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Abstract

Sensor interpretation (SI) involves determining ab-
stract explanations for sensor data. SI differs in several
significant ways from the kind of “diagnosis problems”
that have been heavily studied within the belief net-
work community. These differences lead to the need
for approximate, satisficing problem-solving techniques
in most real-world SI problems. Currently, there are
no Al techniques with well understood properties that
can apply a wide range of approximate SI strategies.
In this paper we will examine the differences between
SI and diagnosis that lead to the need for approxima-
tion, and discuss several approximation techniques. We
will then consider the two main Al approaches to SI,
blackboard systems and dynamic belief networks, and
explore their deficiencies for SI. As a point of compari-
son, we will also consider techniques used by the target
tracking community.

Introduction

Sensor interpretation (SI) involves the determination of
abstract, conceptual explanations of sensor data and/or
other information.! In other words, a description of
the “events” in the environment that are responsible
for producing the sensor data. A wide range of tasks
can be viewed as SI problems: vehicle monitoring and
tracking, robot map making, sound understanding for
robotic hearing (auditory scene analysis), speech under-
standing, and so forth.

SI differs in some important ways from the types of
problems that have been highly studied by the belief
network community. For example, in SI problems, there
are typically an indeterminate number of events that
may be occuring in the environment and systems are
faced with date association uncertainty. These charac-
teristics require the use of constructive problem solving
techniques and the potential for exponential growth in
the size of the “belief network” as data is processed.
As a result, approximation is required for most real-
world SI problems. For example, the target tracking lit-
erature contains a variety of approximation approaches

!More generally, we may speak of situation assessment,
especially if we include non-sensor data/evidence.
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that are used in conjunction with the basic Kalman fil-
tering techniques.

In the Al community, blackboard systems have been
a popular framework for tackling complex SI problems.
A key reason for this is that the blackboard model
supports a variety of SI approximation techniques. In
particular, blackboard-based SI systems typically em-
ploy a sophisticated search through partial interpreta-
tion states. What blackboard-based SI sacrifices is the
ability to make formal statements about the quality of
its solutions and the characteristics of its control de-
cisions. The belief network community has so far fo-
cused on dynamic belief networks (DBNs) as the main
approach to SI problems. One way DBNs differ from
most blackboard systems is their ability to perform ex-
act probabilistic inference and select optimal interpreta-
tions. Since they do not support key SI approximation
techniques, however, they are unlikely to be useful for
all but very simple SI problems.

Clearly, what we would like is to have the best of both
approaches: the flexibility and approximation tech-
niques of blackboard systems, with the ability to make
formal statements about solution quality and the prop-
erties of the control decisions. Unfortunately, there are
not currently Al approaches to SI with all of these char-
acteristics. We are currently exploring how to formally
characterize the properties of interpretations developed
by the (blackboard-based) RESUN SI framework. We
are interested in adapting ideas from the belief network
community about approximate probablistic inference.
A critical issue is that “belief nets” for SI problems will
typically need to be incomplete due to the potential
for exponential network growth. We are considering
models of the properties of SI domains to deal with in-
complete networks.

In this paper, we will first examine the characteristics
of SI that make it a difficult problem and talk about ap-
proximate strategies for SI. As a point of comparison,
we will then look at the sorts of techniques that are used
by the target tracking community. This is followed by
introductions to the use of blackboard systems and dy-
namic belief networks for SI—their strengths and weak-
nesses. The paper concludes with a brief summary and
a short discussion of our current research interests.



Interpretation vs. Diagnosis

Interpretation problems differ in several significant
ways from the kinds of problems that have typically
been studied by the abductive inference and belief net-
work communities (e.g., see (Peng and Reggia 1990)
and (Pearl 1988), respectively). For simplicity, we will
refer to these as diagnosis problems. Because of the dif-
ferences, techniques that are appropriate for diagnosis
problems may not be sufficient for SI problems. In this
section, we will first define some terminology and then
examine the differences between interpretation and di-
agnosis.

As we have said, the point of interpretation is de-
termining an ezplanation for sensor data and other
information. An interpretation is a set of hypotheses
about “events” that might have caused the data (and
so explain it). For example, events could be vehicles
moving through the environment or the speaking of
words/sentences. Each hypothesis explains some subset
of the data and together an interpretation’s hypotheses
explain all of the data. Typically, we are interested
in interpretations whose hypotheses are from a subset
of the abstraction types—what Pearl has termed the
ezplanation corpus (Pearl 1988). The process of inter-
pretation is based on a causal model that relates data
characteristics to types of “events.” An interpretation
system uses this model to make abductive inferences
that identify possible explanations (causes) for the data
(Carver and Lesser 1991).

Interpretation is an inherently uncertain process.
In general, there will be multiple possible interpreta-
tions of any data set—i.e., multiple alternative sets of
“events” that could have caused the data. In addition,
many interpretation domains involve significant “noise”
in the data from things like sensor errors, environmen-
tal factors, and so forth. Because of this uncertainty,
there must be some way to assess the strength of the
evidence for the alternative interpretations. The solu-
tion to an interpretation problem is the interpretation
that is judged “best” according to some criteria. In a
probabilistic context, one possible definition of best is
the most probable ezplanation (MPE) (Pearl 1988).2

So far, diagnosis problems sound very similar to SI
problems: they involve determining explanations (e.g.,
diagnoses) for evidence/data, diagnosis is based on a
causal model, and there can be multiple, alternative
explanations that must be considered. The key char-
acteristics of diagnosis problems, though, are that they
have a fized set of interpretation hypotheses (e.g., dis-
eases) and data nodes, with known, fired relations
among them. In other words, a complete and static
(probabilistic) model is available. Probabilistic infer-
ence in networks for such problems has been stud-
ied extensively. The conditional probability of nodes
as well as the MPE can be determined by plugging
the available data into evidence nodes and appropri-

2The MPE is also called the mazimum a posteriori prob-
ability (MAP) interpretation.
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ately propagating its effects (Pearl 1988; Russell and
Norvig 1995). While inference has been shown to be
NP-hard for general network topologies (Cooper 1990;
Shimony 1994), efficient exact and approximate tech-
niques have been developed that can handle many rea-
sonable size problems.

The primary way that interpretation problems dif-
fer is that they lack complete and static models that
connect the data with possible explanations. While in-
terpretation problems have a fixed set of interpretation
and data types, they can have an indeterminate number
of instances of any of these types.® For example, in a
vehicle monitoring system, an unknown number of ve-
hicles will have been responsible for the overall data set
and each vehicle will produce a “track” of an unknown
number of sensor data points. The causal model used
in the interpretation process identifies the connections
between data types and explanation types, but not be-
tween instances of these types.

As a result, the associations between the individual
pieces of data and individual interpretation hypotheses
are a priori unknown. This leads to what is known
in the target tracking literature as the data associa-
tion problem (DAP) (Bar-Shalom and Fortmann 1988):
which target should data be associated with? The DAP
gives rise to what has been termed correlation ambi-
guity or origin uncertainty: it is ambiguous/uncertain
which potential hypothesis each piece of data should be
associated with (and provide evidence for). Diagnosis
problems simply do not involve the DAP or correlation
ambiguity.

The DAP and the possibility of an indeterminate
number of event instances, can lead to a combinato-
rial explosion in the number of possible interpretations
for a data set. For example, in a vehicle monitoring sys-
tem, every single piece of data potentially could have
come from: (1) any already hypothesized vehicle, (2)
noise/clutter, or (3) a new (previously undetected) ve-
hicle. Unless it is possible to conclusively rule out many
of these interpretations, the number of hypotheses will
grow exponentially with the amount of data examined.

To help understand the implications of the DAP, con-
sider a medical diagnosis problem involving data associ-
ation uncertainty: A doctor has a set of patients and a
set of test results. However, the tests have not been la-
beled by patient and some may even be for patients that
he has not seen yet (and knows nothing about). What
is the diagnosis for each of the tested patients? This is
clearly a much more difficult problem than conventional
diagnosis problems since the doctor not only must diag-
nose the patients, he must figure out how many patients
tests he has and associate tests with patients.*

3By indeterminate, we mean both that the number is a
priori unknown and that it changes over time.

4To be fair, this example somewhat overstates the dif-
ficulties typically caused by the DAP. In problems like ve-
hicle monitoring, basic consideration of the laws of physics
can eliminate (or make extremely unlikely) many possible
associations simply by virtue of position information, but



Interpretation systems also face problems not faced
by most diagnosis systems that arise from the nature of
their sensor data evidence. First, data from the same
sensor over time may not be conditionally independent
(given an interpretation hypothesis). Whether this is
the case or not will depend on how much detail we rep-
resent in the interpretation hypotheses and the level of
detail in the causal model. The second problem with
sensor data is that there can be a massive amount of it
when there are multiple passive sensors, continuously
operating in a noisy environment; too much to com-
pletely process. On the other hand, in many interpre-
tation problems we do not need to have explanations
of every piece of data since we only care about certain
events or interpretation types (e.g., platforms/targets
vs. clutter). Finally, SI data and hypotheses typically
involve multiple, often continuous-valued attributes.

Yet another source of difficulty for many SI prob-
lems is the need for real-time performance. This is
true, for example, in many target tracking applications,
where systems must constantly provide current inter-
pretations. An interesting issue is that R/T constraints
may be different for different components of the over-
all interpretation since they can be a function of the
type of “event.” For instance, it is often more criti-
cal to rapidly confirm the presence and state of hostile
platforms than of friendlies.

Approximate Interpretation

To deal with the characteristics discussed in the previ-
ous section, interpretation systems must be construc-
tive (Carver and Lesser 1991; Clancey 1985) and they
also must usually make use of approzimate, satisficing
strategies to determine solutions. There are seven basic
approximation techniques that can be used by interpre-
tation systems:

1. process only part of the available data;

2. construct only some of the possible interpretation hy-
potheses for the processed data;

3. periodically delete (prune) unlikely interpretation hy-
potheses;

4. compute approximate belief ratings (conditional
probabilities) for the hypotheses (perform limited
“evidence propagation”);®

this is less so for medical diagnosis (though some diseases
are highly correlated to basic patient factors like age). An-
other reason is that in many interpretation problems, it is
reasonable to assume that a single source was responsible
for each piece of data—unlike medical diagnosis where the
simultaneous occurrence of multiple diseases with overlap-
ping symptoms is a key issue.

5We are using “evidence propagation” in the same ba-
sic sense that (Pearl 1988) refers to “belief propagation.”
We will use the term “belief” to mean the degree-of-belief
accorded to a hypothesis or interpretation. This will be ei-
ther the conditional probability or approximate conditional
probability of the object.
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5. compute beliefs only for certain types of interpreta-
tion hypotheses (e.g., those from the explanation cor-
pus);

6. consider only some of the possible interpretations
(hypothesis combinations);

7. use criteria other than the MPE to select the solution
(e.g., assemble solutions from hypotheses whose belief
ratings surpass some acceptance threshold).

Obviously, these techniques are not independent. If
a system does not process all of the data then it cannot
in general create all possible interpretations of the com-
plete data set nor compute the true conditional proba-
bilities of the hypotheses. If a system does not create
every possible interpretation hypothesis for some data,
this not only limits the interpretations that can be con-
sidered, it also results in hypothesis belief ratings being
only approximations of the true conditional probabili-
ties of the hypotheses. This is because incomplete hy-
pothesis construction results in incomplete propagation
of the effects of evidence. Figure 1 provides an example
of this situation. The bottom line is that these ap-
proaches will result in interpretation solutions that are
only approximations of the optimal, MPE interpreta-
tion: they may be incomplete or they may not be the
most probable composite interpretation.

Despite the obvious drawbacks of approximate ap-
proaches, many real-world SI problems simply require
approximation. Furthermore, there are reasons why ap-
proxmiate SI can often be effective: systems are typi-
cally interested in only certain types of phenomena out
of all the environmental phenomena for which there are
models (e.g., targets/platforms vs. noise/clutter); data
may be redundant due to the existence of multiple sen-
sors; it may not be necessary to process all relevant
data and make every evidential inference in order to be
sufficiently certain of interpretations; and so forth.

A key issue for approximate SI is determining ap-
propriate approximation strategies. Ideally, this should
be done dynamically, in response to changing interpre-
tations, data loads, ambiguity, and goals. Many ap-
proximate strategies are incremental in nature, such
that additional time can be used to improve the in-
terpretation. For example, if we are constructing only
the “more likely” interpretation hypotheses, additional
time can be used to construct progressively more hy-
potheses and so allow for improved belief computations.
Likewise, additional time can be used to process in-
creasingly larger subsets of the available data. Thus,
many of these strategies are consistent with the notion
of flexible computations or anytime algorithms (Dean

and Wellman 1991).

Target Tracking

Target tracking is a much studied SI application. It in-
volves identifying “targets” using “measurements” de-
rived from sensor data, and correlating measurements
over time to track the targets (and perhaps maintain
other state information). Target tracking is a special-



complete propagation

incomplete propagation

Figure 1: Approximate interpretation due to incomplete hypothesis construction and propagation.

In the complete construction/propagation case, all possible (alternative) interpretations hi, hz, and hs have been created
(using the most complete support possible). This allows the system to determine the conditional probability of k1 given the
available data {di,...,ds}. In the incomplete construction/propagation case, the alternative explanations to k1 have not been
created. This means that the belief computed for A3 can be only an approximation of the true conditional probability since
the likelihood of the alternative explanations can be only approximately considered.

ized SI application because limited interpretation of the
data is being done—e.g., there is typically no attempt
to explain target behavior or the patterns of multiple
targets. The need for approximate techniques has been
well known within this community to deal with data
association uncertainty, large numbers of targets, high
data loads, maneuvering targets, and so forth. An ex-
cellent introduction to the issues and standard tech-
niques in target tracking can be found in (Bar-Shalom
and Fortmann 1988).

We will consider the Bayesian Multiple Hypothesis
Approach (BMH) of (Cox and Leonard 1994), since it
is one of the more advanced and flexible target tracking
algorithms. On each sensor cycle, BMH first forms all
possible combinations of the new data with: (1) each of
its existing track hypotheses, (2) the false alarm/clutter
interpretation, and (3) the new track interpretation.
Once this is done, exact conditional probabilities are
computed for each of the possible associations (hy-
potheses), using a Kalman filter approach (with cer-
tain assumptions about the distributions of noise and
new features). BMH deals with the DAP by consider-
ing all possible associations between the data and possi-
ble hypotheses on each cycle and computing conditional
probabilities. To deal with the exponential growth in
the number of hypotheses that would be generated over
time, DMH resorts to approximation. Periodically, low
likelihood hypotheses are pruned, so that they are not
used in forming further associations.

While pruning can be based on conditional probabil-
ities given the previous model, each pruning effectively
results in the state that will be used in the next cy-
cle of the Kalman filter being only an approximation of
the true state. The formal properties of this approx-
imation are not discussed in (Cox and Leonard 1994)
and are apparently unknown. One reason this may not
be considered a serious problem is that it appears com-
mon to assume that uncertainty can be fairly rapidly
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resolved—i.e., there will be little uncertainty about a
target after the fusion of data from a relatively small
number of time slices. In fact, many target tracking
approaches do not even maintain multiple hypotheses
between cycles, they simply select the most likely on
each cycle.

Another limitation of BMH is that it has little flex-
ibility: it works time slice by time slice, evaluating all
data and creating all possible interpretations (given its
previous model). To allow this type of processing to oc-
cur in real-time requires that the number of targets and
amount of data per time slice not become excessive, and
that the number of hypotheses being maintained not be
allowed to grow too large.

Blackboard-Based SI

The blackboard model of problem solving grew out
of the Hearsay-II (HSII) speech understanding system
(Erman et al. 1980) and was designed to deal with
the difficult problems of SI. Among the key ideas be-
hind this model are that problem solving should be
both incremental and opportunistic. That is, solutions
should be constructed piece by piece and at differ-
ent levels of abstraction, working where the available
data and intermediate state of problem solving suggest
the most progress can be made. More substantial in-
troductions to the blackboard model can be found in
(Carver and Lesser 1994; Engelmore and Morgan 1988)
and in (Carver and Lesser 1992), which concentrates
on blackboard-based SI. A recent blackboard-based SI
system is described in (Lesser et al. 1993).

In the basic HSII model, a blackboard system is com-
posed of three main components: the blackboard, a set
of knowledge sources (KSs), and a control mechanism.
The blackboard is a global database (i.e., shared by all
the KSs) that contains the (sensor) data and interpreta-
tion hypotheses. The KSs embody the problem solving
knowledge of the system: they examine the blackboard



and can add, modify, or even delete hypotheses when
appropriate. For SI problems, there would be KSs to
identify possible explanations for data/hypotheses and
construct hypotheses representing these explanations.
The blackboard is typically structured as a set of levels.
For interpretation problems, the blackboard levels are
basically organized as a partial order, with data levels
at the “bottom” and abstract explanation levels at the
“top.” Levels are themselves structured in terms of a set
of dimensions, which are used to define the “location”
of a hypothesis within a level. This makes it possible
to provide efficient associative retrievel of hypotheses.
The control mechanism decides what actions (knowl-
edge source instantiations) the system should take next.

The blackboard approach to SI has emphasized the
need for approximation and sophisticated searches to
solve complex SI problems. This has produced sys-
tems with great flexibility. Blackboard-based systems
are capable of implementing all of the approximation
techniques listed earlier. Interpretation hypotheses can
be constructed and refined incrementally, as part of a
search process driven by “sophisticated control archi-
tectures.” A variety of approximate knowledge sources
can be defined and applied. Blackboard systems do not
have to work time slice by time slice, forward in time;
they do not have to create all interpretations of the data
they process; and they do not have to process all the
available data.

For example, blackboard systems can examine the
data abstractly, looking for likely “targets,” and then
selectively processing data over a range of times to con-
firm/deny and refine their hypotheses (e.g., (Durfee
and Lesser 1988)). Likewise, they can focus their ac-
tivities on pursuing only interpretation hypotheses of
most value—as in possible hostile aircraft vs. friendly
aircraft. Because they incrementally develop hypothe-
ses, blackboard systems can also work at multiple levels
of abstraction—they need not immediately explain all
data in terms of the ultimate (explanation corpus) in-
terpretation types. This is one mechanism for dealing
with the combinatorics of the DAP: implicitly repre-
senting uncertainty about higher level associations by
not creating links representing those associations until
sufficient data is acquired.

The blackboard model has also emphasized the need
to dynamically and opportunistically adjust strategies.
This means that blackboard systems can adapt their
problem-solving strategies as data loads, ambiguity,
system goals, and available time change. Decisions
about what hypotheses should be pursued and how they
should be pursued are based on the intermediate state
of problem solving (the current hypotheses, data, goals,
and so forth). This allows blackboard-based interpre-
tation systems to deal with resource limitations by rea-
soning about appropriate solution quality vs. processing
time trade-offs.

The limitations of blackboard-based SI systems have
been and continue to be their lack of formalism. Black-
board systems have almost invariably used ad-hoc belief
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representations and solution selection strategies. This
has made it impossible to determine the properties of
the solutions produced by these systems (e.g., how they
compare to the MPE solutions) other than through em-
pirical means. Likewise, while blackboard systems can
engage in sophisticated reasoning in making control de-
cisions these approaches have not been formalized (e.g.,
in a decision-theorectic framework).

DBN-based SI

As we have shown, interpretation forces a system to
deal with issues that are not raised by diagnosis prob-
lems. For example, since the number of possible data
and interpretation instances are a priori unknown, in-
terpretation problem solving is necessarily constructive.
With a belief net, this means growing the network as
data arrives and is processed. As each piece of data is
processed, a corresponding evidence node could be cre-
ated (with appropriate conditional probablity informa-
tion), new explanation nodes may need to be created,
and evidential links added to connect the evidence node
to nodes the data directly supports.

Instead of this approach, however, the belief net com-
munity has focused on dynamic belief nets (DBNs) to
deal with the temporal issues raised by interpretation.
The basic idea behind DBNs is to construct new in-
stances of the dynamically changing portions of the be-
lief net for each time slice,® but make use of the Markov
Property to eliminate all but the latest two time slices
of information by doing a rollup of all previous sen-
sor information. Instead of having, say, e single ve-
hicle hypothesis with supporting data/evidence nodes
being added over time, a DBN would have a time t ve-
hicle hypothesis, a time t 4+ 1 vehicle hypothesis, and so
on. Each such vehicle hypothesis would be supported
by data from its time slice plus by the previous wve-
hicle hypothesis—not (directly) from all the accumu-
lated data. Introductions to DBNs can be found in
(Dean and Wellman 1991; Nicholson and Brady 1994;
Russell and Norvig 1995).

The DBN approach to interpretation is quite
inflexible. A DBN works time slice by time slice, doing
complete and exact interpretation—i.e., determining all
possible interpretations of the new data and comput-
ing exact probabilities. While a DBN can apply cer-
tain approximate inference techniques, there is no abil-
ity to selectively and opportunistically search. Russell
and Norvig (Russell and Norvig 1995) (p. 518) state
that “probably the most important defect of DDNs [dy-
namic decision networks] is that they retain the prop-
erty of forward search through concrete [i.e., complete]
states....” If we compare the DBN approach to the
blackboard approach, we see that this is a key way that
blackboards get their flexibility and power: they are
not limited to forward search and can deal with partial
states rather than complete states.

SEach discrete time when new sensor data arrives.



Another thing to note about DBNs is that they
do not completely address the DAP and the result-
ing possibility of exponential growth in the number
of interpretations and thus network structure. DBN’s
do reduce growth in the network that would come
from adding numerous data/evidence nodes. Rollup
nodes (Russell and Norvig 1995) are used to com-
pactly represent previous sensor data, so that only
the last time slice of the network needs to be main-
tained. This does not address the potential for ex-
ponential growth in the number of interpretation hy-
potheses over time, however. In general, approxima-
tion techniques will be required to deal with this issue.
Furthermore, while the rollup approach works for sim-
ple interpretation problems (e.g., (Huang et al. 1994;
Nicholson and Brady 1994)), it may not be practical for
interpretation problems involving sensor data with mul-
tiple, continuous-valued attributes. For example, sup-
pose that environmental characteristics in some region
are causing particular distortions in the signal received
from a target vehicle (e.g., certain frequencies shifted
by z Hz.). Expectations about the continued appear-
ance of this distortion need to be maintained between
time slices. Doing this could require extremely com-
plex, infinite-valued rollup nodes, which are not going
to be practical in belief network computations.

Conclusion

The inherent properties of SI mean that resource lim-
itations will be a critical issue for most real-world ap-
plications. Thus, approximate and resource-bounded
problem solving techniques are required. Currently,
there are no Al techniques for SI that can both pro-
vide these capabilities and have well understood proper-
ties. Blackboard systems can support approximate SI,
but produce solutions whose quality cannot be formally
assessed. They can dynamically/opportunistically con-
sider how to proceed, but do not include a formal model
for reasoning about resource trade-offs. DBNs can pro-
duce optimal, MPE solutions when applicable, but do
not support most SI approximation techniques. Of
course, this situation is not unique to AI approaches
to SI. While target tracking algorithms are often based
on formal techniques like the Kalman filter, they typ-
ically resort to approximations outside of the formal
system (and they cannot reason about resource vs. so-
lution quality trade-offs).

We are currently exploring how to formally charac-
terize the properties of interpretations developed by the
(blackboard-based) RESUN SI framework (Carver and
Lesser 1991). Our intention is to try to.adapt approx-
imate probablistic inference techniques from the belief
network community. An important issue here is that
the research on approximate inference in belief nets has
largely assumed that a complete network is available
and the critical factor is that exact inference is not
tractable. As we have discussed here, this assumption is
often going to be invalid for SI because of the potential
for exponential growth of the network. Approximation
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techniques for SI must be able to work with incomplete
networks (i.e., partial states). It appears to us that
the ability to make formal statements about solution
quality in such situations will require knowledge of the
characteristics of the domain. For example, we are con-
sidering properties such as near monotonicity (Carver,
Lesser, and Whitehair 1996) to deal with evaluation in
incomplete networks.

Another very exciting development that we intend to
make use of is Whitehair and Lesser’s Interpretation
Decision Problem (IDP) formalism (Whitehair 1996).
This framework uses context free attribute grammars to
represent complex SI domains and SI problem solvers.
It allows one to compare the inherent complexity of in-
terpretation in domains with particular characteristics
and to analyze the appropriateness of a problem solv-
ing system for a domain. Unlike much formal work,
it is powerful enough to represent real-world SI prob-
lems. So far, it has been used to analyze the properties
of several sophsticated control strategies used in previ-
ous blackboard-based SI systems. It hold the promise
of providing a method for formally assessing the char-
acteristics of approximate, blackboard-based SI strate-
gies. Unfortunately, the current IDP framework does
not assess performance in terms of standard metrics
like conditional probabilities or MPE solutions.
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