# A viscosity of Cesàro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems 

Jitsupa Deepho ${ }^{1,2}$, Juan Martínez-Moreno ${ }^{2}$ and Poom Kumam ${ }^{1,3, *}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT)<br>126 Pracha Uthit Rd., Bang Mod, Thrung Khru, Bangkok 10140, Thailand<br>${ }^{2}$ Department of Mathematics, Faculty of Science, University of Jaén Campus Las Lagunillas, s/n, 23071 Jaén, Spain<br>${ }^{3}$ Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

February 21, 2015


#### Abstract

In this paper, we introduce and study a iterative viscosity approximation method by modify Cesàro mean approximation for finding a common solution of split generalized equilibrium, variational inequality and fixed point problems. Under suitable conditions, we prove a strong convergence theorem for the sequences generated by the proposed iterative scheme. The results presented in this paper generalize, extend and improve the corresponding results of Shimizu and Takahashi [21], others.


Keywords: Fixed point; Variational inequality; Viscosity approximation; Nonexpansive mapping; Hilbert space; Split generalized equilibrium problem; Cesàro mean approximation method.

2010 Mathematics Subject Classification:

[^0]
## 1 Introduction

Let $H_{1}$ and $H_{2}$ be real Hilbert spaces with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Let $C$ and $Q$ be nonempty closed convex subsets of $H_{1}$ and $H_{2}$, respectively. Let $\left\{x_{n}\right\}$ be a sequence in $H_{1}$, then $x_{n} \rightarrow x$ (respectively, $\left.x_{n} \rightharpoonup x\right)$ will denote strong (respectively, weak) convergence of the sequence $\left\{x_{n}\right\}$. A mapping $T: C \rightarrow C$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|, \forall x, y \in C$.

The fixed point problem (FPP) for the mapping $T$ is to find $x \in C$ such that

$$
\begin{equation*}
T x=x \tag{1.1}
\end{equation*}
$$

We denote $\operatorname{Fix}(T):=\{x \in C: T x=x\}$, the set of solutions of FPP.
Assumed throughout the paper that $T$ is a nonexpansive mapping such that $F i x(T) \neq \emptyset$. Recall that a self-mapping $f: C \rightarrow C$ is a contraction on $C$ if there exists a constant $\alpha \in(0,1)$ and $x, y \in C$ such that $\|f(x)-f(y)\| \leq \alpha\|x-y\|$.

Given a nonlinear mapping $A: C \rightarrow H_{1}$. Then the variational inequality problem (VIP) is to find $x \in C$ such that

$$
\begin{equation*}
\langle A x, y-x\rangle \leq 0, \quad \forall y \in C \tag{1.2}
\end{equation*}
$$

The solution of VIP (1.2) is denoted by $V I(C, A)$. It is well known that if $A$ is strongly monotone and Lipschitz continuous mapping on $C$ then VIP (1.2) has a unique solution. There are several different approaches towards solving this problem in finite dimensional and infinite dimensional spaces see $[1,2,3,4,5,6,7,8,9]$ and the research in this direction is intensively continued.

Variational inequality theory has emerged as an important tool in studying a wide class of obstacle, unilateral and equilibrium problems, which arise in several branches of pure and applied sciences in a unified and general framework. Several numerical methods have been developed for solving variational inequalities and related optimization problems, see, e.g., $[10,11,12]$ and the references therein.

For finding a common element of $\operatorname{Fix}(T) \cap V I(C, A)$, Takahashi and Toyoda [13] introduced the following iterative scheme:

$$
\left\{\begin{array}{l}
x_{0} \text { chosen arbitrary, }  \tag{1.3}\\
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $A$ is an $\rho$-inverse-strongly monotone, $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\lambda_{n}\right\}$ is a sequence in $(0,2 \rho)$. They showed that if $F i x(T) \cap V I(C, A) \neq \emptyset$, then the sequence $\left\{x_{n}\right\}$ generated by (1.3) converges weakly to $z_{0} \in \operatorname{Fix}(T) \cap V I(C, A)$.

On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean space $\mathbb{R}^{n}$, Korpelevich [12] introduced the following so-called Korpelevich's extragradient method and which generates a sequence $\left\{x_{n}\right\}$ via the recursion;

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\lambda A x_{n}\right)  \tag{1.4}\\
x_{n+1}=P_{C}\left(x_{n}-\lambda A y_{n}\right), \quad n \geq 0
\end{array}\right.
$$

where $P_{C}$ is the metric projection from $\mathbb{R}^{n}$ onto $C, A: C \rightarrow H_{1}$ is a monotone operator and $\lambda$ is a constant. Korpelevich [12] prove that the sequence $\left\{x_{n}\right\}$ converges strongly to a solution of $V I(C, A)$.

In this paper, we will present article, our main purpose is to study the split problem. First, we recall some background in the literature.

## Problem 1: the split feasibility problem (SFP)

Let $C$ and $Q$ be two nonempty closed convex subsets of real Hilbert spaces $H_{1}$ and $H_{2}$, respectively and $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. The split feasibility problem (SFP) is formulated as finding a point

$$
\begin{equation*}
x^{*} \in C \text { such that } A x^{*} \in Q, \tag{1.5}
\end{equation*}
$$

which was first introduced by Censor and Elfving [14] in medical image reconstruction.
A special case of the SFP is the convexly constrained linear inverse problem (CLIP) in a finite dimensional real Hilbert space [15]:

$$
\begin{equation*}
\text { find } x^{*} \in C \text { such that } A x^{*}=b \tag{1.6}
\end{equation*}
$$

where $C$ is a nonempty closed convex subset of a real Hilbert space $H_{1}$ and $b$ is a given element of a real Hilbert space $H_{2}$, which has extensively been investigated by using the Landweber iterative method [16]:

$$
x_{n+1}=x_{n}+\gamma A^{T}\left(b-A x_{n}\right), n \in \mathbb{N}
$$

Assume that the SFP (1.5) is consistent (i.e., (1.5) has a solution), it is not hard to see that $x^{*} \in C$ solves (1.5) if and only if it solves the following fixed point equation;

$$
\begin{equation*}
x^{*}=P_{C}\left(I-\gamma A^{*}\left(I-P_{Q}\right) A\right) x^{*}, x^{*} \in C, \tag{1.7}
\end{equation*}
$$

where $P_{C}$ and $P_{Q}$ are the (ortogonal) projections onto $C$ and $Q$, respectively, $\gamma>0$ is any positive constant and $A^{*}$ denotes the adjoint of $A$. Moreover, for sufficiently small $\gamma>0$, the operator $P_{C}\left(I-\gamma A^{*}\left(I-P_{Q}\right) A\right)$ which defines the fixed point equation in (1.7) is nonexpansive.

An iterative method for solving the SFP, called the $C Q$ algorithm, has the following iterative step:

$$
\begin{equation*}
x_{k+1}=P_{C}\left(x_{k}+\gamma A^{T}\left(P_{Q}-I\right) A x_{k}\right) \tag{1.8}
\end{equation*}
$$

The operator

$$
\begin{equation*}
T=P_{C}\left(I-\gamma A^{T}\left(I-P_{Q}\right) A\right) \tag{1.9}
\end{equation*}
$$

is averaged whenever $\gamma \in\left(0, \frac{2}{L}\right)$ with $L$ is the largest eigenvalue of the matrix $A^{T} A(T$ stand for matrix transposition), and so the $C Q$ algorithm converges to a fixed point of $T$, whenever such fixed points exist.

When the SFP has a solution, the $C Q$ algorithm converges to a solution; when it does not, the $C Q$ algorithm converges to a minimizer, over $C$, of the proximity function $g(x)=\left\|P_{Q} A x-A x\right\|$, whenever such minimizer exists. The function $g(x)$ is convex and according to [17], its gradient is

$$
\begin{equation*}
\nabla g(x)=A^{T}\left(I-P_{Q}\right) A x \tag{1.10}
\end{equation*}
$$

## Problem 2: the split equilibrium problem (SEP).

In 2011, Moudafi [18] introduced the following split equilibrium problem (SEP):

Let $F_{1}: C \times C \rightarrow \mathbb{R}$ and $F_{2}: Q \times Q \rightarrow \mathbb{R}$ be nonlinear bifunctions and $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, then the split equilibrium problem (SEP) is to find $x^{*} \in C$ such that

$$
\begin{equation*}
F_{1}\left(x^{*}, x\right) \geq 0, \quad \forall x \in C \tag{1.11}
\end{equation*}
$$

and such that

$$
\begin{equation*}
y^{*}=A x^{*} \in Q \quad \text { solves } F_{2}\left(y^{*}, y\right) \geq 0, \quad \forall y \in Q \tag{1.12}
\end{equation*}
$$

When looked separately, (1.11) is the classical equilibrium problem (EP) and we denoted its solution set by $E P\left(F_{1}\right)$. The SEP (1.11) and (1.12) constitutes a pair of equilibrium problems which have to be solved so that the image $y^{*}=A x^{*}$ under a given bounded linear operator $A$, of the solution $x^{*}$ of the EP (1.11) in $H_{1}$ is the solution of another EP (1.12) by $E P\left(F_{2}\right)$.

The solution set SEP (1.11) and (1.12) is denoted by $\Theta=\left\{x^{*} \in E P\left(F_{1}\right): A x^{*} \in E P\left(F_{2}\right)\right\}$.

## Problem 3: the split generalized equilibrium problem (SGEP).

In 2013, Kazmi and Rivi [19] consider the split generalized equilibrium problem (SGEP):
Let $F_{1}, h_{1}: C \times C \rightarrow \mathbb{R}$ and $F_{2}, h_{2}: Q \times Q \rightarrow \mathbb{R}$ be nonlinear bifunctions and $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator, then the split generalized equilibrium problem (SGEP) is to find $x^{*} \in C$ such that

$$
\begin{equation*}
F_{1}\left(x^{*}, x\right)+h_{1}\left(x^{*}, x\right) \geq 0, \quad \forall x \in C \tag{1.13}
\end{equation*}
$$

and such that

$$
\begin{equation*}
y^{*}=A x^{*} \in Q \quad \text { solves } F_{2}\left(y^{*}, y\right)+h_{2}\left(y^{*}, y\right) \geq 0, \quad \forall y \in Q \tag{1.14}
\end{equation*}
$$

They denoted the solution set of generalized equilibrium problem (GEP) (1.13) and GEP (1.14) by $G E P\left(F_{1}, h_{1}\right)$ and $G E P\left(F_{2}, h_{2}\right)$, respectively. The solution set of SGEP (1.13)-(1.14) is denoted by $\Gamma=\left\{x^{*} \in\right.$ $\left.\operatorname{GEP}\left(F_{1}, h_{1}\right): A x^{*} \in \operatorname{GEP}\left(F_{2}, h_{2}\right)\right\}$.

If $h_{1}=0$ and $h_{2}=0$, then $\operatorname{SGEP}(1.13)-(1.14)$ reduces to SEP (1.11)-(1.12). If $h_{2}=0$ and $F_{2}=0$, then SGEP (1.13)-(1.14) reduces to the equilibrium problem considered by Cianciaruso et al. [38].

In 1975, Baillon [20] proved the first non-linear ergodic theorem.
Theorem 1.1. (Baillons ergodic theorem). Suppose that $C$ is a nonempty closed convex subset of Hilbert space $H_{1}$ and $T: C \rightarrow C$ is nonexpansive mapping such that $F i x(T) \neq \emptyset$ then $\forall x \in C$, the Cesàro mean

$$
\begin{equation*}
T_{n} x=\frac{1}{n+1} \sum_{i=0}^{n} T^{i} x \tag{1.15}
\end{equation*}
$$

weakly converges to a fixed point of $T$.

In 1997, Shimizu and Takahashi [21] studied the convergence of an iteration process sequence $\left\{x_{n}\right\}$ for a family of nonexpansive mappings in the framework of a real Hilbert space. They restate the sequence $\left\{x_{n}\right\}$ as follows:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} T^{j} x_{n}, \text { for } n=0,1,2, \ldots, \tag{1.16}
\end{equation*}
$$

where $x_{0}$ and $x$ are all elements of $C$ and $\alpha_{n}$ is an appropriate in $[0,1]$. They proved that $x_{n}$ converges strongly to an element of fixed point of $T$ which is the nearest to $x$.

In 2000, for $T$ a nonexpansive self-mapping with $F i x(T) \neq \emptyset$ and $f$ a fixed contractive self-mapping, Moudafi [22] introduced the following viscosity approximations method for $T$ :

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f(x)+\left(1-\alpha_{n}\right) T x_{n} \tag{1.17}
\end{equation*}
$$

and prove that $\left\{x_{n}\right\}$ converges to a fixed point $p$ of $T$ in a Hilbert space.
On the other hand, iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems; see, e.g., $[23,24,25]$ and the references therein. A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space $H$ :

$$
\begin{equation*}
\min _{x \in C} \frac{1}{2}\langle A x, x\rangle-\langle x, b\rangle \tag{1.18}
\end{equation*}
$$

where $C$ is the fixed point set of a nonexpansive mapping $T$ on $H_{1}$ and $b$ is a given point in $H_{1}$. Assume $A$ is strongly positive; that is, there is a constant $\bar{\gamma}>0$ with the property

$$
\begin{equation*}
\langle A x, x\rangle \leq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H_{1} \tag{1.19}
\end{equation*}
$$

A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space $H_{1}$ :

$$
\begin{equation*}
\min _{x \in F i x(T)} \frac{1}{2}\langle A x, x\rangle-h(x), \tag{1.20}
\end{equation*}
$$

where $A$ is strongly positive linear bounded operator and $h$ is a potential function for $\gamma f$ i.e., $\left(h^{\prime}(x)=\gamma f(x)\right.$ for $x \in H_{1}$ ).

In [24] (see also [26]), it is proved that the sequence $\left\{x_{n}\right\}$ defined by the iterative method below, with the initial guess $x_{0} \in H$ chosen arbitrarily

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} b, \quad n \geq 0 \tag{1.21}
\end{equation*}
$$

converges strongly to the unique solution of the minimization problem (1.18).
Using the viscosity approximation method, Xu [27], developments Moudafi [22] in both Hilbert and Banach spaces.

Theorem 1.2. [27] Let $H_{1}$ be a Hilbert space, $C$ a closed convex subset of $H_{1}, T: C \rightarrow C$ a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$, and $f: C \rightarrow C$ a contraction. Let $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
x_{0} \in C  \tag{1.22}\\
x_{n+1}=\left(1-\alpha_{n}\right) T x_{n}+\alpha_{n} f\left(x_{n}\right), n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfies:
(H1) $\alpha_{n} \rightarrow 0$;
(H2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(H3) either $\sum_{n=\infty}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n+1}}{\alpha_{n}}\right)=1$.

Then under the hypotheses $(H 1)-(H 3), x_{n} \rightarrow \tilde{x}$, where $\tilde{x}$ is the unique solution of the variational inequality

$$
\langle(I-f) \tilde{x}, \tilde{x}-x\rangle \leq 0, x \in \operatorname{Fix}(T)
$$

Marino and $\mathrm{Xu}[28]$, combine the iterative method (1.21) with the viscosity approximation method (1.22).
Theorem 1.3. [28] Let $H_{1}$ be a real Hilbert space, $A$ be a bounded operator on $H_{1}, T$ be a nonexpansive mapping on $H_{1}$ and $f: H_{1} \rightarrow H_{1}$ be a contraction mapping. Assume the set $F i x(T)$ is fixed point of $H_{1}$ is nonempty. Let $\left\{x_{n}\right\}$ be generated by

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} \gamma f\left(x_{n}\right), \quad n \geq 0 \tag{1.23}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ satisfying the following conditions:
(N1) $\alpha_{n} \rightarrow 0$;
(N2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(N3) either $\sum_{n=\infty}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty}\left(\frac{\alpha_{n+1}}{\alpha_{n}}\right)=1$.

Then $\left\{x_{n}\right\}$ converges strongly to $\tilde{x}$ of $T$ which solves the variational inequality:

$$
\langle(A-\gamma f) \tilde{x}, \tilde{x}-z\rangle \leq 0, z \in \operatorname{Fix}(T)
$$

Equivalently, $P_{F i x(T)}(I-A+\gamma f) \tilde{x}=\tilde{x}$.

Inspired and motivated by Korpelevich [12], Kazmi and Rivi [19], Shimizu and Takahashi [21], and Marino and Xu [28], we introduce the general Cesàro mean iterative method for a nonexpansive mapping in a real Hilbert spaces follows:

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)  \tag{1.24}\\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) \frac{1}{n+1} \sum_{i=0}^{n} S^{i} y_{n}, \forall n \geq 0
\end{array}\right.
$$

under our conditions, we suggest and analyze an iterative method for approximating a common solution of FPP (1.1), $V I(C, B)(1.2)$ and SGEP (1.13)-(1.14). Furthermore, we prove that the sequences generated by the iterative scheme converge strongly to a common solution of $\operatorname{FPP}(1.1), V I(C, B)(1.2)$ and SGEP (1.13)-(1.14).

## 2 Preliminaries

Let $H_{1}$ be a real Hilber space. Then

$$
\begin{gather*}
\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle  \tag{2.1}\\
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \tag{2.3}
\end{equation*}
$$

for all $x, y \in H_{1}$ and $y \in[0,1]$. It is also known that $H_{1}$ satisfies the Opial's condition [29], i.e., for any sequence $\left\{x_{n}\right\} \subset H_{1}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\| \tag{2.4}
\end{equation*}
$$

holds for every $y \in H_{1}$ with $x \neq y$. Hilbert space $H_{1}$ satisfies the Kadee-Klee property [35] that is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ together imply $\left\|x_{n}-x\right\| \rightarrow 0$.

We recall some concepts and results which are needed in sequel. A mapping $P_{C}$ is said to be metric projection of $H_{1}$ onto $C$ if for every point $x \in H_{1}$, there exists a unique nearest point in $C$ denoted by $P_{C} x$ such that

$$
\begin{equation*}
\left\|x-P_{C} x\right\| \leq\|x-y\|, \quad \forall y \in C \tag{2.5}
\end{equation*}
$$

It is well known that $P_{C}$ is a nonexpansive mapping and is characterized by the following property:

$$
\begin{equation*}
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle x-y, P_{C} x-P_{C} y\right\rangle, \quad \forall x, y \in H_{1} \tag{2.6}
\end{equation*}
$$

Moreover, $P_{C} x$ is characterized by the following properties:

$$
\begin{gather*}
\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0  \tag{2.7}\\
\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2}, \quad \forall x \in H_{1}, y \in C \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|(x-y)-\left(P_{C} x-P_{C} y\right)\right\|^{2} \geq\|x-y\|^{2}-\left\|P_{C} x-P_{C} y\right\|^{2}, \quad \forall x, y \in H_{1} \tag{2.9}
\end{equation*}
$$

It is known that every nonexpansive operator $T: H_{1} \rightarrow H_{1}$ satisfies, for all $(x, y) \in H_{1} \times H_{1}$, the inequality

$$
\begin{equation*}
\langle(x-T(x))-(y-T(y)), T(y)-T(x)\rangle \leq \frac{1}{2}\|(T(x)-x)-(T(y)-y)\|^{2} \tag{2.10}
\end{equation*}
$$

and therefore, we get, for all $(x, y) \in H_{1} \times \operatorname{Fix}(T)$,

$$
\begin{equation*}
\langle x-T(x), y-T(x)\rangle \leq \frac{1}{2}\|T(x)-x\|^{2} \tag{2.11}
\end{equation*}
$$

(see, e.g., Theorem 3 in [30] and Theorem 1 in [31]).
Let $B$ be a monotone mapping of $C$ into $H_{1}$. In the context of the variational inequality problem the characterization of projection (2.7) implies the following:

$$
u \in V I(C, B) \Leftrightarrow u=P_{C}(u-\lambda B u), \lambda>0
$$

Lemma 2.1. [32] Let $F: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying the following assumptions:
(i) $F(x, x) \geq 0, \forall x \in C$;
(ii) $F$ is monotone, i.e., $F(x, y)+F(y, x) \leq 0, \forall x \in C$;
(iii) $F$ is upper hemicontinuous, i.e., for each $x, y, z \in C$,

$$
\begin{equation*}
\limsup _{t \rightarrow 0} F(t z+(1-t) x, y) \leq F(x, y) \tag{2.12}
\end{equation*}
$$

(iv) For each $x \in C$ fixed, the function $y \mapsto F(x, y)$ is convex and lower semicontinuous; let $h: C \times C \rightarrow \mathbb{R}$ such that
(i) $h(x, y) \geq 0, \forall x \in C$;
(ii) For each $y \in C$ fixed, the function $x \rightarrow h(x, y)$ is upper semicontinuous;
(iii) For each $x \in C$ fixed, the function $y \rightarrow h(x, y)$ is convex and lower semicontinuous;
and assume that for fixed $r>0$ and $z \in C$, there exists a nonempty compact convex subset $K$ of $H_{1}$ and $x \in C \cap K$ such that

$$
\begin{equation*}
F(y, x)+h(y, x)+\frac{1}{r}\langle y-x, x-z\rangle<0, \quad \forall y \in C \backslash K \tag{2.13}
\end{equation*}
$$

The proof of the following lemma is similar to the proof of Lemma 2.13 in [32] and hence omitted.
Lemma 2.2. Assume that $F_{1}, h_{1}: C \times C \rightarrow \mathbb{R}$ satisfying Lemma 2.1. Let $r>0$ and $x \in H_{1}$. Then, there exists $z \in C$ such that

$$
\begin{equation*}
F_{1}(z, y)+h_{1}(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C \tag{2.14}
\end{equation*}
$$

Lemma 2.3. [33] Assume that the bifunctions $F_{1}, h_{1}: C \times C \rightarrow \mathbb{R}$ satisfying Lemma 2.1 and $h_{1}$ is monotone. For $r>0$ and for all $x \in H_{1}$, define a mapping $T_{r}^{\left(F_{1}, h_{1}\right)}: H_{1} \rightarrow C$ as follows:

$$
\begin{equation*}
T_{r}^{\left(F_{1}, h_{1}\right)}(x)=\left\{z \in C: F_{1}(z, y)+h_{1}(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C\right\} \tag{2.15}
\end{equation*}
$$

Then, the following hold:
(1) $T_{r}^{\left(F_{1}, h_{1}\right)}$ is single-valued.
(2) $T_{r}^{\left(F_{1}, h_{1}\right)}$ is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|T_{r}^{\left(F_{1}, h_{1}\right)} x-T_{r}^{\left(F_{1}, h_{1}\right)} y\right\|^{2} \leq\left\langle T_{r}^{\left(F_{1}, h_{1}\right)} x-T_{r}^{\left(F_{1}, h_{1}\right)} y, x-y\right\rangle, \quad \forall x, y \in H_{1} \tag{2.16}
\end{equation*}
$$

(3) $\operatorname{Fix}\left(T_{r}^{\left(F_{1}, h_{1}\right)}\right)=\operatorname{GEP}\left(F_{1}, h_{1}\right)$.
(4) $G E P\left(F_{1}, h_{1}\right)$ is compact and convex.

Further, assume that $F_{2}, h_{2}: Q \times Q \rightarrow \mathbb{R}$ satisfying Lemma 2.1. For $s>0$ and for all $w \in H_{2}$, define a mapping $T_{s}^{\left(F_{2}, h_{2}\right)}: H_{2} \rightarrow Q$ as follows:

$$
\begin{equation*}
T_{s}^{\left(F_{2}, h_{2}\right)}(w)=\left\{d \in Q: F_{2}(d, e)+h_{2}(d, e)+\frac{1}{s}\langle e-d, d-w\rangle \geq 0, \quad \forall e \in Q\right\} \tag{2.17}
\end{equation*}
$$

Then, we easily observe that $T_{s}^{\left(F_{2}, h_{2}\right)}$ is single-valued and firmly nonexpansive, $\operatorname{GEP}\left(F_{2}, h_{2}, Q\right)$ is compact and convex, and $\operatorname{Fix}\left(T_{s}^{\left(F_{2}, h_{2}\right)}\right)=\operatorname{GEP}\left(F_{2}, h_{2}, Q\right)$, where $\operatorname{GEP}\left(F_{2}, h_{2}, Q\right)$ is the solution set of the following generalized equilibrium problem:

Find $y^{*} \in Q$ such that $F_{2}\left(y^{*}, y\right)+h_{2}\left(y^{*}, y\right) \geq 0, \forall y \in Q$.
We observe that $\operatorname{GEP}\left(F_{2}, h_{2}\right) \subset G E P\left(F_{2}, h_{2}, Q\right)$. Further, it is easy to prove that $\Gamma$ is a closed and convex set.
Remark 2.4. Lemmas 2.2 and 2.3 are slight generalizations of Lemma 3.5 in [38] where the equilibrium condition $F_{1}(\hat{x}, x)=h_{1}(\hat{x}, x)=0$ has been relaxed to $F_{1}(\hat{x}, x) \geq 0$ and $h_{1}(\hat{x}, x) \geq 0$ for all $x \in C$. Further, the monotonicity of $h_{1}$ in Lemma 2.2 is not required.

Lemma 2.5. [38] Let $F_{1}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying Lemma 2.1 hold and let $T_{r}^{F_{1}}$ be defined as in Lemma 2.3 for $r>0$. Let $x, y \in H_{1}$ and $r_{1}, r_{2}>0$. Then

$$
\left\|T_{r_{2}}^{F_{1}} y-T_{r_{1}}^{F_{1}} x\right\| \leq\|y-x\|+\left|\frac{r_{2}-r_{1}}{r_{2}}\right|\left\|T_{r_{2}}^{F_{1}} y-y\right\| .
$$

Lemma 2.6. [34] Assume $A$ is a strongly positive linear bounded operator on Hilbert space $H_{1}$ with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|A\|^{-1}$. Then, $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$.
Lemma 2.7. [39] Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space $X$ and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and $\lim \sup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$.
Lemma 2.8. [40] Let $X$ be an inner product space. Then, for any $x, y, z \in X$ and $\alpha, \beta, \gamma \in[0,1]$ with $\alpha+\beta+\gamma=1$, we have

$$
\|\alpha x+\beta y+\gamma z\|^{2}=\alpha\|x\|^{2}+\beta\|y\|^{2}+\gamma\|z\|^{2}-\alpha \beta\|x-y\|^{2}-\alpha \gamma\|x-z\|^{2}-\beta \gamma\|y-z\|^{2} .
$$

Lemma 2.9. [41] Let $C$ be a nonempty bounded closed convex subset of a uniformly convex Banach space $E$ and $T: C \rightarrow C$ a nonexpansive mapping. For each $x \in C$ and the Cesàro means $T_{n} x=\frac{1}{n+1} \sum_{i=0}^{n} T^{i} x$, then $\lim \sup _{n \rightarrow \infty}\left\|T_{n} x-T\left(T_{n} x\right)\right\|=0$.
Lemma 2.10. [43] Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\delta_{n}, n \geq 0,
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in $\mathbb{R}$ such that
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(ii) $\lim \sup _{n \rightarrow \infty} \frac{\delta_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$. Then, $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.11. [44] Each Hilbert space $H_{1}$ satisfies the Opial condition that is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality $\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|$, holds for every $y \in H$ with $y \neq x$.

## 3 Main Result

Theorem 3.1. Let $H_{1}$ and $H_{2}$ be two real Hilbert spaces and $C \subset H_{1}$ and $Q \subset H_{2}$ be nonempty closed convex subsets of $H_{1}$ and $H_{2}$, respectively. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Let $F_{1}, h_{1}: C \times C \rightarrow \mathbb{R}$
and $F_{2}, h_{2}: Q \times Q \rightarrow \mathbb{R}$ satisfying Lemma 2.1; $h_{1}, h_{2}$ are monotone and $F_{2}$ is upper semicontinuous. Let $B$ be $\beta$-inverse-strongly monotone mapping from $C$ into $H_{1}$. Let $f$ be a contraction of $C$ into itself with coefficient $\alpha \in(0,1)$ and let $D$ be a strongly positive linear bounded operator on $H_{1}$ with coefficient $\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{S^{i}\right\}_{i=1}^{n}$ be a sequence of nonexpansive mappings from $C$ into itself such that

$$
\Omega:=\cap_{i=1}^{n} F i x\left(S^{i}\right) \cap V I(C, B) \cap \Gamma \neq \emptyset .
$$

Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{0} \in C, u_{n} \in C$ and

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)  \tag{3.1}\\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) \frac{1}{n+1} \sum_{i=0}^{n} S^{i} y_{n}, \forall n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1),\left\{\lambda_{n}\right\} \in[a, b] \subset(0,2 \beta)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ and $\xi \in\left(0, \frac{1}{L}\right), L$ is the spectral radius of the operator $A^{*} A$ and $A^{*}$ is the adjoint of $A$ satisfy the following conditions:
(C1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(C2) $0<\liminf _{n \longrightarrow \infty} \beta_{n} \leq \lim \sup _{n \longrightarrow \infty} \beta_{n}<1$;
(C3) $\lim _{n \rightarrow \infty}\left|\lambda_{n+1}-\lambda_{n}\right|=0$;
(C4) $\lim \inf _{n \longrightarrow \infty} r_{n}>0, \lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0$.

Then $\left\{x_{n}\right\}$ converges strongly to $q \in \Omega$, where $q=P_{\Omega}(I-D+\gamma f)(q)$, which is the unique solution of the variational inequality problem

$$
\langle(D-\gamma f) q, x-q\rangle \geq 0, \forall x \in \Omega
$$

or, equivalently, $q$ is the unique solution to the minimization problem

$$
\min _{x \in \Omega} \frac{1}{2}\langle D x, x\rangle-h(x)
$$

where $h$ is a potential function for $\gamma f$ such that $h^{\prime}(x)=\gamma f(x)$ for $x \in H_{1}$.

Proof. From the condition ( C 1 ), we may assume without loss generality that $\alpha_{n} \leq\left(1-\beta_{n}\right)\|D\|^{-1}$ for all $n \in \mathbb{N}$. By Lemma 2.6, we know that if $0 \leq \rho \leq\|D\|^{-1}$, then $\|I-\rho D\| \leq 1-\rho \bar{\gamma}$. We will assume that $\|I-D\| \leq 1-\bar{\gamma}$. Since $D$ is a strongly positive linear bounded operator on $H$, we have

$$
\|D\|=\sup \left\{|\langle D x, x\rangle|: x \in H_{1},\|x\|=1\right\}
$$

Observe that

$$
\begin{aligned}
\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) x, x\right\rangle & =1-\beta_{n}-\alpha_{n}\langle D x, x\rangle \\
& \geq 1-\beta_{n}-\alpha_{n}\|D\| \\
& \geq 0
\end{aligned}
$$

this show that $\left(1-\beta_{n}\right) I-\alpha_{n} D$ is positive. It follows that

$$
\begin{aligned}
\left\|\left(1-\beta_{n}\right) I-\alpha_{n} D\right\| & =\sup \left\{\left|\left\langle\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) x, x\right\rangle\right|: x \in H_{1},\|x\|=1\right\} \\
& =\sup \left\{1-\beta_{n}-\alpha_{n}\langle D x, x\rangle: x \in H_{1},\|x\|=1\right\} \\
& \leq 1-\beta_{n}-\alpha_{n} \bar{\gamma}
\end{aligned}
$$

Since $\lambda_{n} \in(0,2 \beta)$ and $B$ is $\beta$-inverse-strongly monotone mapping. For any $x, y \in C$, we have

$$
\begin{align*}
\left\|\left(I-\lambda_{n} B\right) x-\left(I-\lambda_{n} B\right) y\right\|^{2} & =\left\|(x-y)-\lambda_{n}(B x-B y)\right\|^{2} \\
& =\|x-y\|^{2}-2 \lambda_{n}\langle x-y, B x-B y\rangle+\lambda_{n}^{2}\|B x-B y\|^{2} \\
& \leq\|x-y\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \beta\right)\|B x-B y\|^{2} \\
& \leq\|x-y\|^{2} . \tag{3.2}
\end{align*}
$$

It follows that $\left\|\left(I-\lambda_{n} B\right) x-\left(I-\lambda_{n} B\right) y\right\| \leq\|x-y\|$, hence $I-\lambda_{n} B$ is nonexpansive.
Step 1. We will show that $\left\{x_{n}\right\}$ is bounded.
Since $x^{*} \in \Omega$, i.e., $x^{*} \in \Gamma$, and we have $x^{*}=T_{r_{n}}^{\left(F_{1}, h_{1}\right)} x^{*}$ and $A x^{*}=T_{r_{n}}^{\left(F_{2}, h_{2}\right)} A x^{*}$.
We estimate

$$
\begin{align*}
\left\|u_{n}-x^{*}\right\|^{2} & =\left\|T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-x^{*}\right\|^{2} \\
& =\left\|T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-T_{r_{n}}^{\left(F_{1}, h_{1}\right)} x^{*}\right\|^{2} \\
& \leq\left\|x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}-x^{*}\right\|^{2} \\
& \leq\left\|x_{n}-x^{*}\right\|^{2}+\xi^{2}\left\|A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}+2 \xi\left\langle x_{n}-x^{*}, A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle . \tag{3.3}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}+\xi^{2}\left\langle\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}, A A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle+2 \xi\left\langle x_{n}-x^{*}, A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle \tag{3.4}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
\xi^{2}\left\langle\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}, A A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle & \leq L \xi^{2}\left\langle\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n},\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle \\
& =L \xi^{2}\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2} . \tag{3.5}
\end{align*}
$$

Denoting $\Lambda:=2 \xi\left\langle x_{n}-x^{*}, A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle$ and using (2.11), we have

$$
\begin{align*}
\Lambda & =2 \xi\left\langle x_{n}-x^{*}, A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle \\
& =2 \xi\left\langle A\left(x_{n}-x^{*}\right),\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle \\
& =2 \xi\left\langle A\left(x_{n}-x^{*}\right)+\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}-\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n},\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle \\
& =2 \xi\left\{\left\langle T_{r_{n}}^{\left(F_{2}, h_{2}\right)} A x_{n}-A x^{*},\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle-\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}\right\} \\
& \leq 2 \xi\left\{\frac{1}{2}\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}-\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}\right\} \\
& \leq-\xi\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2} . \tag{3.6}
\end{align*}
$$

Using (3.4), (3.5) and (3.6), we obtain

$$
\begin{equation*}
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}+\xi(L \xi-1)\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2} . \tag{3.7}
\end{equation*}
$$

Since $\xi \in\left(0, \frac{1}{L}\right)$, we obtain

$$
\begin{equation*}
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2} \tag{3.8}
\end{equation*}
$$

By the fact that $P_{C}$ and $I-\lambda_{n} B$ are nonexpansive and $x^{*}=P_{C}\left(x^{*}-\lambda_{n} B x^{*}\right)$, then we get

$$
\begin{align*}
\left\|y_{n}-x^{*}\right\| & =\left\|P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right)-x^{*}\right\| \\
& \leq\left\|P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right)-P_{C}\left(x^{*}-\lambda_{n} B x^{*}\right)\right\| \\
& \leq\left\|\left(I-\lambda_{n} B\right) u_{n}-\left(I-\lambda_{n} B\right) x^{*}\right\| \\
& \leq\left\|u_{n}-x^{*}\right\| \\
& \leq\left\|x_{n}-x^{*}\right\| \tag{3.9}
\end{align*}
$$

Let $S_{n}=\frac{1}{n+1} \sum_{i=0}^{n} S^{i}, \quad$ it follows that

$$
\begin{aligned}
\left\|S_{n} x-S_{n} y\right\| & =\left\|\frac{1}{n+1} \sum_{i=0}^{n} S^{i} x-\frac{1}{n+1} \sum_{i=0}^{n} S^{i} y\right\| \\
& \leq \frac{1}{n+1} \sum_{i=0}^{n}\left\|S^{i} x-S^{i} y\right\| \\
& \leq \frac{1}{n+1} \sum_{i=0}^{n}\|x-y\| \\
& =\frac{n+1}{n+1}\|x-y\| \\
& =\|x-y\|
\end{aligned}
$$

which implies that $S_{n}$ is nonexpansive. Since $x^{*} \in \Omega$, we have $S_{n} x^{*}=\frac{1}{n+1} \sum_{i=0}^{n} S^{i} x^{*}$ $=\frac{1}{n+1} \sum_{i=0}^{n} x^{*}=x^{*}, \forall x, y \in C$. By (3.9), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|= & \| \alpha_{n}\left(\gamma f\left(x_{n}\right)-D x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) \\
& \times\left(S_{n} y_{n}-x^{*}\right) \| \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-x^{*}\right\| \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \alpha_{n} \gamma\left\|f\left(x_{n}\right)-f\left(x^{*}\right)\right\|+\alpha_{n}\left\|\gamma f\left(x^{*}\right)-D x^{*}\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \alpha_{n} \gamma \alpha\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|\gamma f\left(x^{*}\right)-D x^{*}\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\| \\
= & \left(1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}(\bar{\gamma}-\gamma \alpha) \frac{\left\|\gamma f\left(x^{*}\right)-D x^{*}\right\|}{(\bar{\gamma}-\gamma \alpha)} \\
\leq & \max \left\{\left\|x_{n}-x^{*}\right\|, \frac{\left\|\gamma f\left(x^{*}\right)-D x^{*}\right\|}{(\bar{\gamma}-\gamma \alpha)}\right\} .
\end{aligned}
$$

It follows from induction that

$$
\left\|x_{n+1}-x^{*}\right\| \leq \max \left\{\left\|x_{0}-x^{*}\right\|, \frac{\left\|\gamma f\left(x^{*}\right)-D x^{*}\right\|}{(\bar{\gamma}-\gamma \alpha)}\right\}
$$

Hence, $\left\{x_{n}\right\}$ is bounded, so are $\left\{u_{n}\right\},\left\{y_{n}\right\}$ and $\left\{S_{n} y_{n}\right\}$.

Step 2. We will show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
Since $T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}$ and $T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}$ both are firmly nonexpansive, for $\xi \in\left(0, \frac{1}{L}\right)$, the mapping $T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}(I+$ $\left.\xi A^{*}\left(T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}-I\right) A\right)$ is nonexpansive, see [36, 37]. Further, since $u_{n}=T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)$ and $u_{n+1}=T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}\left(x_{n+1}+\xi A^{*}\left(T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n+1}\right)$, it follows from Lemma 2.5 that

$$
\begin{align*}
& \left\|u_{n+1}-u_{n}\right\| \leq\left\|T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}\left(x_{n+1}+\xi A^{*}\left(T_{r_{n}+1}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n+1}\right)-T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)\right\| \\
& +\left\|T_{r_{n}+1}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}+1}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left\|\left(x_{n}+\xi A^{*}\left(T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)\right\| \\
& +\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-\left(x_{n}+\xi A^{*}\left(T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\xi\|A\|\left\|T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)} A x_{n}-T_{r_{n}}^{\left(F_{2}, h_{2}\right)} A x_{n}\right\|+\varsigma_{n} \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\xi\|A\|\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)} A x_{n}-A x_{n}\right\|+\varsigma_{n} \\
& =\left\|x_{n+1}-x_{n}\right\|+\xi\|A\| \sigma_{n}+\varsigma_{n} \tag{3.10}
\end{align*}
$$

where

$$
\sigma_{n}:=\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|T_{r_{n}}^{\left(F_{2}, h_{2}\right)} A x_{n}-A x_{n}\right\|
$$

and

$$
\varsigma_{n}:=\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|T_{r_{n+1}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-\left(x_{n}+\xi A^{*}\left(T_{r_{n+1}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)\right\| .
$$

On the other hand, it follows that

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\| & =\left\|P_{C}\left(u_{n+1}-\lambda_{n+1} D u_{n+1}\right)-P_{C}\left(u_{n}-\lambda_{n} D u_{n}\right)\right\| \\
& \leq\left\|\left(u_{n+1}-\lambda_{n+1} D u_{n+1}\right)-\left(u_{n}-\lambda_{n} D u_{n}\right)\right\| \\
& =\left\|\left(u_{n+1}-u_{n}\right)-\lambda_{n+1}\left(D u_{n+1}-D u_{n}\right)+\left(\lambda_{n+1}-\lambda_{n}\right) D u_{n}\right\| \\
& \leq\left\|\left(u_{n+1}-u_{n}\right)-\lambda_{n+1}\left(D u_{n+1}-D u_{n}\right)\right\|+\mid \lambda_{n+1}-\lambda_{n}\| \| D u_{n} \| \\
& \leq\left\|u_{n+1}-u_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|D u_{n}\right\| . \tag{3.11}
\end{align*}
$$

So from (3.10) and (3.11), we get

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\xi\|A\| \sigma_{n}+\varsigma_{n}+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|D u_{n}\right\| . \tag{3.12}
\end{equation*}
$$

We compute that

$$
\begin{aligned}
& \left\|S_{n+1} y_{n+1}-S_{n} y_{n}\right\| \\
\leq & \left\|S_{n+1} y_{n+1}-S_{n+1} y_{n}\right\|+\left\|S_{n+1} y_{n}-S_{n} y_{n}\right\| \\
\leq & \left\|y_{n+1}-y_{n}\right\|+\left\|\frac{1}{n+2} \sum_{i=0}^{n+1} S^{i} y_{n}-\frac{1}{n+1} \sum_{i=0}^{n} S^{i} y_{n}\right\| \\
= & \left\|y_{n+1}-y_{n}\right\|+\left\|\frac{1}{n+2} \sum_{i=0}^{n} S^{i} y_{n}+\frac{1}{n+2} S^{n+1} y_{n}-\frac{1}{n+1} \sum_{i=0}^{n} S^{i} y_{n}\right\| \\
= & \left\|y_{n+1}-y_{n}\right\|+\left\|-\frac{1}{(n+1)(n+2)} \sum_{i=0}^{n} S^{i} y_{n}+\frac{1}{n+2} S^{n+1} y_{n}\right\| \\
\leq & \left\|y_{n+1}-y_{n}\right\|+\frac{1}{(n+1)(n+2)} \sum_{i=0}^{n}\left\|S^{i} y_{n}\right\|+\frac{1}{n+2}\left\|S^{n+1} y_{n}\right\| \\
\leq & \left\|y_{n+1}-y_{n}\right\|+\frac{1}{(n+1)(n+2)} \sum_{i=0}^{n}\left(\left\|S^{i} y_{n}-S^{i} x^{*}\right\|+\left\|x^{*}\right\|\right) \\
& +\frac{1}{n+2}\left(\left\|S^{n+1} y_{n}-S^{n+1} x^{*}\right\|+\left\|x^{*}\right\|\right) \\
\leq & \left\|y_{n+1}-y_{n}\right\|+\frac{1}{(n+1)(n+2)} \sum_{i=0}^{n}\left(\left\|y_{n}-x^{*}\right\|+\left\|x^{*}\right\|\right) \\
& +\frac{1}{n+2}\left(\left\|y_{n}-x^{*}\right\|+\left\|x^{*}\right\|\right) \\
\leq & \left\|y_{n+1}-y_{n}\right\|+\frac{n+1}{(n+1)(n+2)}\left(\left\|y_{n}-x^{*}\right\|+\left\|x^{*}\right\|\right) \\
& +\frac{1}{n+2}\left\|y_{n}-x^{*}\right\|+\frac{1}{n+2}\left\|x^{*}\right\| \\
= & \left\|y_{n+1}-y_{n}\right\|+\frac{2}{n+2}\left\|y_{n}-x^{*}\right\|+\frac{2}{n+2}\left\|x^{*}\right\| \\
\leq & \left\|x_{n+1}-x_{n}\right\|+\xi\|A\| \sigma_{n}+\varsigma_{n}+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|D u_{n}\right\| \\
& +\frac{2}{n+2}\left\|y_{n}-x^{*}\right\|+\frac{2}{n+2}\left\|x^{*}\right\| .
\end{aligned}
$$

Let $x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}$, it follows that

$$
\begin{aligned}
z_{n} & =\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n} \gamma f\left(x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}}{1-\beta_{n}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
&\left\|z_{n+1}-z_{n}\right\|= \| \frac{\alpha_{n+1} \gamma f\left(x_{n+1}\right)+\left(\left(1-\beta_{n+1}\right) I-\alpha_{n+1} D\right) S_{n+1} y_{n+1}}{1-\beta_{n+1}} \\
&-\frac{\alpha_{n} \gamma f\left(x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}}{1-\beta_{n}} \| \\
&= \| \frac{\left.\alpha_{n+1} \gamma f_{( } x_{n+1}\right)}{1-\beta_{n+1}}+\frac{\left(1-\beta_{n+1}\right) S_{n+1} y_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n+1} D S_{n+1} y_{n+1}}{1-\beta_{n+1}} \\
&-\frac{\alpha_{n} \gamma f\left(x_{n}\right)}{1-\beta_{n}}-\frac{\left(1-\beta_{n}\right) S_{n} y_{n}}{1-\beta_{n}}+\frac{\alpha_{n} D S_{n} y_{n}}{1-\beta_{n}} \| \\
&=\| \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\gamma f\left(x_{n+1}\right)-D S_{n+1} y_{n+1}\right) \\
&+\frac{\alpha_{n}}{1-\beta_{n}}\left(D S_{n} y_{n}-\gamma f\left(x_{n}\right)\right)+S_{n+1} y_{n+1}-S_{n} y_{n} \| \\
& \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|\gamma f\left(x_{n+1}\right)-D S_{n+1} y_{n+1}\right\| \\
&+\frac{\alpha_{n}}{1-\beta_{n}}\left\|D S_{n} y_{n}-\gamma f\left(x_{n}\right)\right\|+\left\|S_{n+1} y_{n+1}-S_{n} y_{n}\right\| \\
& \leq \quad \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|\gamma f\left(x_{n+1}\right)-D S_{n+1} y_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|D S_{n} y_{n}-\gamma f\left(x_{n}\right)\right\| \\
&+\left\|x_{n+1}-x_{n}\right\|+\xi\|A\| \sigma_{n}+\varsigma_{n}+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|D u_{n}\right\| \\
&+\frac{2}{n+2}\left\|y_{n}-x^{*}\right\|+\frac{2}{n+2}\left\|x^{*}\right\| .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
& \leq \\
& \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|\gamma f\left(x_{n+1}\right)-D S_{n+1} y_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|D S_{n} y_{n}-\gamma f\left(x_{n}\right)\right\| \\
& \quad+\xi\|A\| \sigma_{n}+\varsigma_{n}+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|D u_{n}\right\|+\frac{2}{n+2}\left\|y_{n}-x^{*}\right\|+\frac{2}{n+2}\left\|x^{*}\right\|
\end{aligned}
$$

It follows from $n \rightarrow \infty$ and the conditions (C1)-(C4), that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

From Lemma 2.7, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$ and also

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

Step 3. We will show that $\lim _{n \longrightarrow \infty}\left\|u_{n}-x_{n}\right\|=0$.

For $x^{*} \in \Omega, x^{*}=T_{r_{n}}^{\left(F_{1}, h_{1}\right)} x^{*}$ and $T_{r_{n}}^{\left(F_{1}, h_{1}\right)}$ is firmly nonexpansive, we obtain

$$
\begin{aligned}
\left\|u_{n}-x^{*}\right\|^{2}= & \left\|T_{\left.r_{n}, h_{1}\right)}^{\left(F_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-x^{*}\right\|^{2} \\
= & \left\|T_{r_{n}}^{\left(F_{1}, h_{1}\right)}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right)-T_{r_{n}}^{\left(F_{1}, h_{1}\right)} x^{*}\right\|^{2} \\
\leq & \left\langle u_{n}-x^{*}, x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}-x^{*}\right\rangle \\
= & \frac{1}{2}\left\{\left\|u_{n}-x^{*}\right\|^{2}+\left\|x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\left\|\left(u_{n}-x^{*}\right)-\left[x_{n}+\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}-x^{*}\right]\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|u_{n}-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|u_{n}-x_{n}-\xi A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|u_{n}-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left[\left\|u_{n}-x_{n}\right\|^{2}+\xi^{2}\left\|A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}\right.\right. \\
& \left.\left.-2 \xi\left\langle u_{n}-x_{n}, A^{*}\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\rangle\right]\right\} .
\end{aligned}
$$

Hence, we obtain

$$
\begin{equation*}
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}+2 \xi\left\|A\left(u_{n}-x_{n}\right)\right\|\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\| \tag{3.14}
\end{equation*}
$$

Using (3.7), (3.9) and Lemma 2.8, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}-x^{*}\right\|^{2} \\
= & \| \alpha_{n}\left(\gamma f\left(x_{n}\right)-D x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) \\
& \times\left(S_{n} y_{n}-x^{*}\right) \|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left(\left\|x_{n}-x^{*}\right\|^{2}+\xi(L \xi-1)\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2}\right) \\
= & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \xi(1-L \xi)\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \xi(1-L \xi)\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2}+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2} \\
\leq & \left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2}
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \xi(1-L \xi)>0$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

Using (3.9), (3.14) and Lemma 2.8, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}-x^{*}\right\|^{2} \\
= & \| \alpha_{n}\left(\gamma f\left(x_{n}\right)-D x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) \\
& \times\left(S_{n} y_{n}-x^{*}\right) \|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left(\left\|x_{n}-x^{*}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}+2 \xi\left\|A\left(u_{n}-x_{n}\right)\right\|\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|\right) \\
= & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& \left.-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-x_{n}\right\|^{2}+2 \xi\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|A\left(u_{n}-x_{n}\right)\right\|\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|\right) .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
(1- & \left.\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-u_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& +2 \xi\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|A\left(u_{n}-x_{n}\right)\right\|\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\| \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2}-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2} \\
& \left.+2 \xi\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|A\left(u_{n}-x_{n}\right)\right\|\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|\right) \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2} \\
& \left.+2 \xi\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|A\left(u_{n}-x_{n}\right)\right\|\left\|\left(T_{r_{n}}^{\left(F_{2}, h_{2}\right)}-I\right) A x_{n}\right\|\right) .
\end{aligned}
$$

By condition (C1), (3.13) and (3.15), then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

Step 4. We will show that $\lim _{n \longrightarrow \infty}\left\|S_{n} y_{n}-x_{n}\right\|=0$.
Indeed, observe that

$$
\begin{aligned}
\left\|x_{n}-S_{n} y_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-S_{n} y_{n}\right\| \\
= & \left\|x_{n}-x_{n+1}\right\|+\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}-S_{n} y_{n}\right\| \\
= & \left\|x_{n}-x_{n+1}\right\|+\alpha_{n} \| \gamma f\left(x_{n}\right)-\alpha_{n} D S_{n} y_{n}+\alpha_{n} D S_{n} y_{n}+\beta_{n} x_{n}-\beta_{n} S_{n} y_{n}+\beta_{n} S_{n} y_{n} \\
& +\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}-S_{n} y_{n} \| \\
\leq & \left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-D S_{n} y_{n}\right\|+\beta_{n}\left\|x_{n}-S_{n} y_{n}\right\|
\end{aligned}
$$

and then

$$
\left\|x_{n}-S_{n} y_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left\|x_{n}-x_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|\gamma f\left(x_{n}\right)-D S_{n} y_{n}\right\|
$$

Since from condition (C1), (C2) and (3.13), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{n} y_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

Step 5. We will show that
(i) $\lim _{n \longrightarrow \infty}\left\|y_{n}-u_{n}\right\|=0$;
(ii) $\lim _{n \longrightarrow \infty}\left\|S_{n} y_{n}-y_{n}\right\|=0$.

From (3.2), (3.8) and Lemma 2.8, we obtain

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right)\left\|S_{n} y_{n}-x^{*}\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-x^{*}\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right)-P_{C}\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|\left(u_{n}-\lambda_{n} B u_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\{\left\|u_{n}-x^{*}\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \beta\right)\left\|B u_{n}-B x^{*}\right\|^{2}\right\} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}\left(\lambda_{n}-2 \beta\right)\left\|B u_{n}-B x^{*}\right\|^{2} \\
& \quad \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}\left(\lambda_{n}-2 \beta\right)\left\|B u_{n}-B x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) a(b-2 \beta)\left\|B u_{n}-B x^{*}\right\|^{2},
\end{aligned}
$$

it follows that

$$
\begin{aligned}
0 & \leq\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) a(2 \beta-b)\left\|B u_{n}-B x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n+1}-x_{n}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, so we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|B u_{n}-B x^{*}\right\|=0 \tag{3.18}
\end{equation*}
$$

Next, we will show that $\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0$.
Further, we observe that

$$
\begin{aligned}
& \left\|y_{n}-x^{*}\right\|^{2} \\
= & \left\|P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right)-P_{C}\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2} \\
\leq & \left\langle\left(u_{n}-\lambda_{n} B u_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right), y_{n}-x^{*}\right\rangle \\
\leq & \frac{1}{2}\left\{\left\|\left(u_{n}-\lambda_{n} B u_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2}+\left\|y_{n}-x^{*}\right\|^{2}-\left\|\left(u_{n}-\lambda_{n} B u_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)-\left(y_{n}-x^{*}\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|u_{n}-x^{*}\right\|^{2}+\left\|y_{n}-x^{*}\right\|^{2}-\left\|\left(u_{n}-y_{n}\right)-\lambda_{n}\left(B u_{n}-B x^{*}\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|u_{n}-x^{*}\right\|^{2}+\left\|y_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle u_{n}-y_{n}, B u_{n}-B x^{*}\right\rangle-\lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2}\right\}
\end{aligned}
$$

so, we obtain

$$
\begin{equation*}
\left\|y_{n}-x^{*}\right\|^{2} \leq\left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle u_{n}-y_{n}, B u_{n}-B x^{*}\right\rangle-\lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2}, \tag{3.19}
\end{equation*}
$$

and hence from (3.9) and (3.19), we get

$$
\begin{aligned}
\| x_{n+1} & -x^{*} \|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\{\left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle u_{n}-y_{n}, B u_{n}-B x^{*}\right\rangle-\lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2}\right\} \\
= & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
& -\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle u_{n}-y_{n}, B u_{n}-B x^{*}\right\rangle \\
& -\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle u_{n}-y_{n}, B u_{n}-B x^{*}\right\rangle \\
& -\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2}-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle u_{n}-y_{n}, B u_{n}-B x^{*}\right\rangle-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2}-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|\left\|B u_{n}-B x^{*}\right\|-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2},
\end{aligned}
$$

which implies that

$$
\begin{aligned}
(1- & \left.\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2}-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|\left\|B u_{n}-B x^{*}\right\|-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|\gamma f\left(x_{n}\right)-D x^{*}\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)-\alpha_{n} \bar{\gamma}\left\|x_{n}-x^{*}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|u_{n}-y_{n}\right\|\left\|B u_{n}-B x^{*}\right\|-\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \lambda_{n}^{2}\left\|B u_{n}-B x^{*}\right\|^{2} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|B u_{n}-B x^{*}\right\|=0, \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$ and the conditions (C1)-(C3), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 . \tag{3.20}
\end{equation*}
$$

Consequently, from (3.16), (3.17) and (3.20), we observe that

$$
\begin{equation*}
\left\|S_{n} y_{n}-y_{n}\right\| \leq\left\|S_{n} y_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.21}
\end{equation*}
$$

By Lemma 2.9, we have $\lim _{\sup }^{n \rightarrow \infty} \boldsymbol{\|}\left\|S_{n} y_{n}-S\left(S_{n} y_{n}\right)\right\|=0$.
Step 6. We claim that $\lim \sup _{n \rightarrow \infty}\left\langle(D-\gamma f) q, q-x_{n}\right\rangle \leq 0$, where $q$ is the unique solution of the variational inequality $\left\langle(D-\gamma f) q, x_{n}-q\right\rangle \geq 0$.

To show this inequality, we choose a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$, such that

$$
\lim _{i \rightarrow \infty}\left\langle(D-\gamma f) q, q-y_{n_{i}}\right\rangle=\limsup _{n \rightarrow \infty}\left\langle(D-\gamma f) q, q-y_{n}\right\rangle .
$$

Since $\left\{y_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{y_{n_{i_{k}}}\right\}$ of $\left\{y_{n_{i}}\right\}$ which converge weakly to $z \in C$. Without loss of generality, we can assume that $y_{n_{i}} \rightharpoonup z$. From $\left\|S_{n} y_{n}-S\left(S_{n} y_{n}\right)\right\| \rightarrow 0$, as $n \rightarrow \infty$, we obtain $S\left(S_{n_{i}} y_{n_{i}}\right) \rightharpoonup z$.

Step 7. We will show that $z \in \Omega$.
Step 7.1 First, we show that $z \in \operatorname{Fix}\left(S_{n}\right)=\frac{1}{n+1} \sum_{i=0}^{n} \operatorname{Fix}\left(S^{i}\right)$. Assume that $z \notin$ $\frac{1}{n+1} \sum_{i=0}^{n} \operatorname{Fix}\left(S^{i}\right)$. Since $y_{n_{i}} \rightharpoonup z$ and $T z \neq z$. From Lemma 2.11, we have

$$
\begin{aligned}
\liminf _{i \longrightarrow \infty}\left\|y_{n_{i}}-z\right\| & <\liminf _{i \longrightarrow \infty}\left\|y_{n_{i}}-S z\right\| \\
& \leq \liminf _{i \longrightarrow \infty}\left(\left\|y_{n_{i}}-S y_{n_{i}}\right\|+\left\|S y_{n_{i}}-S z\right\|\right) \\
& \leq \liminf _{i \longrightarrow \infty}\left\|y_{n_{i}}-z\right\|
\end{aligned}
$$

which is a contradiction. Thus, we obtain $z \in \operatorname{Fix}\left(S_{n}\right)=\frac{1}{n+1} \sum_{i=0}^{n} \operatorname{Fix}\left(S^{i}\right)$.
Step 7.2 We will show that $z \in \Gamma$.
First, we will show $z \in G E P\left(F_{1}, h_{1}\right)$.
Since $u_{n}=T_{r_{n}}^{\left(F_{1}, h_{1}\right)} x_{n}$, we have

$$
F_{1}\left(u_{n}, w\right)+h_{1}\left(u_{n}, w\right)+\frac{1}{r_{n}}\left\langle w-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall w \in C
$$

It follows from the monotonicity of $F_{1}$ that

$$
h_{1}\left(u_{n}, w\right)+\frac{1}{r_{n}}\left\langle w-u_{n}, u_{n}-x_{n}\right\rangle \geq F_{1}\left(w, u_{n}\right)
$$

and hence replacing $n$ by $n_{i}$, we get

$$
h_{1}\left(u_{n_{i}}, w\right)+\left\langle w-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle \geq F_{1}\left(w, u_{n_{i}}\right)
$$

Since $\left\|u_{n}-x_{n}\right\| \rightarrow 0$, and $x_{n} \rightharpoonup z$, we get $u_{n_{i}} \rightharpoonup z$ and $\frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}} \rightarrow 0$. It follows by Lemma 2.1 (iv) that $0 \geq F_{1}(w, z), \forall z \in C$. For any $t$ with $0<t \leq 1$ and $w \in C$, let $w_{t}=t w+(1-t) z$. Since $w \in C, z \in C$, we have $w_{t} \in C$, and hence, $F_{1}\left(w_{t}, z\right) \leq 0$. So, from Lemma 2.1 (i) and (iv), we have

$$
\begin{aligned}
0 & =F_{1}\left(w_{t}, w_{t}\right)+h_{1}\left(w_{t}, w_{t}\right) \\
& \leq t\left[F_{1}\left(w_{t}, w\right)+h_{1}\left(w_{t}, w\right)\right]+(1-t)\left[F_{1}\left(w_{t}, z\right)+h_{1}\left(w_{t}, z\right)\right] \\
& \leq t\left[F_{1}\left(w_{t}, w\right)+h_{1}\left(w_{t}, w\right)\right]+(1-t)\left[F_{1}\left(z, w_{t}\right)+h_{1}\left(z, w_{t}\right)\right] \\
& \leq\left[F_{1}\left(w_{t}, w\right)+h_{1}\left(w_{t}, w\right)\right] .
\end{aligned}
$$

Therefore, $0 \leq F_{1}\left(w_{t}, w\right)+h_{1}\left(w_{t}, w\right)$. From Lemma 2.1 (iii), we have $0 \leq F_{1}(z, w)+h_{1}(z, w)$. This implies that $z \in G E P\left(F_{1}, h_{1}\right)$.

Next, we show that $A z \in \operatorname{GEP}\left(F_{2}, h_{2}\right)$. Since $\left\|u_{n}-x_{n}\right\| \rightarrow 0, u_{n} \rightharpoonup z$ as $n \rightarrow \infty$ and $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{i}\right\}$ such that $x_{n_{i}} \rightharpoonup z$, and since $A$ is bounded linear operator, so $A x_{n_{i}} \rightharpoonup A z$.

Now, setting $k_{n_{i}}=A x_{n_{i}}-T_{r_{n_{i}}}^{\left(F_{2}, h_{2}\right)} A x_{n_{i}}$. It follows from (3.15) that $\lim _{i \rightarrow \infty} k_{n_{i}}=0$ and $A x_{n_{i}}-k_{n_{i}}=$ $T_{r_{n_{i}}}^{\left(F_{2}, h_{2}\right)} A x_{n_{i}}$.

Therefore, from Lemma 2.3, we have

$$
F_{2}\left(A x_{n_{i}}-k_{n_{i}}, \tilde{z}\right)+h_{2}\left(A x_{n_{i}}-k_{n_{i}}, \tilde{z}\right)+\frac{1}{r_{n_{i}}}\left\langle\tilde{z}-\left(A x_{n_{i}}-k_{n_{i}}\right),\left(A x_{n_{i}}-k_{n_{i}}\right)-A x_{n_{i}}\right\rangle \geq 0, \quad \forall \tilde{z} \in Q
$$

Since $F_{2}$ and $h_{2}$ are upper semicontinuous taking limsup to above inequality as $i \rightarrow \infty$ and using condition (iv), we obtain

$$
F_{2}(A z, \tilde{z})+h_{2}(A x, \tilde{z}) \geq 0, \quad \forall \tilde{z} \in Q
$$

which means that $A z \in G E P\left(F_{2}, h_{2}\right)$ and hence $z \in \Gamma$.
Step 7.3 We will show that $z \in V I(C, B)$.
Let $M: H \rightarrow 2^{H}$ be a set-valued mapping is defined by

$$
M v= \begin{cases}B v+N_{C} v, & v \in C \\ \emptyset, & v \notin C\end{cases}
$$

where $N_{C} v:=\left\{z \in H_{1}:\langle v-u, z\rangle \geq 0, \forall u \in C\right\}$ is the normal cone to $C$ at $v \in C$. Then $M$ is maximal monotone and $0 \in M v$ if and only if $v \in V I(C, B)$; (see [42]) for more details. Let $(v, u) \in G(M)$. Then we have

$$
u \in M v=B v+N_{C} v
$$

and hence

$$
u-B v \in N_{C} v
$$

Since $y_{n} \in C, \forall n$, so we have

$$
\begin{equation*}
\left\langle v-y_{n}, u-B v\right\rangle \geq 0 \tag{3.22}
\end{equation*}
$$

On the other hand, from $y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right)$, we have

$$
\left\langle v-y_{n}, y_{n}-\left(u_{n}-\lambda_{n} B u_{n}\right)\right\rangle \geq 0
$$

that is

$$
\left\langle v-y_{n}, \frac{y_{n}-u_{n}}{\lambda_{n}}+B u_{n}\right\rangle \geq 0
$$

Therefore, we have

$$
\begin{align*}
\left\langle v-y_{n_{i}}, u\right\rangle & \geq\left\langle v-y_{n_{i}}, B v\right\rangle \\
& \geq\left\langle v-y_{n_{i}}, B v\right\rangle-\left\langle v-y_{n_{i}}, \frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}+B u_{n_{i}}\right\rangle \\
& =\left\langle v-y_{n_{i}}, B v-\frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}-B u_{n_{i}}\right\rangle \\
& =\left\langle v-y_{n_{i}}, B v-B y_{n_{i}}\right\rangle+\left\langle v-y_{n_{i}}, B y_{n_{i}}-B u_{n_{i}}\right\rangle-\left\langle v-y_{n_{i}}, \frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
& \geq\left\langle v-y_{n_{i}}, B y_{n_{i}}-B u_{n_{i}}\right\rangle-\left\langle v-y_{n_{i}}, \frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \tag{3.23}
\end{align*}
$$

Noting that $y_{n_{i}} \rightharpoonup z,\left\|y_{n_{i}}-u_{n_{i}}\right\| \rightarrow 0$ as $i \rightarrow \infty$ and $B$ is $\beta$-inverse-strongly monotone, hence from (3.23), we obtain $\langle v-z, u\rangle \geq 0$ as $i \rightarrow \infty$. Since $M$ is maximal monotone, we have $z \in M^{-1} 0$, and hence $z \in V I(C, B)$. Therefore $z \in \Omega$.

Since $q=P_{\Omega}(I-D+\gamma f)(q)$, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle(\gamma f-D) q, x_{n}-q\right\rangle & =\limsup _{n \rightarrow \infty}\left\langle(\gamma f-D) q, S_{n} y_{n}-q\right\rangle \\
& =\lim _{i \rightarrow \infty}\left\langle(\gamma f-D) q, S_{n_{i}} y_{n_{i}}-q\right\rangle \\
& =\langle(\gamma f-D) q, z-q\rangle \leq 0 . \tag{3.24}
\end{align*}
$$

Step 8. Finally, we show that $\left\{x_{n}\right\}$ converge strongly to $q$, we obtain that

$$
\begin{align*}
& \left\|x_{n+1}-q\right\|^{2}=\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) S_{n} y_{n}-q\right\|^{2} \\
& =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-D q\right)+\beta_{n}\left(x_{n}-q\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right)\left(S_{n} y_{n}-q\right)\right\|^{2} \\
& =\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left\|\beta_{n}\left(x_{n}-q\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right)\left(S_{n} y_{n}-q\right)\right\|^{2} \\
& +2\left\langle\beta_{n}\left(x_{n}-q\right)+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right)\left(S_{n} y_{n}-q\right), \alpha_{n}\left(\gamma f\left(x_{n}\right)-D q\right)\right\rangle \\
& \leq \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left\{\beta_{n}\left\|x_{n}-q\right\|+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|y_{n}-q\right\|\right\}^{2} \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-q, \gamma f\left(x_{n}\right)-D q\right\rangle+2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f\left(x_{n}\right)-D q\right\rangle \\
& =\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left\{\beta_{n}\left\|x_{n}-q\right\|+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-q\right\|\right\}^{2} \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-q, \gamma f\left(x_{n}\right)-\gamma f(q)+\gamma f(q)-D(q)\right\rangle \\
& +2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f\left(x_{n}\right)-\gamma f(q)+\gamma f(q)-D q\right\rangle \\
& \leq \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left\{\beta_{n}\left\|x_{n}-q\right\|+\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-q\right\|\right\}^{2} \\
& +2 \beta_{n} \alpha_{n}\left\langle x_{n}-q, \gamma f\left(x_{n}\right)-\gamma f(q)\right\rangle+2 \alpha_{n} \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle \\
& +2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f\left(x_{n}\right)-\gamma f(q)\right\rangle \\
& +2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle \\
& \leq \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \beta_{n} \gamma\left\|x_{n}-q\right\|\left\|f\left(x_{n}\right)-f(q)\right\| \\
& +2 \alpha_{n} \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle+2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \gamma\left\|S_{n} y_{n}-q\right\|\left\|f\left(x_{n}\right)-f(q)\right\| \\
& +2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle \\
& \leq \alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \beta_{n} \gamma \alpha\left\|x_{n}-q\right\|^{2} \\
& +2 \alpha_{n} \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle+2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right) \gamma \alpha\left\|x_{n}-q\right\|^{2} \\
& +2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle \\
& =\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left(1-2 \alpha_{n} \bar{\gamma}+\alpha_{n}^{2} \bar{\gamma}^{2}\right)\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \beta_{n} \gamma \alpha\left\|x_{n}-q\right\|^{2} \\
& +2 \alpha_{n} \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle+\left(2 \alpha_{n} \gamma \alpha-2 \alpha_{n} \beta_{n} \gamma \alpha-2 \alpha_{n}^{2} \bar{\gamma} \gamma \alpha\right)\left\|x_{n}-q\right\|^{2} \\
& +2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle \\
& =\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+\left(1-2 \alpha_{n} \bar{\gamma}+\alpha_{n}^{2} \bar{\gamma}^{2}+2 \alpha_{n} \gamma \alpha-2 \alpha_{n}^{2} \bar{\gamma} \gamma \alpha\right)\left\|x_{n}-q\right\|^{2} \\
& +2 \alpha_{n} \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle+2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle \\
& \leq\left(1-\alpha_{n}\left(2 \bar{\gamma}-\alpha_{n} \bar{\gamma}^{2}-2 \gamma \alpha+2 \alpha_{n} \bar{\gamma} \gamma \alpha\right)\right)\left\|x_{n}-q\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2} \\
& +2 \alpha_{n} \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle+2 \alpha_{n}\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle \\
& \leq\left(1-\alpha_{n}\left(2 \bar{\gamma}^{2}-\alpha_{n} \bar{\gamma}-2 \gamma \alpha+2 \alpha_{n} \bar{\gamma} \gamma \alpha\right)\right)\left\|x_{n}-q\right\|^{2}+\alpha_{n} \delta_{n} \text {, } \tag{3.25}
\end{align*}
$$

where $\delta_{n}:=\alpha_{n}\left\|\gamma f\left(x_{n}\right)-D q\right\|^{2}+2 \beta_{n}\left\langle x_{n}-q, \gamma f(q)-D q\right\rangle+2\left(1-\beta_{n}-\alpha_{n} \bar{\gamma}\right)\left\langle S_{n} y_{n}-q, \gamma f(q)-D q\right\rangle$.
 conclude that $x_{n} \rightarrow q$. This complete the proof.

## 4 Consequently results

Corollary 4.1. Let $H_{1}$ and $H_{2}$ be two real Hilbert spaces and $C \subset H_{1}$ and $Q \subset H_{2}$ be nonempty closed convex subsets of $H_{1}$ and $H_{2}$, respectively. Let $A: H_{1} \rightarrow H_{2}$ be a bounded linear operator. Let $F_{1}: C \times C \rightarrow \mathbb{R}$ and
$F_{2}: Q \times Q \rightarrow \mathbb{R}$ satisfying Lemma 2.1 and $F_{2}$ is upper semicontinuous. Let $B$ be $\beta$-inverse-strongly monotone mapping from $C$ into $H_{1}$. Let $f$ be a contraction of $C$ into itself with coefficient $\alpha \in(0,1)$ and let $D$ be a strongly positive linear bounded operator on $H_{1}$ with coefficient $\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{S^{i}\right\}_{i=1}^{n}$ be a sequence of nonexpansive mappings from $C$ into itself such that

$$
\Omega:=\cap_{i=1}^{n} F i x\left(S^{i}\right) \cap V I(C, B) \cap \Theta \neq \emptyset .
$$

Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{0} \in C, u_{n} \in C$ and

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{F_{1}}\left(x_{n}+\xi A^{*}\left(T_{r_{n}}^{F_{2}}-I\right) A x_{n}\right)  \tag{4.1}\\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} D\right) \frac{1}{n+1} \sum_{i=0}^{n} S^{i} y_{n}, \forall n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1),\left\{\lambda_{n}\right\} \in[a, b] \subset(0,2 \beta)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ and $\xi \in\left(0, \frac{1}{L}\right), L$ is the spectral radius of the operator $A^{*} A$ and $A^{*}$ is the adjoint of $A$ satisfy the following conditions (C1)-(C4). Then $\left\{x_{n}\right\}$ converges strongly to $q \in \Omega$, where $q=P_{\Omega}(I-D+\gamma f)(q)$, which is the unique solution of the variational inequality problem

$$
\langle(D-\gamma f) q, x-q\rangle \geq 0, \forall x \in \Omega
$$

or, equivalently, $q$ is the unique solution to the minimization problem

$$
\min _{x \in \Omega} \frac{1}{2}\langle D x, x\rangle-h(x)
$$

where $h$ is a potential function for $\gamma f$ such that $h^{\prime}(x)=\gamma f(x)$ for $x \in H_{1}$.

Proof. Taking $h_{1}=h_{2}=0$ in Theorem 3.1, then the conclusion of Corollary 4.1 is obtained.
Corollary 4.2. Let $H$ be real Hilbert spaces and $C \subset H$. Let $F: C \times C \rightarrow \mathbb{R}$ satisfying Lemma 2.1. Let $B$ be $\beta$-inverse-strongly monotone mapping from $C$ into $H$. Let $f$ be a contraction of $C$ into itself with coefficient $\alpha \in(0,1)$ Let $S: C \rightarrow C$ be nonexpansive mapping such that

$$
\Omega:=F i x(S) \cap V I(C, B) \cap E P(F) \neq \emptyset
$$

Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{0} \in C, u_{n} \in C$ and

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{F} x_{n}  \tag{4.2}\\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(1-\beta_{n}-\alpha_{n}\right) S y_{n}, \forall n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1),\left\{\lambda_{n}\right\} \in[a, b] \subset(0,2 \beta)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy the following conditions (C1)-(C4). Then $\left\{x_{n}\right\}$ converges strongly to $q \in \Omega$, where $q=P_{\Omega} f(q)$.

Proof. Taking $S^{i}=S$, for $i=0,1,2, \ldots, n, F_{1}=F_{2}=F, H_{1}=H_{2}=H, h_{1}=h_{2}=0, A=0$ and $D=I$ in Theorem 3.1, then the conclusion of Corollary 4.2 is obtained.

Corollary 4.3. Let $H$ be real Hilbert spaces and $C \subset H$. Let $F: C \times C \rightarrow \mathbb{R}$ satisfying Lemma 2.1. Let $B$ be $\beta$-inverse-strongly monotone mapping from $C$ into $H$. Let $f$ be a contraction of $C$ into itself with coefficient $\alpha \in(0,1)$ Let $S: C \rightarrow C$ be nonexpansive mapping such that

$$
\Omega:=F i x(S) \cap V I(C, B) \cap E P(F) \neq \emptyset
$$

Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{0} \in C, u_{n} \in C$ and

$$
\left\{\begin{array}{l}
u_{n}=T_{r_{n}}^{F} x_{n}  \tag{4.3}\\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\alpha_{n} v+\beta_{n} x_{n}+\left(1-\beta_{n}-\alpha_{n}\right) S y_{n}, \forall n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1),\left\{\lambda_{n}\right\} \in[a, b] \subset(0,2 \beta)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy the following conditions (C1)-(C4). Then $\left\{x_{n}\right\}$ converges strongly to $q \in \Omega$, where $q=P_{\Omega}(q)$.

Proof. Taking $\gamma=1$ and $f\left(x_{n}\right)=v$ in Corollary 4.2, then the conclusion of Corollary 4.3 is obtained.

Corollary 4.4. Let $H$ be real Hilbert spaces and $C \subset H$. Let $f$ be a contraction of $C$ into itself with coefficient $\alpha \in(0,1)$ Let $S: C \rightarrow C$ be nonexpansive mapping such that $F i x(S) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be sequences generated by $x_{0} \in C$, and

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(1-\beta_{n}-\alpha_{n}\right) S x_{n}, \forall n \geq 0 \tag{4.4}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1)$, satisfy the following conditions (C1)-(C2). Then $\left\{x_{n}\right\}$ converges strongly to $q \in$ Fix $(S)$, where $q=P_{F i x(S)} f(q)$.

Proof. Taking $S^{i}=S$, for $i=0,1,2, \ldots, n, H_{1}=H_{2}=H, F_{1}=F_{2}=h_{1}=h_{2}=0, A=0, y_{n}=u_{n}=x_{n}, D=$ $P_{C}=I$ and $B=0$ in Theorem 3.1, then the conclusion of Corollary 4.4 is obtained.

## 5 Acknowledgments

The first author was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0033/2554) and the King Mongkut's University of Technology Thonburi, Thailand and University of Jaén, Spain. This research was finished at Department of Mathematics, Faculty of Science, University of Jaén, Campus Las Lagunillas, Jaén, Spain. Moreover, the third author was supported by the Thailand Research Fund and the King Mongkuts University of Technology Thonburi under the TRF Research Scholar Grant No.RSA5780059.

## References

[1] L. C. Ceng, J. C. Yao, An extragradient like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput. 190 (2007), 205-215.
[2] L.C. Ceng, J.C. Yao, On the convergence analysis of inexact hybrid extragradient proximal point algorithms for maximal monotone operators, J. Comput. Appl. Math. 217 (2008), 326-338.
[3] L.C. Ceng, J.C. Yao, Approximate proximal algorithms for generalized variational inequalities with pseudomonotone multifunctions, J. Comput. Appl. Math. 213 (2008), 423-438.
[4] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.
[5] C. Jaiboon, P. Kumam, H.W. Humphries, Weak convergence theorem by extragradient method for variational inequality, equilibrium problems and xed point problems, Bull. Malaysian Math. Sci. Soc. 2 (32) (2009), 173-185.
[6] F. Liu, M.Z. Nasheed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set Valued Anal. 6 (1998), 313-344.
[7] G. Stampacchia, Formes bilineaires coercitivies sur les ensembles convexes, C.R. Acad. Sci. Paris, 258 (1964), 4413-4416.
[8] R. Wangkeeree, R. Wangkeeree, A general iterative methods for variational inequality problems and mixed equilibrium problems and fixed point problems of strictly pseudocontractive mappings in Hilbert spaces, Fixed Point Theory Appl., (2007) 32, (Article ID 519065).
[9] S.S. Zeng, N.C. Wong, J.C. Yao, Convergence of hybrid steepest-descent methods for generalized variational inequalities, Acta Math. Sin. English Ser., 22 (1) (2006), 1-12.
[10] A. S. Antipin, Methods for solving variational inequlities with related constraints, Comput. Math. Math. Phys., 40 (2007), 1239-1254.
[11] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, vols. I and II. Springer, New York (2003).
[12] G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonomika i Mathematicheskie Metody, 12 (1976), 747-756.
[13] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, 118(2003), 417-428.
[14] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, vol. 8, no. 2-4, pp. 221-239, 1994.
[15] B. Eicke, Iterative methods for convexly constrained ill-posed problem in Hilbert space, Numer. Funct. Anal. Optim., vol. 13, pp. 413-429, 1992.
[16] L. Landweber, An iterative formula for Fredholm integral equations of the first kind, Amer. J. Math. 73, pp. 615-625, 1951.
[17] J.-P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer-Verlag.
[18] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., Vol. 150, 275-283 (2011).
[19] K. R. Kazmi and S. H. Rizvi, Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Mathematical Sciences, Vol. 7:1 (2013), doi:10.1186/2251-7456-7-1
[20] J.B. Baillon, Un theoreme de type ergodique pour les contractions non lineairs dans un e'spaces de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1541.
[21] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, Journal of Mathematical Analysis and Applications, vol. 211, no. 1, pp. 71-83, 1997.
[22] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55.
[23] F. Deutsch and I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim., 19 (1998), 33-56.
[24] H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116(2003), 659-678.
[25] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
[26] I. Yamada, The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings, in: D. Butnariu, Y. Censor, S. Reich (Eds.), Inherently Parallel Algorithm for Feasibility and Optimization, Elsevier, 2001, pp. 473-504.
[27] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291.
[28] G. Marino, H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43-52.
[29] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc., Vol. 73, 561-597 (1967).
[30] T. Suzuki, Strong convergence theorems for an infinite family of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Vol. 1, 103-123 (2005).
[31] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., Vol. 5 (2), 87-404 (2001).
[32] H. Mahdioui, O. Chadli, On a system of generalized mixed equilibrium problems involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Advances in Operations Research, 843486 (2012).
[33] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, Vol. 8, 221-239 (1994)
[34] Marino, G. and Xu, H.K., General Iterative Method for Nonexpansive Mappings in Hilbert Spaces, Journal of Mathematical Analysis and Applications, Vol. 318, pp. 43-52, (2006)
[35] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge (1990).
[36] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Problems 26 (2010) 055007, 6pp.
[37] C. Byrne, Y. Censor, A. Gibali, S. Reich, The split common null point problem. J. Nonlinear Convex Anal. 13(4), 759-775 (2012).
[38] F. Cianciaruso, G. Marino, L. Muglia, Y. Yao, A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem. Fixed Point Theory Appl. 2010, 383740 (2010).
[39] Suzuki, T., Strong Convergence of Krasnoselskii and Mann's Type Sequences for One-Parameter Nonexpansive Semigroups Without Bochner Integrals, Journal of Mathematical Analysis and Applications, Vol. 305, pp. 227-239, (2005).
[40] Osilike, M.O. and Igbokwe, D.I., Weak and Strong Convergence Theorems for Fixed Points of Pseudocontractions and Solutions of Monotone Type Operator Equations, Computers \& Mathematics with Applications, Vol. 40, pp. 559-567, (2000).
[41] Bruck, R.E., On the Convex Approximation Property and the Asymptotic Behavior of Nonlinear Contractions in Banach Spaces, Israel Journal Mathematical, Vol. 38, pp. 304-314, (1981).
[42] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
[43] Xu, H.K., Viscosity Approximation Methods for Nonexpansive Mappings, Journal of Mathematical Analysis and Applications, Vol. 298, pp. 279-291, (2004).
[44] Opial, Z., Weak Convergence of Successive Approximations for Nonexpansive Mappings, Bulletin of the American Mathematical Society, Vol. 73, pp. 591-597, (1967).


[^0]:    *Corresponding author: Tel.: +66 02470 8998; fax: +66 024284025.
    E-mail: jitsupa.deepho@mail.kmutt.ac.th (J. Deepho), jmmoreno@ujaen.es (J. Martinez-Moreno) and poom.kum@kmutt.ac.th (P. Kumam) .

