excitations at the frequencies of interest. If we now 
assume the statistical weight for the state a of the me­
dium molecule with energy IMa is p(wa) and expand the 
average, we find 

41TNJ+oo 
C"(w) = fiV dte-I",t L p(wa )"'aBJl.B a eH""s-w';t 

_<:0 a,8 
(5.8) 

or 

(5.9) 

where 

(5.10) 

Substituting this into Eq. (5.3), we find 

dQ N w 21T " ~ ~ 2 
dt =v n4R6 If L..,., P(Wa)["'d' (1 - 3RR)· ILsal 6(w -we + wa)· 

a,S 
(5.11) 

This represents the amount of energy transferred to 
the medium per unit volume per unit time. If We multi­
ply by VIN (the unit cell VOlume) and divide by E==fiw, 
we find the rate of energy transfer, 

21T l" ~ ~ . 2 
YST = n4fi2 fiB L..,., p(W • .)[p. • (1 - 3RR) • J'..s] 6(w - w, + W"') • 

a,e (5.12) 

This is exactly the Golden Rule ExpreSSion for energy 
transfer between guest and host molecules separated by 
R, via the dipole-dipole interaction, which is the start­
ing point for Forster's theory. Notice that E, - E", is 
the energy difference in the medium and is equal to fM, 
the energy emitted by the excited molecule. 

If we now assume that the energy levels of the medium 
are a quasicontinuum, we can replace the sum by an 
integral. We also change the notation somewhat to 
agree with Forster: 

(5.13) 

In the above, JJ.!r~ represents the electroniC part of the 
transition dipole moment for the medium molecule, and 
S represents the Francs-Condon factor for the respec­
tive tranSition. In replaCing the sum by an integral, we 
much replace p(wa ) by a function which gives the den­
sity of states at W<»o as well as the statistical weight of 
the state a, which we call g(M)(Wa): 

'YET=~~ f dW",g(M)(Wa)SZ(w .. , Wa +w) 
Ii n R 

x [p.. • (1- 3RR). p..~!cl2 • (5.14) 

The excited molecule emits at more than one frequency. 
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To take this into account, we sum over all possible 
emission frequencies of the excited molecule. By writ­
ing 

(5.15) 

and S(w y , Wy -w) is the Franck-Condon factor for the 
transition from Wy to Wy - w in the guest molecule, we 
can write the total rate for energy transfer: 

Ytot = f dw J dwyg(,r)(Wy) YET , (5.16) 

where ~~~ is the electronic transition dipole moment or 

Ytot= n4~~R6 f dW{ J dWyg{,Il(wy)SZ(wy, Wy -w)}{ J dWa fMl (wcs)SZ(w a , Wcs +W)}{I£~{ .. ' (1- 3RR)' I£<er .. r (5.17) 

This agrees with Forster (except for our last factor, 
which is the exact geometric factor analogous to For­
ster's K). To proceed, all that is done is to make the 
connection of the first term in brackets with the emis­
sion spectrum of the guest and the second term with 
the absorption spectrum of the host (a factor of w-4 

comes out because of the difference in Einstein A and 
B coefficients). Since this is well known, we will leave 
it out. 

The conclusion of this study is that the Forster trans­
fer rate formula which has been found to be extremely 
useful in many contexts can be derived from a com­
pletely classical (electrodynamical) point of view. The 
final Forster form, with emission and absorption spec­
tra, could have been derived directly from Eq. (5.1) 
with no recourse to quantum mechanics, as stated abOVe, 
by merely noting that e:"(w) is proportional to the ab­
sorption of the host and integrating over the emission 
frequencies of the guest with appropriate weights. We 
see, then, as Kuhn1 has emphaSized, that the Forster 
transfer rate is a classical phenomenon. This is not 
surprising in view of the vast literature on the calcula­
tion of van der Waals forces from a classical viewpoint.22 

We note however that the classical equation, Eq. (5.1), 
does not depend on a model for the dielectric constant 
of the medium, and so can be more general than the 
second order perturbation result. 
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