
Nobody’s perfect: Interactive Synthesis from
Parametrized Real-Time Scenarios ∗

Holger Giese, Stefan Henkler, Martin Hirsch†, and Florian Klein‡

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[hg|shenkler|mahirsch|fklein]@uni-paderborn.de

ABSTRACT
As technical systems keep growing more complex and sophisti-
cated, designing software for the safety-critical coordination be-
tween their components becomes increasingly difficult. Verifying
and correcting these components already represents a significant
part of the development process both with respect to time and cost.
Scenario-based synthesis has been put forward as an approach to
accelerate the transition from requirements to a correct, verified
model. In [8], we have presented a synthesis technique for deriving
pattern behavior from a set of timed scenarios with parametrized
time constraints. The derived patterns can then be verified using
our technique for the compositional formal verification of Mecha-
tronic UML models as introduced in [10]. In this paper, we argue
that the practical relevance of a synthesis technique predominantly
depends rather on its ability to identify and point to specification
errors than the complexity of the scenarios it could, in theory, pro-
cess, provided with a correct specification. By means of a case
study, we introduce the different types of specification errors that
may arise during synthesis. Using our tools for modeling, synthe-
sis, and verification, we then show how we can identify and resolve
these errors in the successive phases of an interactive development
process.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.4 [Software Engineering]: Software/Program Verification

†supported by the University of Paderborn.
‡supported by the International Graduate School of Dynamic Intel-
ligent Systems.
∗This work was developed in the course of the Special Research
Initiative 614 – Self-optimizing Concepts and Structures in Me-
chanical Engineering – University of Paderborn, and was published
on its behalf and funded by the Deutsche Forschungsgemeinschaft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCESM’06,May 27, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

General Terms
Verification

Keywords
Scenario-based synthesis, Diagnosis, Model Checking, Patterns

1. INTRODUCTION
Technical systems are becoming more capable, but also complex
and sophisticated. Often, the improvements are due to the use of
software or, increasingly, the interaction within a network of soft-
ware components. As these systems are often safety-critical, soft-
ware that controls essential functions needs to conform to a high
quality standard that can only be achieved by means of formal ver-
ification. Designing and verifying the coordination mechanisms is
both time-consuming and costly and represents a significant part of
the development process.

Scenario-based synthesis has been proposed as an efficient way
to derive correct component behavior. Starting from scenarios as
an intuitive way to formalize behavioral requirements is supposed
to facilitate arriving at statecharts that represent the actually desired
behavior. This is especially true for real-time behavior, where spec-
ifying time constraints for a specific scenario is usually much more
straight-forward than for the resulting automaton.

Consequently, there is a variety of specification techniques and
corresponding synthesis algorithms. In [8], we have presented
a synthesis technique for deriving real-time coordination patterns
from a subset of UML sequence diagrams with time annotations.
Its characteristic feature is that the upper bounds of time constraints
may be parametrized. For the synthesized pattern, these parameters
can then be set to arbitrary values, within the confines computed by
the synthesis algorithm. Once a pattern has been supplied with con-
crete values, it can be applied to a component structure. Using the
compositional formal verification technique for Mechatronic UML
models that was introduced in [10], we can then verify the overall
system by verifying the individual patterns and components.

However, intuitive as a scenario-based approach may be, syn-
thesis remains a tricky business, especially when time constraints
come into play. Even if current synthesis algorithms are capable of
handling the required number and complexity of scenarios to arrive
at a behavioral specification for a complex technical system, the
synthesized result is only as good as its input. It is by no means
certain that the designer is capable of supplying the necessary sce-
narios that correctly and consistently represent exactly the desired
behavior. To do so on the first attempt is nearly impossible, even
more so for practical applications where the designer is not an ex-

67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357233273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pert on synthesis. Besides, there is not even a guarantee that such
a specification exists at all. While it is always possible to synthe-
size a model for a given set of unconstrained scenarios, mandatory
behavior as present, for example, in live sequence charts (LSC) or
time constraints may introduce inherent contradictions that make
synthesis impossible.

In the domain of formal verification, a similar problem exists.
Nonetheless, model checking has been remarkably successful in
practice. This is largely due to one of the most compelling fea-
tures of model checking techniques, the ability to generate con-
crete counterexamples that explicitly and intuitively demonstrate
exactly what can go wrong. It is hard to imagine that a technique
that took a complex temporal logic specification and then simply
answered ’yes’ or ’no’ would have gained widespread popularity.
In this vein, it is therefore equally crucial that a synthesis algorithm
provides sufficient feedback that enables the quick localization and
removal of specification errors in an iterative process.

In this paper, we present different types of specification errors
that may arise when synthesizing component behavior from para-
metrized real-time scenarios. Using a case study from the RailCab1

domain, we run through the phases of scenario modeling, synthesis
and formal verification and point out which error types may be-
come apparent at each stage. For each error type, we provide an
example and show how it was identified and reported by the tools
we have developed. Ultimately, we arrive at the desired verified
component behavior.

In Section 2, we provide a more detailed description of our
modeling approach (2.1), synthesis technique (2.2) and verification
technique (2.3) and present an overview of related work. In Sec-
tion 3, we introduce the case study and begin with modeling the
relevant scenarios (3.1). We then generate parametrized statecharts
and handle the problems arising from overlaying the different sce-
narios (3.2). After fixing the free parameters, the resulting state-
charts are then verified (3.3). Section 4 provides a conclusion and
an outlook on future work.

2. APPROACH
The central idea of our approach is to compose complex software
systems from coordination patterns describing component interac-
tions. Patterns specify ports, with interconnecting channels, a state-
chart specifying the required role protocol for each port, and pat-
tern constraints expressing a set of desired properties. They thus
comprise structure, behavior, and requirements.

A component is then created by composing and refining a set
of roles. The patterns then imply valid ways of connecting these
components into the overall system.

Our synthesis technique allows us to replace the manual speci-
fication of the pattern role protocols by synthesis, making it both
faster and less error-prone. Note that, as the individual role pro-
tocols are usually of fairly limited size, the central problem in this
context is not identifying states and transitions, which are often
fairly obvious, but finding local time constraints and network de-
lays that, in conjunction, yield the desired complex system behav-
ior. In practice, specify timing information such as worst-case ex-
ecution times (WCET), deadlines, or timeouts in advance is diffi-
cult. By starting from parametrized scenarios, we can later set the
parametrized constraints in a meaningful context and analyze the
trade-offs between different alternative parameterizations by vary-
ing the constraints, in a way that is compatible with the overall
specification.

Once the parameters have been fixed, the concrete pattern can

1http://www-nbp.upb.de/en/index.html

be formally verified to ensure that the synthesis result respects all
the pattern constraints that are imposed by the pattern. Verification
by means of model checking is feasible for individual patterns, as
only a limited number of components is involved. Each compo-
nent is additionally restricted to a fixed number of role behaviors,
with limited side effects. They are joined in parallel composition,
but as they are usually not independent of each other, appropriate
composite behavior needs to be derived by means of refinement.
Once the local behavior is consistent, however, and all ports are
connected in a syntactically correct manner, the verified properties
are carried over to the overall system.

In the following subsections, we briefly introduce the concepts
and notations that are relevant to our application example. Please
consult [8] for an in depth discussion.

2.1 Modeling
When designing patterns, we abstract from the components and
only represent them by the roles they perform in the pattern. The
roles’ interfaces are provided by named ports, which can be con-
nected by connectors modeling asynchronous or synchronous com-
munication channels (see Figure 1). The behavior of ports and
asynchronous channels is specified by statecharts. Pattern con-
straints may be specified using temporal logic.

Because of their modular nature and the abstraction by way of
roles, patterns promote reuse. Once verified, patterns can be ap-
plied to similar cases with a compatible component structure. Pat-
terns that are still parametrized are even more flexible, but anew
require a parameterization and verification step, as verification is
not possible for the generic case.2

Figure 1: A coordination pattern

Once the structure of the pattern has been defined, we can move
on to role behavior. Instead of specifying the statecharts directly,
we opt for identifying the desired sequence of events for several
representative cases, which is more natural to most designers than
reasoning in states.

We use a restricted subset of UML 2.0 sequence diagrams [17,
p. 435] to specify parametrized timed scenarios. UML 2.0 se-
quence diagrams allow specifying durations for message transfers
and lower and upper bounds for the time passed between two points
on a lifeline. We can also observe the current time and reference
this measurement in constraints. Upper bounds may be arbitrary
sums of observations, constants and parameters, whereas lower
bounds may only consist of observations and constants. This re-
striction is currently required by our synthesis technique.

Distinguishing optional and required behavior is another impor-
tant aspect of scenarios. Triggers have first been proposed as a tech-
nique for expressing conditional behavior for live sequence charts
2The problem of emptiness for parametrized timed automata with
more than 2 parameters has been proven to be undecidable in [2]
by showing that the halting problem for 2-counter machines can
be encoded. The same problem can be reduced to the synthesis
problem which excludes time-stopping deadlocks for via scenarios
with related state labels.

68

(LSC) [11] and also appear in triggered message sequence charts
(TMSCs) [19]. We use theassert block introduced by UML 2.0
sequence diagrams [17, p. 444] to describe conditional behavior of
parametrized timed scenarios. Such blocks indicate a mandatory
sequence of behavior that needs to be executed once the preced-
ing steps have been observed and the block has been entered. For
dealing with cases where several assertions clash, we also assign
priorities to scenarios.

In order to facilitate the transition to a state-based model, we
explicitly add state labels to the lifelines which represent states or
sets of possible states. The labels allow using self-documenting
state names in the generated statecharts and make overlaying dif-
ferent scenarios easier and much more efficient.* refers to all states
that have been defined outside of the present scenario,+ and- allow
manipulating state sets.

Figure 2 is an example of such a scenario with state annotations.
The parameterswitchwcetspecifies the acceptable worst case ex-
ecution time for the switch role.

Figure 2: A scenario (UML 2.0 sequence diagram)

In the synthesized pattern, the derived operational description of
the roles’ real-time behavior is expressed by statecharts. UML 2.0
statecharts only provide rudimentary support for timing constraints
(when/after) relative to the time of entry into a state, but cannot
express complex timing constraints involving sequences of states.
Moreover, their semantics cannot be implemented on a real ma-
chine, as they assume transitions to be instantaneous. Finally, event
triggers and time guards for transitions are mutually exclusive.

We therefore use real-time statecharts (RTSC) [6] that introduce
several extensions. Clocks may be reset when entering or leaving
states and when firing transitions. States have time invariants that
restrict the permitted clock values. Transitions have time guards
that restrict their permitted activation time. Transitions may be ur-
gent or non-urgent. Enabled urgent transitions fire immediately, en-
abled non-urgent transitions can fire arbitrarily, unless forced by a
state invariant or other constraint. Transitions consume time. They
may specify a worst case execution time and a deadline. Operations
(side-effects) are likewise annotated with WCET and deadlines.

In a parametrized RTSC (PRTSC), clock constraints are not
merely constants, but expressions containing parameters and con-
stants. Figure 3 depicts an example of such a statechart.

The Fujaba CASE Tool3 supports all of the modeling techniques

3http://www.fujaba.de

Figure 3: A generated parametrized real-time statechart

introduced above. It provides UML 2.0 sequence diagrams with
conditional behavior and parametrized timing constraints. RTSC
and real-time pattern are supported by the real-time version of Fu-
jaba. RTSC have a well-defined real-time semantics based on timed
automata [12]. Code generation [6] as well as real-time model
checking [13] are currently supported for real-time statecharts.

2.2 Synthesis
As mentioned above, a variety of approaches exist which permit
using a set of scenarios for the synthesis of operational state-based
component behavior (cf. [14, 16, 21, 24]). In the real-time domain,
however, the focus is on the timing constraints and their correct
transcription.

Several proposals to check timed system models against scenario
descriptions with time have been made (cf. [15]). For actively
synthesizing such models from scenarios with timing constraints,
there are only very restricted approaches. The approach proposed
in [20] synthesizes only global solutions in form of a single au-
tomaton for non-parametrized scenarios, which assumes angelic
non-determinism4 and does not support progress conditions. The
approach of [18] results in a global non-parametrized timed au-
tomata which supports progress, but requires scenario descriptions
in form of trees that already introduce some of the required oper-
ational behavior. The play-out engine [11] enables the play-out of
live sequence charts (LSC) with timers, but also only constructs
global behavior for non-parametrized LSCs.

Addressing the general problem of scenario-based synthesis for
parametrized real-time systems would lead to scalability problems.
The synthesis problem for real-time patterns remains tractable be-
cause the patterns limit the number of interacting roles so that only
a moderate number of scenarios has to be considered together.

While generating a statechart from a single scenario is trivial
and overlaying several scenarios is at least facilitated by the state
labels, the additional timed constraints complicate matters. The
time constraints need to be chosen in such a way that the resulting
specification is both consistent within a single scenario, e.g., that
a deadline may not be earlier than the sum of the lower bounds
of all required operations, and across scenarios. Assert blocks can
also lead to conflicts when two scenarios require mutually exclusive
behavior.

As the synthesis problem in its most general form is intractable

4cf. [23]

69

for the parametrized case as well as mandatory behavior and not
centralized behavior, we proposed (like other approaches which are
also intractable due to mandatory behavior and not centralized be-
havior [5]) to separate the synthesis task into a feasible first step
which addresses each process only taking the local context into ac-
count and a verification step which checks whether the synthesis
result is indeed correct. In the case of parametrized systems this
second step is in fact only possible after values for the parameters
have been chosen.

In order to solve the synthesis problem, the parametrized time
constraints are transformed into a system of linear inequalities.
These are then passed to a constraint solver (either a free propri-
etary implementation of the simplex algorithm or the – much more
efficient – commercial CPLEX library), which determines feasi-
ble values, respectively ranges, for each parameter. If a configura-
tion yielding a consistent specification exists, the scenarios can be
transformed and integrated in order to obtain role behaviors. The
resulting PRTSC can then be turned into regular RTSC by choosing
parameter values from the computed ranges.

The synthesis process is integrated into the Fujaba Tool Suite as a
plugin. Beside the sequence diagrams that serve as input and the re-
sulting PRTSC and RTSC, the plugin also provides access to model
parameters (user-defined or computed, see Figure 4) and graphical
representations of the time constraint graphs used internally as an
intermediate format.

Figure 4: The Fujaba synthesis navigator

2.3 Verification
Support for the verification of real-time patterns is provided di-
rectly from within the Fujaba Tool Suite by means of another plu-
gin. Pattern constraints, such as deadlock freedom or safety prop-
erties, can be expressed using temporal logic specifications ex-
pressed in the restricted TCTL [1] (computational tree logic) vari-
ant ATCTL, which only containsalways pathoperators. Once a
constraint has been added and verified, it is automatically updated
whenever the component is modified and displayed as an annota-
tion (see Figure 1)[7].

The actual verification is performed by the model checker UPP-
AAL [4]. As the formal semantics of RTSC are based on Timed

Automata, it is possible to directly transform the role and channel
protocols of a pattern into the required input format of the model
checker, which is based on the same formalism. In case the con-
straint is not fulfilled, UPPAAL generates a counterexample in the
form of an interactive, graphical execution trace that allows inspect-
ing the exact sequence of transitions that has led to the violation.

3. APPLICATION
We now apply our approach to the design of a case study in order to
illustrate the procedure and the possible error types that may arise
at different stages.

As our case study, we use a concrete example from our work in
the collaborative research center 614 of the German National Sci-
ence Foundation (DFG), titledSelf-optimizing Concepts and Struc-
tures in mechanical Engineering. As an example application, we
are exploring ways of enhancing the intelligent shuttles of the Rail-
Cab research project by adding self-optimizing behavior.

In accordance with the agent paradigm, the shuttles are act-
ing autonomously and making independent and decentralized de-
cisions, aimed at maximizing their own profit. They are equipped
with a wireless communicating network (WLAN). The WLAN can
be used for shuttle-to-shuttle communication or a shuttle-to-track
communication. While the track system is generally passive, tracks
may provide simple services to agents.

In this paper, we consider two shuttles arriving on different
tracks which are joined at a (passive) switch. As both shuttles are
approaching the same location, a crash at the switch is a hazard,
depending on their positions and velocities. In order to exclude ac-
cidents, there needs to be some form of coordination w.r.t. the pas-
sage of the switch. As depending on the shuttles’ objective function
and current situation, the shuttles might either be interested in go-
ing first (e.g. in order to stay ahead of a slower shuttle) or actually
yielding (e.g. for forming a convoy), their behavior is difficult to
predict.

A first idea for solving the problem is based on direct shuttle-
to-shuttle coordination. One shuttle is selected by means of some
criteria and then tells the other shuttle what to do. A solution that
is more suited for a multi-agent system would be to let the shuttles
negotiate about the right of way at the switch. For example, the
shuttles might bid for the right of way. However, as both shuttles
have an interest in the matter, the situation would be asymmetric,
as the shuttle hosting the auction might cheat.

A better solution would therefore be to use the switch as an ar-
bitrator. Each agent sends a bid to the switch in a one-shot Vickrey
auction [22], i.e. an auction where the highest bidder wins, but
needs to pay the bid of the second highest bidder. As Vickrey auc-
tions promote truthful behavior, i.e. announcing one’s true valua-
tion is the dominant strategy, this would allow the agents to quickly
arrive at a mutually acceptable result.

3.1 Scenarios
We now attempt to describe this solution using only a small number
of representative runs. First of all, however, we need to model the
participants of these runs, i.e. the switch and up to two shuttles, and
their structure. Each of them is modeled as a component; the wire-
less link between them is modeled as an asynchronous channel con-
necting these components. We furthermore add the requirements
that the system should be deadlock free and that only one shuttle
at a time will enter the switch, i.e. that collisions are avoided. To-
gether, these components, connectors and requirements form the
SwitchAuctionPattern, as already presented in Figure 1.5

5Note that the instantiation of the patterns can be specified and

70

We can then proceed with describing the different role behaviors
of the pattern by means of scenarios. We model for different sce-
narios, specified as UML sequence diagrams (cf. Figure 5, 6, 7 and
2). The cases we identified as relevant are (a) a single shuttle suc-
cessfully passing the switch, (b) one shuttle (or more) requesting
passage, but not receiving a timely reply from the switch, (c) two
shuttles meeting at the switch, successfully carrying out an auc-
tion, and passing the switch in the determined order (d) two shut-
tles bidding, the auction winner receiving the permission to enter
the switch, whereas the losing shuttle times out while waiting. Sce-
narios (a) and (c) thus specify desired behavior, whereas scenarios
(b) and (d) describe likely deviations from the ideal case.

Figure 5 shows scenario (a) which models the communication
between one shuttle and the switch. Firstshuttle sends arequest
message toswitch, which replies toshuttle with a go message. In
this scenario, no negotiation is shown as there is just one shuttle.
After receiving thego message theshuttle changes to the stateenter.
When leaving the switch, theshuttle finally sends apass message
back to theswitch and enters the statepass. The time span between
stateclose and pass is specified by a timing constraint. In state
close the time observationt is reset and untilshuttle is in statepass,
at mostt+pass wcet time units can elapse. To describe that the
switch has to turn tobusy right after receiving therequest message,
a timing constraintt+busy wcet is associated with statebusy.

Figure 5: Scenario (a) - Passing a working switch

Like scenario (a), scenario (b) in Figure 6 contains no negotia-
tion. Unlike in the first scenario, theswitch does not reply to the
shuttle. The shuttle has to assume that theswitch has failed and
stops, as passing theswitch without permission would risk a colli-
sion. Switching to thestop state is brought about by means of a
timing constraint of thewait state that has been defined a priori.

Figure 6: Scenario (b) - Switch failure

The preceding scenarios have only considered a shuttle-to-
switch communication. In Figure 7 and 2, we consider an auction-
based negotiation. Figure 7 shows the conflict-free scenario (c),
basically the ideal execution of the auction. After receiving two
concurrent requests, theswitch asks each of them to place a bid.
Both shuttles then send bids to theswitch. The switch now acts
as an arbitrator and decides on the winning bid. Theswitch then

verified using a related extension of Fujaba [3].

sends the correspondingshuttle a go message. After theshuttle
has passed theswitch and confirms this with apassed message, the
switch sends ago message toshuttle2, which is then free to pass the
switch as well.

Scenario (d) in Figure 2 (see Section 2.1) is identical to scenario
(c) in Figure 7 up to the point where theswitch is supposed to send
the secondgo message to the losing bidder. As theswitch does not
send ago message toshuttle2, the second shuttle times out and,
after a predefined time, switches to thestop state.

Figure 7: Scenario (c) - A successful auction

3.2 Synthesis
In general, the scenarios can contain several errors which make a
synthesis impossible. This may be at first syntactical errors such
as multiple definitions of the same time observation or time con-
straints where the lower bound is larger than the upper bound. An-
other class of errors is detected when we check that for the given
set of scenarios solutions are possible which guarantee consistency
and locality (cf. [8]). When we go one step further and merge the
different scenarios into a statechart for each role, in addition con-
flicts between alternative transitions of the same state which result
from different scenarios have to be excluded.
Checking Consistency and LocalityThe simplest type of error
concerns individual states or side effects. In scenario (a) (Figure
5), time constraints are specified for the time spans between state
close and statebusy and between stateclose and statepass. The up-
per bound for the former time span is determined by the parameter
busy wcet <= 25, the latter is restricted bypass wcet <= 30. This
implies that the time span betweenbusy andpass may be as short
as 5 time units. Together, these constraints lead to a contradiction
(caused by the communication delay of the messagego), which
is immediately flagged by the tool when performing the analysis.
The designer may relax one of the constraints in order to resolve
the conflict. In our case, we use the tool to compute the admissible
MIN and MAX values for the variables. As a result, we find that
busywcet has to be at least 25 and passwcet has to be at least 33.
Excluding Conflicts Finally, conflicts arise when two scenarios
with the same priority containassert blocks that assert different
transitions or activities for the same state. In the case study, the
assert blocks in scenarios (a) and (c) require different behavior in
statebusy. In this case, the tool opens a dialog, and highlights the
exact state where the conflict arises and points to the corresponding
assert blocks (cf. Figure 8).

The simplest way to resolve this type of conflict is to adjust the
priorities of the relevant sequence diagrams, which will then allow

71

Figure 8: Assertion conflict

the algorithm to decide which one of several conflicting behavioral
options should take precedence. In our case, this does not lead to
the desired behavior, because the statebusy serves for two differ-
ent tasks. Firstly, in statebusy all incoming requests are collected.
Secondly, the decision for the auction is performed. To resolve the
assertion conflict, the tasks are decoupled by splittingbusy in the
statesassert anddecide (cf. Figure 9).

Figure 9: Solution for resolving assertion conflict

3.3 Verification
Using the range constraints that have been computed by the con-
straint solver as guidelines, we can now set the remaining parame-
ters of the pattern to concrete values that preserve the behavior as
specified by the scenarios.

Once valid parameters for the real-time statecharts have been set,
we can use the model checking features of the Fujaba Real-Time
Tool Suite in order to ensure that the synthesis result is free from
deadlocks or time stopping deadlocks and fulfills all pattern con-
straints. As verifying these properties requires the exploration of
the whole state space, we need other techniques and algorithms
that go beyond the available analysis algorithms to cover this prob-
lem. Model Checking is one efficient technique for verifying such
constraints. The model checking plugin of the Fujaba Real-Time
Tool Suite makes it possible to verify the behavior of a component
structure or pattern described by real-time statecharts, provided that
all parameters are bound, by mapping the Real-Time Statecharts to
timed automata, which can then be verified by the model checker
UPPAAL. The benefit of integrating model checking directly into
our approach is that it allows us to easily obtain counterexamples
when a property is not fulfilled.

In our case study, we are mainly interested in the question
whether the pattern constraintA[] not (shuttle1.enter and shut-
tle2.enter)(cf. 1) is fulfilled or not. The pattern constraint ensures
that only one shuttle enters the switch at the same time, thus avoid-
ing collisions. To begin with, the pattern, consisting of the three
pattern-rolesshuttle1, shuttle2andswitchare mapped to timed au-

tomata. The pattern constraint is already specified in ATCTL so
that no transformation is necessary. The actual verification is per-
formed by the verifier engine of the model checker UPPAAL. In
case of the pattern constraint, the model checker returnsfalseand
an error trace (cf. Fig. 11). Using the graphical front-end for UPP-
AAL, we can then analyze the error trace; the process of mapping
the error trace back to UML 2.0 sequence diagrams is not yet au-
tomated. During our manual inspection, we find thatshuttle1 and
shuttle2 are in stateenter at the same time because they have si-
multaneously received ago message. This error was caused by the
parameterization we have chosen for scenario (c) (see Figure 7).
Contrary to what was intended, the chosen parameters have failed
to ensure the proper order of thego messages and thus made the run
depicted by the scenario in Figure 10 valid behavior. After adjust-
ing the constraint parameters of scenario (c) so as to ensure that the
secondgo message occurs after the firstpassed message, we repeat
the verification, this time successfully meeting all constraints.

Figure 10: The resulting concrete instance of scenario (c)

Figure 11: The error trace as presented by UPPAAL

4. CONCLUSION AND FUTURE WORK
We have shown how during the scenario-based synthesis from real-
time scenarios, different types of specification errors may arise.
Firstly, time constraints in the different scenarios which refer to the
same side effects and states of the operational behavior can be in
conflict. When synthesizing the operational behavior, the different
transitions of the same state in different scenarios might secondly
be in contradiction. We provide tool support for diagnosing such
conflicts, as well as the ability to assign priorities to different sce-
narios in order to interactively resolve such conflicts. Finally, the
generated operational behavior is not necessarily free of deadlocks
and may also not realize the abstract properties identified at the out-
set. We cope with this by supporting the model checking of model
instances with concrete values for each parameter.

The presented results highlight the practical relevance of tool
support for diagnosis when a problem is detected. To actually pro-

72

vide the frequently touted productivity increases in practice, the
ability to identify and pinpoint the errors in the specification thus
seems to be as crucial as the synthesis algorithm and its complexity
themselves. We therefore advocate that the evaluation of synthe-
sis approaches in our field should not merely focus on what can
be synthesized but also on whether the provided diagnostic infor-
mation is sufficient for identifying error causes and arriving at a
correct specification for non-trivial examples and thus actually im-
proves productivity.

In the near future, we plan to integrate refinement checks for real
time statecharts [9], which will allow us to verify whether manual
modifications to synthesized statecharts represent valid refinements
of the original behavior.

Acknowledgements
The authors thank the student Sergej Tissen for his implementation
of the scenario analysis and synthesis plugin.

5. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for

real-time systems. InProc. of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pages 414–425,
Philadelphia, PA, 1990.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric
real-time reasoning. InProceedings of the twenty-fifth annual
ACM symposium on Theory of computing, pages 592–601.
ACM Press, 1993.

[3] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling.
Symbolic Invariant Verification for Systems with Dynamic
Structural Adaptation. InProc. of the28th International
Conference on Software Engineering (ICSE), Shanghai,
China. ACM Press, 2006. (accepted).

[4] G. Behrmann, A. David, and K. G. Larsen. A tutorial on
UPPAAL. In M. Bernardo and F. Corradini, editors,Formal
Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT
2004, number 3185 in LNCS, pages 200–236.
Springer–Verlag, September 2004.

[5] Y. Bontemps and P. Heymans. As fast as sound (lightweight
formal scenario synthesis and verification). In H. Giese and
I. Krüger, editors,Proc. of the 3rd Int. Workshop on
“Scenarios and State Machines: Models, Algorithms and
Tools” (SCESM’04), pages 27–34, Edinburgh, May 2004.
IEE.

[6] S. Burmester and H. Giese. The Fujaba Real-Time Statechart
PlugIn. InProc. of the Fujaba Days 2003, Kassel, Germany,
October 2003.

[7] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and
M. Tichy. The Fujaba Real-Time Tool Suite: Model-Driven
Development of Safety-Critical, Real-Time Systems. In
Proc. of the 27th International Conference on Software
Engineering (ICSE), St. Louis, Missouri, USA, pages
670–671. ACM Press, May 2005.

[8] S. Burmester, H. Giese, and F. Klein. Synthesis of
Parameterized UML Real-Time Patterns from Multiple
Parameterized Real-Timed Scenarios. In F. Bordeleau,
S. Leue, and T. Systä, editors,Scenarios: Models,
Algorithms and Tools, volume 3371 ofLecture Notes in
Computer Science, pages 193–211. Springer Verlag, April
2005.

[9] H. Giese and M. Hirsch. Checking and Automatic

Abstraction for Timed and Hybrid Refinement in Mechtronic
UML. Technical Report tr-ri-03-266, University of
Paderborn, Paderborn, Germany, December 2005. (to
appear).

[10] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the Compositional Verification of Real-Time UML
Designs. InProc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38–47. ACM
Press, September 2003.

[11] D. Harel and R. Marelly. Playing with Time: On the
Specification and Execution of Time-Enriched LSCs. In
Proc. 10th IEEE/ACM Int. Symp. on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems
(MASCOTS 2002), Fort Worth, Texas, USA, 2002. (invited
paper).

[12] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic Model Checking for Real-Time Systems. InProc.
of IEEE Symposium on Logic in Computer Science. IEEE
Computer Press, 1992.

[13] M. Hirsch and H. Giese. Towards the Incremental Model
Checking of Complex RealTime UML Models. InProc. of
the Fujaba Days 2003, Kassel, Germany, October 2003.

[14] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to
Statecharts. In F. J. Rammig, editor,Distributed and Parallel
Embedded Systems, pages 61–71. Kluwer Academic
Publishers, 1999.

[15] X. Li and J. Lilius. Timing Analysis of UML Sequence
Diagrams. In R. France and B. Rumpe, editors,UML’99 -
The Second International Conference on The Unified
Modeling Language Fort Collins, Colorado, USA, volume
1723 ofLecture Notes in Computer Science, October 1999.

[16] E. Mäkinen and T. Systä. MAS - an interactive synthesizer to
support behavioral modeling in UML. InProceedings of the
23rd International Conference on Software Engineering
(ICSE 2001), Toronto, Canada, pages 15–24, May 2001.

[17] Object Management Group.UML 2.0 Superstructure
Specification, 2003. Document ptc/03-08-02.

[18] A. Salah, R. Dssouli, and G. Lapalme. Implicit integration of
scenarios into a reduced timed automaton.Information and
Software Technology, 45:715–725, August 2003.

[19] B. Sengupta and R. Cleaveland. Triggered Message
Sequence Charts. In W. G. Griswold, editor,Proceedings of
the Tenth ACM SIGSOFT Symposium on the Foundations of
Softare Engineering (FSE-10), Charleston, South Carolina,
USA, November 2002. ACM Press.

[20] S. Soḿe, R. Dssouli, and J. Vaucher. From Scenarios to
Timed Automata: Building Specifications from Users
Requirements. InProceedings of the 1995 Asia Pacific
Software Engineering Conference (APSEC ’95), 1995.

[21] S. Uchitel and J. Kramer. A Workbench for Synthesising
Behviour models from Scenarios. InProceedings of the 23rd

International Conference on Software Engineering (ICSE
2001), Toronto, Canada, pages 188–197, May 2001.

[22] W. Vickrey. Counterspeculation and Competitive Sealed
tenders.Journal of Finance, 16:8–37, March 1961.

[23] M. Walicki and S. Meldal. Algebraic Approaches to
Nondeterminism—an Overview.ACM Computing Surveys,
29(1):30–81, March 1997.

[24] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. InProceedings of the 22nd international
conference on on Software engineering June 4 - 11, 2000,
Limerick Ireland, 2000.

73

