Automatically Acquiring a Semantic Network of Related
Concepts

Sean Szumlanski
seansz@cs.ucf.edu

Fernando Gomez
gomez@eecs.ucf.edu

Department of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816, USA

ABSTRACT

We describe the automatic construction of a semantic net-
work!, in which over 3000 of the most frequently occurring
monosemous nouns? in Wikipedia (each appearing between
1,500 and 100,000 times) are linked to their semantically
related concepts in the WordNet noun ontology. Related-
ness between nouns is discovered automatically from co-
occurrence in Wikipedia texts using an information theoretic
inspired measure. Our algorithm then capitalizes on salient
sense clustering among related nouns to automatically dis-
ambiguate them to their appropriate senses (i.e., concepts).
Through the act of disambiguation, we begin to accumulate
relatedness data for concepts denoted by polysemous nouns,
as well. The resultant concept-to-concept associations, cov-
ering 17,543 nouns, and 27,312 distinct senses among them,
constitute a large-scale semantic network of related concepts
that can be conceived of as augmenting the WordNet noun
ontology with related-to links.
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nectionism and neural nets, knowledge acquisition
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1. INTRODUCTION

While the contemplation of semantic networks and their
usefulness for natural language understanding tasks dates
back to the work of Quillian [26], we have yet to see the
creation of a large-scale, viable model of semantic memory.
The WordNet ontology [8] constitutes a partial realization
of Quillian’s dream through its instantiation of a variety of
labeled edges indicating, inter alia, subsumptive is-a rela-
tionships between noun senses (concepts®). These relations
constitute a rich taxonomy of semantic similarity.

Absent from the ontology, however, is a more general indi-
cation of semantic relatedness. From WordNet we can infer,
for example, the similarity between penguins and flamingos:
both share the superordinate concept aquatic bird (and are,
by virtue of their similarity, also related). In contrast, the
relatedness between penguins and icebergs (which certainly
are not similar entities, although they are conceptually re-
lated), is not articulated in the ontology.

This distinction between similarity and relatedness is well
established in the literature [28], and augmenting WordNet
with related-to links would open new vistas for applications
and research using the ontology (see Section 8). To un-
derstand the role of semantic relatedness in natural lan-
guage understanding, consider, for example, the following
sentences:

(1) The astronomer photographed the star.
(2) The paparazzi photographed the star.

Despite the syntactic equivalence of the two sentences, it is
clear that the “star” in (1) denotes a celestial body, whereas
the “star” in (2) refers to a celebrity. While it is conceiv-
able that an astronomer would photograph a celebrity, or
that a paparazzo would photograph a celestial object, the
“stars” here are preferentially disambiguated by the strong
semantic relatedness between astronomer and the celestial
body sense of “star,” and paparazzi and the celebrity sense of
“star,” respectively. Notice that if we relied on semantic sim-
ilarity to disambiguate (1), the path in WordNet connecting
astronomer and the celebrity sense of “star” (in that both
are people) would lead us astray.

Implicit to this discussion so far is the assumption that
the semantic network relates not just words, but concepts.

3Throughout this paper, we use the terms “concepts” and
“noun senses” interchangeably. In distinguishing between
words and the concepts they denote, we quote the former
and italicize the latter.



Concept-level association is critical for natural language un-
derstanding, although we see in much of the existing litera-
ture a focus on surface-level relationships between words.

In this work, we automatically acquire a semantic net-
work of related concepts. For our concepts, we use the noun
senses defined in WordNet 3.0. This seems an obvious choice
given the sophistication of WordNet’s noun ontology and its
ubiquitous use in computational linguistics and artificial in-
telligence. Rather than tie edges to weights that we derive
from co-occurrence data, which are susceptible to corpus bi-
ases, we create a network in which relatedness is represented
categorically, without weight. However, this network could
presumably be used as a kernel to infer quantitative relat-
edness scores, in the same way that WordNet has been used
to derive semantic similarity scores between concepts.

We first acquire relatedness between nouns by applying a
novel adaptation of an information theoretic measure to co-
occurrence data extracted from Wikipedia®, chosen as our
target corpus for its large size and coverage of the English
language. However, our approach is not specific to Wikipe-
dia; it can be applied to any large corpus, either to augment
our existing semantic network or to create a new one.

Once we have established relatedness between nouns, we
automatically disambiguate them to their corresponding noun
senses in WordNet, capitalizing on sense similarity cluster-
ing and high degrees of inter-relatedness that we have found
to occur among related nouns.

We should note that, when faced with two polysemous
nouns that are related, disambiguation often requires that
we already have a related-to link established between the ap-
propriate word senses. Consider, for example, the relation
between “bus” and “horn.” Here we think not of a computer’s
front-side bus, or of a rhinoceros’s horn, but of the automo-
bile and its car horn. This automatic disambiguation results
from the semantic relatedness between the two senses de-
noted by these words. Of course, if our goal is to instantiate
such a related-to link, then the link cannot be used for this
initial act of disambiguation. Another approach is called for.

We instead focus on disambiguating words related to mo-
nosemous nouns. In doing so, the monosemous noun to
which a polysemous noun is related provides an unequiv-
ocal context in which that disambiguation can take place
(cf. “horn” and the monosemous “rhinoceros”). This makes
disambiguation significantly more achievable. That is not
to say, however, that we are not accumulating relatedness
data for polysemous nouns. By disambiguating the “horn”
to which “rhinoceros” is related and the “horn” to which
“oboe” is related, we begin to accumulate relatedness data
for individual senses of the polysemous “horn.” Addition-
ally, once this initial partition is formed, we can recover and
disambiguate polysemous nouns related to individual senses
of “horn,” although a detailed discussion of this process is
beyond the scope of this paper.

Thus, the contributions of this work are twofold: we of-
fer (1) a novel approach to discovering semantic relatedness
based on lexical co-occurrence data from a large corpus and
(2) a first iteration of a semantic network of related concepts,
automatically acquired by considering relatedness to over
3000 of the most frequently occurring monosemous nouns
in Wikipedia, and currently relating 27,312 distinct senses
from among 17,543 nouns.

‘http://wuw.wikipedia.org

20

The rest of this paper proceeds as follows. In Section 2,
we discuss our approach in the context of related work. In
Sections 3 through 6, we explicate our approach to automat-
ically acquiring the semantic network. At the end of each
of these sections, we pause to present results and an evalu-
ation of our algorithm’s performance up to that point. We
discuss two excerpts from the semantic network in Section 7,
and present our conclusions and directions for future work
in Section 8.

2. RELATED WORK

Our work bears strong relation to ConceptNet [19]. Not-
withstanding the name, ConceptNet is a semantic network in
which the nodes stand for words that are not disambiguated
(not concepts). The network is constructed using a set of 20
predefined semantic relations (e.g., EffectOf, CapableOf, Lo-
cationOf) coupled with regular expression pattern matching
to extract categorical relatedness between words from the
Open Mind Common Sense project. The strengths of Con-
ceptNet compared to our work are that it relates not only
nouns, but also verbs, adjectives, and prepositional phrases,
and it indicates the semantic relation that associates each
pair of nodes.

However, its dependence on a finite set of predefined se-
mantic relations precludes ConceptNet from discovering re-
latedness between words in the general case; as Quillian
aptly points out, “in natural language text almost anything
can be considered as a relationship, so that there is no way
to specify in advance what relationships are to be needed”
(emphasis in original) [26]. Furthermore, the construction
of ConceptNet is not fully automated, as it relies on com-
mon sense facts that are manually entered into its training
corpus, and cannot discover relatedness from a corpus that
is not hand-tailored for the purpose.

Several other methods have used pattern matching to dis-
cover specific semantic relations. Turney’s Latent Relational
Analysis (LRA) [34, 33] induces patterns automatically from
a pair of relationally similar words, and solves SAT analo-
gies, while Davidov and Rappoport’s [7] unsupervised pat-
tern clustering algorithm has been used to create categories
of semantically similar words. Pantel and Pennacchiotti’s
Espresso algorithm induces search patterns automatically
from a corpus, given small seed sets of related nouns, and
has successfully discovered hyponymic (is-a) and meronymic
(part-of ) relations between nouns, several relations specific
to the domain of chemistry (such as chemical reaction and
production relations), among others [23].

Manually defined lexico-syntactic patterns have also been
used to harvest relations from large corpora. Hearst [13] first
used such patterns to automatically discover hyponymic re-
lations not present in WordNet. For example, the pattern
NP{, NP}*{,} or other NP was used to establish all the for-
mer NPs as hyponyms of the latter, as in “...temples, trea-
suries, and other important civic buildings,” where we see
that “temple” and “treasury” are hyponyms of “civic build-
ing.” In a similar vein, Girju et al. [10] and Berland and
Charniak [2] used manually defined lexico-syntactic patterns
to mine large corpora for meronymic relations.

The major difference between these approaches and ours
is that (with the exception of [7]) the pattern-based methods
require a predetermination of the specific types of relations
to be mined, whether through the articulation of exemplar
seed sets, target noun pairs, or lexico-syntactic patterns, and



are not designed for the more general discovery of semantic
relatedness that we are interested in.

Other approaches in the literature typically measure re-
latedness between two concepts or nouns quantitatively, and
are distinct from our work in that they do not build data-
bases or discover categorical relatedness. Whereas we at-
tempt to answer the question, “What concepts are related
to X7?7” the quantitative approaches attempt to answer the
question, in which both concepts (or nouns) are given as pri-
ors, “To what degree are X and Y related?” (which clearly
cannot be precomputed for every possible X and Y in the
English language).

Some of these quantitative approaches attempt to measure
relatedness using only information available from WordNet,
such as is-a relations and sense glosses [24, 15]. These meth-
ods are inherently limited by the fact that, while Word-
Net serves as a rich taxonomy of semantic similarity, it
lacks general indications of semantic relatedness (with its
articulation of holonymic relationships being the notable ex-
ception). Consider, for example, how WordNet-based ap-
proaches would discover the strong semantic relationship,
as our system does, between penguin and tuzedo. For this
purpose, the minimalistic glosses of WordNet are simply in-
sufficient; if we want to discover relatedness beyond semantic
similarity, beyond the most obvious examples of relatedness,
we need the assistance of a sizeable corpus.

For this reason, many quantitative measures have turned
to large corpora to measure relatedness, often relying on dis-
tributional similarity to establish synonymy and hypernym
relations between nouns [12, 11]. Some measures have used
the underlying structure of Wikipedia (i.e., disambiguation
pages and links between articles) to measure semantic re-
latedness between nouns or concepts, sometimes grounding
their work in the folksonomy of concepts constituted by ti-
tles of Wikipedia articles rather than measuring relatedness
between WordNet synsets [30, 9, 35]. Suchanek et al. [31]
derived a semantic network called YAGO from the underly-
ing structure of Wikipedia articles. Over 73% of the facts in
YAGO are encompassed by its isCalled, type, and means re-
lations, which are indicative of semantic similarity. Among
its most frequent relations beyond those indicating similarity
are specific ones such as bornOnDate, diedOnDate, hasPopu-
lation, bornInLocation, actedIn, directed, and writtenIn Year.

Augmenting the structure of Wikipedia itself has been
the subject of research, as well, and involves the discov-
ery of relations between articles. Mihalcea and Csomai [20]
augmented the underlying structure of Wikipedia by adding
links between pages after automatically identifying keywords
in each article and disambiguating those words to their ap-
propriate Wikipedia concepts (article titles). Ponzetto and
Navigli [25] used graph theoretic approaches to augment the
taxonomic organization of Wikipedia articles.

Other quantitative approaches have leveraged the large
amounts of data available on the Web to discover related-
ness. Agirre and de Lacalle [1] employed web queries to as-
sociate WordNet synsets with representative context words,
known as topic signatures. On average, a topic signature
from their collection contains 6877 words and their associ-
ated weights. Cuadros and Rigau [6] have used these data
to construct four KnowNets, semantic knowledge bases de-
rived by disambiguating the top 5, 10, 15, and 20 nouns,
respectively, from the topic signatures of Agirre and de La-
calle. Similarly, Navigli [22] has developed a semi-automated
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method for creating a semantic network by disambiguating
terms in collocations extracted from various semantically
annotated resources, including WordNet and the Longman
Language Activator.

In our approach, we rely solely on lexical co-occurrence
between two nouns in a large corpus to discover semantic re-
latedness, rather than drawing on predetermined relations,
lexico-syntactic patterns, distributional similarity (context),
the underlying structure of Wikipedia or WordNet, or other
semantically annotated resources. Because our approach is
fully automated and we avoid relying on structured or se-
mantically annotated resources, it can be applied to any
large corpus, in any language, to discover new semantic re-
lations, build new semantic networks, and augment existing
ones with related-to links. Because we relate concepts cat-
egorically rather than quantitatively, and because we relate
concepts, not nouns, the large-scale resource we have devel-
oped has potential for use in a wide variety of semantically
driven tasks.

3. ACQUIRING THE SEMANTIC
NETWORK: PRELIMINARIES

Our algorithm for acquiring the semantic network unfolds
in three stages. First we measure the relational strength be-
tween nouns co-occurring in Wikipedia using an information
theoretic measure. We then use this quantitative measure
to make categorical assertions about relatedness between
nouns. Finally, we disambiguate related nouns automati-
cally, giving rise to a semantic network of related concepts.

To facilitate the extraction of co-occurrence data from
Wikipedia, we have part-of-speech tagged the entire Wi-
kipedia corpus (stripped of markup and metadata) using
Brill’s tagger [3]. Throughout the remainder of this work,
co-occurrence of nouns® is considered only as sentence-level
co-occurrence, and only between noun stems, rather than
extracting separate data for distinct inflected forms. Any
noise that results from considering co-occurrence at the sen-
tence level, rather than adopting a smaller or variable sized
window, is generally quashed by the sheer magnitude of co-
occurrence data available from the corpus.

4. FROM CO-OCCURRENCE TO
RELATIONAL STRENGTH

We now adopt the following terminology. A target is any
noun for which we would like to extract relatedness data.
Nouns co-occurring with a target are called its co-targets,
all of which are potentially semantically related to the tar-
get.

We define relational strength as a quantitative measure
of the semantic relatedness of a target, t, to one of its co-
targets, c¢. For this purpose, we adapt Resnik’s selectional
association metric [28], given here in the form of S,e(¢,c),
the relational strength of ¢ to c:

1 P(c|t)log 1;}(65)

Srel(t7c) = DKL

where P(c) is the relative frequency of ¢’s occurrence in the
corpus (the number of times ¢ occurs, divided by the number

5Because the coverage of proper nouns in WordNet is mini-
mal, we only consider common nouns here.



of noun tokens counted in the corpus). Similarly, P(c|t) is
the probability of encountering ¢ in a sentence containing
t (the number of times ¢ occurs in sentences containing ¢,
divided by the total number of nouns tokens co-occurring
with t).

Dk, is the relative entropy, or Kullback-Leibler diver-
gence, between probability distributions P(C|t) and P(C),
where C' is the class of all co-targets of ¢:

Dk = D(P(C|t)[|P(C))
= Z P(c|t)logfl)3(c|t)

ceC (C)

Intuitively speaking, D indicates how likely we are to
encounter ¢ as a consequence of encountering t. Its high-
est values are assigned when c¢’s relative frequency of co-
occurrence with ¢ is significantly higher than ¢’s relative fre-
quency of occurrence in the corpus.

We are primarily interested in using Sy (¢, ¢) to measure
the relatedness of ¢ to c relative to all other co-targets of ¢,
rather than measuring relational strength in a global fashion.
Accordingly, the metric is used only to sort the list of t’s co-
targets in order of decreasing relational strength, after which
the usefulness of the metric is exhausted, and its values are
discarded. Thus, Dk, which is constant with respect to c,
can be dropped from the definition of Sy¢;(t, ¢); the ordering
of t’s co-targets remains the same. This leaves us with:

P(eft)

Srei(t,c) = P(c|t)log PO

We also make this pragmatic change to our metric: to
account for the relatedness of ¢ to ¢, which certainly plays
some role in the relational strength of ¢ to ¢, we multiply
Srei(t, ¢) by P(t|c). This is particularly useful in suppressing
words like “article,” which tends to appear frequently with
nouns that serve as titles of Wikipedia articles, despite the
fact that those nouns are not generally semantically related
to “article” at all®. With this final modification, Syci(t,c)
becomes:

P(eft)
P(o)

Given a target of interest, we assemble its co-occurrence
data (if it has not already been cached) and sort all co-
targets by descending order of Sri(¢,c). The notable ex-
ception is that if P(c|t) < 0.07%, we exclude ¢ from con-
sideration outright. This is done largely as a computational
consideration. The presence of both P(t|c) and P(c|t) in (%)
requires us to have the co-occurrence data for both ¢ and
¢ to compute Srei(t,c), and, as there are often thousands
of nouns co-occurring with a target below this frequency
threshold, we save a considerable amount of processing time
by eliminating them. This also protects us from false indi-
cations of relatedness that would arise if an incredibly rare
word from the corpus were to co-occur with a semantically
unrelated target just once or twice, as a matter of happen-
stance. We have found that lowering this threshold below

(%) Srei(t,c) = P(t|c)P(c|t)log

6 Although these problematic words are particular to our
choice of corpus, our method for quashing them retains its
generality for use with any corpus.
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Table 1: Coefficients of correlation with human sim-
ilarity judgments. Starred rows are presented in [4].

Measure M&C | R&G
Patwardhan and Pedersen [24] 91 .90
Ranking by Relational Strength .852 824
Hughes and Ramage [15] .838 .904
*Leacock and Chodorow [17] .838 .816
Strube and Ponzetto [30] .82 .86
FLin (18] 810 | 829
*Hirst and St-Onge [14] .786 744
*Jiang and Conrath [16] .781 .850
*Resnik [27] 779 | 77d
| Human Correlation [27] | 885 | n/a |

0.07% dramatically increases runtimes while producing neg-
ligible changes in our overall results. This makes intuitive
sense, as we are effectively only eliminating from consider-
ation those co-targets that account for fewer than 7 out of
every 10,000 nouns co-occurring with a target.

4.1 Evaluation

Although our aim is not to develop a quantitative measure
of semantic relatedness, an objective evaluation is in order.
In the relatedness literature, a standard approach is to mea-
sure correlation with mean similarity scores elicited from
human subjects by Rubenstein and Goodenough [29] and
Miller and Charles [21] (henceforth R&G and M&C, respec-
tively). In these studies, participants rated the “similarity
of meaning” of noun pairs on a scale of 0.0 (“semantically
unrelated”) to 4.0 (“highly synonymous”). In R&G, partic-
ipants evaluated 65 word pairs. M&C then replicated the
experiment using 30 pairs from the 65 used in R&G.

Given that our S,¢; function is used only to rank co-targets
by their relative relatedness to a particular target, for this
task we score relatedness between two words, a and b, as
follows:

score(a,b) = 4.0 % avg (ranka () rankb(a))

[Cal 7 |G

where rank:(c) is the numerical rank of ¢ among t’s co-
targets, as sorted by increasing value of relational strength
to t, and |C¢| is the number of ¢’s co-targets. That is, the
least related co-target of ¢ has rank:(c) = 1, and the most
strongly related has rank:(c) = |Ct|.

If neither rank is defined, then score(a,b) = 0. If exactly
one of these ranks is defined, we take 75% of the defined
term, rather than allowing it to be averaged with zero.

In Table 1, we compare our correlation results with those
presented in a review by Budanitsky and Hirst [4] as well as
three state of the art studies published since then. Higher
values indicate better correlation with the human-assigned
scores; 1.0 would indicate a perfect fit. The average correla-
tion of ten individual human evaluations to the M&C scores
comes from a replication of the study by Resnik [27].

Our lexical co-occurrence method produces results that
are competitive with methods that draw on rich semantic
resources like WordNet and the underlying structure of Wi-
kipedia, and is comfortably within the realm of human per-
formance. We caution, however, that high correlation on
this task, and particularly scores that exceed average hu-



man correlation, might indicate that a measure is failing to
capture semantic relatedness beyond that of similarity.

S.  FROM RELATIONAL STRENGTH TO
CATEGORICAL RELATEDNESS

We now present an algorithm for categorically determin-
ing semantic relatedness between nouns. We will write pairs
of related nouns as, e.g., (astronomer, star), which indicates
the relatedness of “astronomer” to “star;” the former is our
target, and the latter is a co-target that we have found to be
semantically related. The collection of all such word pairs
constitutes a semantic network of related nouns.

Intuitively speaking, the idea behind our algorithm is this:
if ¢ is strongly related to ¢ and, conversely, c is strongly re-
lated to t, we include (¢,¢) in our semantic network. For
this purpose we rely on our measure of relational strength:
once we have sorted a list of co-targets by decreasing value
of their relational strength to some target, we have an ex-
ceptionally good idea of which nouns are strongly related to
the target (those at the top of the list) and those which are
strongly unrelated to the target (those at the bottom).

More formally, we introduce the notion of mutual relat-
edness between nouns, defined as follows: if ¢ is in the top
2% of t’s most strongly related co-targets (sorted by Spyei),
and t is in the top % of ¢’s most strongly related co-targets,
we say that ¢ and ¢ are mutually related within 2%. The
set of all nouns mutually related to ¢t within % is denoted
mg(t).

To find the nouns categorically related to a target, ¢, we let
z = 20 and find the initial set, m.(t). We then expand this
set by incrementing = until 5 iterations pass without ¢ being
related to any additional co-targets (see Algorithm 1). Our
experiments have shown that varying these parameters has
negligible effects on the results of our algorithm, even if we
allow the algorithm to proceed until as many as 10 iterations
have passed without any new relations being discovered.

Algorithm 1 FINDRELATEDNOUNS(%)

Require: A target noun ¢.
Ensure: Set of pairs (¢, ¢) such that ¢ and c are semantically

related.

1: Sp 0

2: noGain < 0

3: for n = 20 to 100 do

4: S —{(t,c)lc € ma(t)}
5: if |S| > |So| then

6: noGain «— 0

7 else

8: noGain «— noGain + 1
9: end if
10: if noGain > 5 then
11: break
12: end if
13: So — S
14: end for

15: return Sy
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Table 2: Summary of Statistics for the Semantic
Network of Related Nouns
Target Nouns

(number of nouns occurring between 1,500
and 100,000 times in Wikipedia)

Nodes

(number of nouns represented in network;
includes both targets and co-targets)
Edges

(number of related word pairs; (a,b) and
(b,a) are not counted as distinct word pairs)
Average Degree of Target Nodes
(average number of nouns to which each
target is related)

Average Threshold of Target Nouns
(average of target thresholds determined in
Algorithm 1)

7,593

25,142

120,588

30.74

28.19%

Upon termination of the algorithm, we admit all ordered
pairs in So to the network.

The algorithm exhibits several important properties worth
mentioning. First, the algorithm accounts for the fact that
some nouns are more promiscuous with their semantic re-
latedness than others, and relates each target to as many
or as few nouns as it deems fit rather than using a single,
arbitrary threshold to restrict relatedness to all targets.

Secondly, the algorithm is resilient to the gradated nature
of the relational strength of a target to its co-targets. This
gradation makes it impossible even for human judges to find
a clear cutoff above which we can consider all nouns to be
related to the target, and below which we can comfortably
exclude their relatedness. However, our algorithm makes in-
cisive decisions about relatedness without being lured down
the slippery slope of over-inclusiveness.

A third notable feature of our algorithm is that it admits
(t,c) only when the strength of ¢’s relatedness to ¢ is recipro-
cated from c to ¢t (as with “penguin” and “iceberg” which are
strongly related in both directions; compare this with “ice”
and “penguin,” which are far more strongly related in one di-
rection (penguin to ice) than the other (ice to penguin) and
are therefore excluded from relation in the network). This
stringent requirement causes us to miss some related noun
pairs, but provides very strong evidence for the relatedness
of pairs that do gain admission to the network.

5.1 Evaluation

We have constructed a semantic network of related nouns
with this algorithm, using as our target nouns all those oc-
curring between 1,500 and 100,000 times in Wikipedia. An
overview of the resultant network is given above (Table 2).

For the 7,593 target nouns in our restricted range, our
algorithm produces a semantic network relating 25,142 dis-
tinct nouns (most of which appear as co-targets, but not
targets themselves, because of their low frequency of occur-
rence in the corpus), derived from 237,584 noun pairs. Of
these noun pairs, 116,996 are redundant, in that they are
the symmetric images of pairs already included in the net-
work. Thus, the network has 120,588 distinct undirected
edges. Each target noun is related, on average, to 30.74
other nouns.

To evaluate the precision of these relations, we asked three



Table 3: Judges’ Evaluations of Accuracy on Related
and Unrelated Noun Pairs

Accuracy on Accuracy on
Judge | Related Pairs | Unrelated Pairs
#1 99% 72%
#2 93% 80%
#3 95% 90%
| Averages | 95.66% | 80.66% |

judges with backgrounds in computational linguistics to eval-
uate 150 noun pairs and determine whether they would con-
sider the nouns in those pairs to be semantically related or
not. To prepare them for this task, we presented the judges
with the following exemplars of semantic relatedness, which
we hand picked from the network: (astronomer, observa-
tory), (crime, prevention), (automobile, gasoline), (phone,
signal), (penguin, tuxedo), (prison, lawyer), (tendon, carti-
lage), (string, output), and (desert, habitat).

Of the 150 noun pairs presented to the judges for eval-
uation, 100 were chosen at random from the related pairs
in our network. Additionally, 50 pairs of unrelated nouns
were generated at random from among the nouns currently
represented in the network. The 150 pairs were presented
in random order to the judges, none of whom had direct
ties to this research. The results of their evaluations are
summarized above in Table 3.

On average, the judges evaluated 95.66% of the pairs from
our network to be semantically related. They also judged
80.66% of the unrelated pairs to be unrelated. (That is, they
identified an average of 19.34% of the unrelated (randomly
paired) nouns as being related.)

This domain is too open-ended for there to be any feasible
measure of recall. However, the fact that our target nouns
are related to an average of 30.74 nouns while maintaining
precision in excess of 95% is indicative of broad and accurate
coverage of semantic relatedness.

To illustrate the quality of the relations discovered by our
algorithm, we have included a discussion of the semantic
network surrounding the monosemous nouns (concepts) as-
tronomer and tennis in Section 7.

6. FROM NOUNS TO CONCEPTS

Once we have established relatedness between nouns, we
automatically disambiguate them to their corresponding noun
senses in WordNet 3.0. For this purpose, we use a complex
suite of disambiguation methods that work in tandem to
support or refute one another’s results.

Because each of these methods has certain weaknesses, a
noun sense has to be verified by at least two of them in order
to be admitted to the network when the methods produce
conflicting results. Preference is given to results produced
by these methods in order of their presentation below. If all
three methods described below fail to disambiguate a noun,
we default to its most frequent sense in WordNet.

6.1 Subsumption Method

Our first disambiguation method capitalizes on the sense
similarity clustering that we have found to occur among re-
lated nouns. For example, concepts related to astronomer
form one cluster beneath the umbrella of celestial body in
WordNet (planet#{1, 3}, star#{1, 3}, minor_planet#1, qua-
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sar#1), another under the purview of scientist (mathemati-
cian#1, physicist#1, chemist#1), and so on.”

Accordingly, we determine the most frequently occurring
immediate hypernyms for all the senses of the nouns re-
lated to a given target, and allow them to disambiguate the
concepts they subsume. Although accidental inclusion of
fringe senses categorized by common hypernyms occurs in
rare cases, this is the strongest of our methods for disam-
biguation.

6.2 Gloss Method

Our gloss method gathers all monosemous nouns related
to a target, as well as the target itself, and searches for these
terms in the WordNet glosses of the target’s polysemous
related nouns. Search terms may be pluralized, and suffixes
from the set {-y, -er, -ist, -ing} may be replaced with any
suffix from the set {-s, -es, -ies, -y, -er, -ist, -ing}, so that,
e.g., “biologist” can also be matched by the occurrence of
“biology,” or “engineering” by “engineers.”

This method returns a list of all noun senses with at least
one of the search terms occurring in their glosses. Even
with target nouns that have a large number of related terms,
this list is surprisingly concise, although the results are less
reliable than those of the previous method.

However, these results do not require verification by an-
other method if a search term matches a topic word in a
sense gloss, as with “astronomy” in the gloss for star#1:
“(astronomy) a celestial body of hot gases that radiates en-
ergy derived from thermonuclear reactions in the interior.”

6.3 Selectional Preference Method

Next we use Resnik’s selectional association measure [28]
to build selectional preferences for the nouns related to a
given target. Formally, we define the selectional association,
A(t,c), of a target noun t with a WordNet class ¢ as:

LP(c|t)log PP}(CS)

Dkr
As before, Dk, is the Kullback-Leibler divergence between
probability distributions P(C|t) and P(C):

Alt,c) =

Dkr

D(P(CI)||IP(C))

_ P(eft)
= CEZC P(c|t)log PO

Here, however, C'is no longer the class of nouns co-occurring
with ¢. Rather, C is the set of concepts in WordNet denoted
by the monosemous nouns that are related to ¢, along with
all the concepts in their hypernymic traces (all hypernyms of
those concepts up to and including the root of the hierarchy,
entity#1).

The posterior distribution, P(C|t), derives from the fre-
quency of co-occurrence of ¢’s monosemous related nouns.
To compute the prior distribution, P(C'), we use the fre-
quency data for all monosemous nouns occurring between
1,500 and 100,000 times in Wikipedia. This is a depar-
ture from the approach of Resnik, who includes polysemous
nouns in both probability distributions and apportions credit
for a noun evenly across all its senses. By focusing only on

"We denote sense n of a noun by noun#n, or multiple senses
with, e.g., noun#{m,n}.



Table 4: Selectional Preferences Derived from Mo-
nosemous Co-Targets of “Unicorn”

WordNet Class (¢) | A(unicorn, ¢)
monster#1 12.3501575599
mythical_being#1 12.3501575599
mythical monster#1 12.3501575599
mermaid#1 10.7337066300
goblin#1 10.5188861760
utensil#1° 9.1129996410
imaginary_being#1 8.7033691549
imagination#1 8.7033691549
creativity#1 8.2372712617
vessel#3® 7.4946279622
evil_spirit#1 7.3265447433
Spirit#4 7.3265447433
spiritual_being#1 6.7626973121
whole#2 -1.0379049622
artifact#1 -1.0701173602
object#1 -1.2809861573
physical_entity#1 -1.4906802554

monosemous nouns in this approach, we eliminate the noise
introduced by the ambiguity of polysemous nouns. Once we
have the selectional preferences derived from our target’s
monosemous nouns, we use them to preferentially disam-
biguate our polysemous nouns.

Consider, for example, the categories in WordNet with the
highest selectional association with the monosemous noun
“unicorn” (Table 4). Among these selectional preferences
we find mythical monster#1, imaginary being#1, and spir-
itual_being#1, which do not appear as co-targets of “uni-
corn,” but do categorize many of the monosemous co-targets
of “unicorn,” such as “griffin,” “goblin,” “mermaid,” “lep-
rechaun,” and “minotaur,” among others.

These selectional preferences are applied, in decreasing or-
der of selectional strength, to each sense of the target’s poly-
semous related nouns, which are disambiguated to the sense
or senses categorized by the first such selectional preference
that subsumes them. Thus, “phoenix” (as it relates to “uni-
corn”) is disambiguated to phoenix#3 in WordNet (“a leg-
endary Arabian bird said to periodically burn itself to death
and emerge from the ashes as a new phoenix”) by virtue of
its subsumption by mythical_being#1. The three senses of
“phoenix” that are excluded here are phoenix#1 (the capi-
tal city of Arizona), phoenix#2 (the taxonomic group genus
Phoeniz), and phoenix#4 (a constellation). These selec-
tional preferences similarly succeed in disambiguating the
polysemous “lion” to lion#1 (a feline, as opposed to the
celebrity, astrological categorization of a person, or sign of
the zodiac denoted by senses 2, 3, and 4 of “lion,” respec-
tively), “beast” to beast#1 (the animal, as opposed to a
cruel person, which is sense 2 of “beast”), and “satyr” to
satyr#2 (the mythical woodland deity, as opposed to sense
1 of “satyr,” which refers to a lecherous man).

If an upper-level ontological concept like physical_entity#1
or abstract_entity#1 performs the disambiguation in this
method, we automatically dismiss the result as being too
general to be reliable. More specifically, if ¢; is the strongest
selectional preference from our list that disambiguates some

8From “teapot,” vis-a-vis Russell’s teapot and pink unicorns.
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Table 5: Summary of Statistics for the Semantic
Network of Related Concepts

Target Nouns

(monosemous nouns occurring between
1,500 and 100,000 times in Wikipedia)
Nouns

(number of nouns represented in network;
includes both targets and co-targets)
Nodes

(number of senses represented in network;
includes both target and co-target senses)
Edges

(number of related sense pairs; (a,b) and
(b,a) are not counted as distinct sense
pairs)

Average Degree of Target Nodes
(average number of noun senses to which
each monosemous target is related)

3,024

17,543

27,312

84,086

27.81%

polysemous noun related to ¢, and A(t,c1) is less than the
average value of A(¢,c) for all ¢ € C, then we discard the
result and this method fails to disambiguate the polysemous
noun in question.

This method sometimes assigns disproportionately strong
selective power to hypernyms that are particularly rare in
the prior distribution. As such, this method defers to the
subsumption and gloss methods when its results conflict
with theirs.

6.4 Evaluation

We have used these methods to disambiguate the poly-
semous nouns related to monosemous targets occurring at
least 1,500 times in the corpus. There are 3,024 such tar-
get nouns, heading up 76,264 of our related noun pairs from
the previous section. 36,385 of these pairs associate two
monosemous nouns. The remaining 39,879 connect our mo-
nosemous targets to polysemous nouns that must be disam-
biguated. Statistics for the resulting semantic network of
related concepts are given above in Table 5.

To test our precision at disambiguation, we randomly se-
lected 50 pairs from among those used to build this net-
work and presented them to our three judges with the gloss
and taxonomic categorization of each sense of the polyse-
mous nouns. The judges were asked to grade the relation
of each sense to its monosemous target, using the following
scale: (4) Primary intended sense or one of its synonyms. (3)
Strongly related sense, but not the primary intended mean-
ing. (2) Weakly related sense; could reasonably be included
or excluded from relation to the target. (1) Unrelated sense.

We then measured how often the senses chosen by our dis-
ambiguation algorithm fell into each of these categories, and
compared our results to the standard baseline of randomly
selecting noun senses (see Table 6, below).

The first column (grade > 4) indicates how frequently
our system disambiguated to senses the judges considered
to be the primary intended meanings of the related nouns.
The last column (grade = 1) indicates how often our system
selected senses that were unacceptable to the judges. The
next-to-last column (grade > 2) indicates how frequently
our system chose senses that were acceptable to our judges.

Given that 47.7% of the edges in our network connect two
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Figure 1: A partial spreading activation view of the concepts related to the monosemous astronomer and

tennis, explicated in Section 7.

Table 6: Precision of Our System’s Disambiguation
Results, as Compared with Judges’ Manually Dis-
ambiguated Senses

[ Judge [grade>4] >3] >2] =1]
#1 % | 79% | 83% | 1%
) 65% | 77% | 90% | 10%
#3 1% [ 79% | 83% | 17%
Average 1% | 8% | 85% | 15%
Baseline 44% | 53% | 62% | 38%

monosemous nouns (where there is no room for disambigua-
tion error) and the remaining 52.3% have an average rate
of acceptability of 85% as evaluated by our judges, we esti-
mate the accuracy of the concept-to-concept associations in
our semantic network to be 92.15%.

7. EXCERPTS FROM THE SEMANTIC
NETWORK: A DISCUSSION

The graphs in Figure 1 are abbreviated excerpts from the
semantic network of related concepts for the monosemous
nouns “astronomer” and “tennis.” Astronomer is related to
44 distinct concepts in our semantic network (listed in full
in Table 7, below), and tennis is related to 80. For the
sake of clarity, we present only a small sampling of those
related nouns graphically. Furthermore, to avoid messy edge
crossings in the graphs, we do not show the inter-relatedness
between the concepts related to each of our targets. (For
example, astronomy#1 and astrologer#1 are both related
to astrology#1, but we instantiate the latter node twice in
the graph to preserve clarity.)
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The target concepts’ nodes in the graph are dark gray
(astronomer#1 and tennis#1). We provide a sampling of
their related terms in medium gray. In turn, those concepts
are related to concepts in light gray, and those terms are
related to concepts in white. This gives an idea of spreading
activation through the semantic network.

In all cases, solid edges indicate that the target is re-
lated to the smaller node incident to that edge. For ex-
ample, the solid edge from star#{1,3} to sky#1 indicates
that astronomer#1 is related to sky#1, too. The dotted
edge from astrology#1 to horoscope#{1,2} indicates that
astronomer#1 is not related to horoscope#{1,2}.

Some nouns are not yet disambiguated because they are
related to concepts denoted by polysemous nouns. We have
included a sampling of these nouns to give a fair indica-
tion of the current state of the network. We also see how
these might be easily disambiguated. Notice, for example,
that tennis#1 is related to softball#2 (the game of softball,
as opposed to the ball itself), which is in turn related to
some (as yet undetermined) sense of “volleyball.” Because
tennis#1 is related to volleyball#1 (again, the game as op-
posed to the ball), this can be propagated through the net-
work to disambiguate the relation between softball#2 and
“volleyball” as (softball#2, volleyball#1).

There are also cases in which polysemous nouns are re-
lated to disambiguated concepts in the graph, such as with
the relation of star#{1,3} to solar_system#1. “Solar sys-
tem” is monosemous in WordNet, and our disambiguation
algorithm found it to be semantically related to star#{1,3}.

We note that while our algorithm discovers some relations
of semantic similarity (e.g., the relation of astronomer#1
to mathematician#1 and astrophysicist#1), it also discov-
ers many relations beyond similarity, including concepts re-



Table 7: All concepts related to astronomer

minor_planet#1 astrophysicist#1 physicist#1
geographer#1 biologist#1l chemist#1
theologiani#1 black_holet#l star#{1,3}
astronomy#1 astrology#1 discovery#1
quasar#l mathematician#1 moon#6
telescope#l observatory#l geologist#1
cartographer#1 philosopher#1 galaxy#3
comet#1 orbit#{1,4} redshift#1
planet#{1,3} cosmologist#1 amateur#2
sky#1 supernova#l cosmology#2
discoverer#l nebula#3 eclipse#l
constellation#2 observation#1 treatise#l
astrologer#1 solar_system#1 dwarf#2
asteroid#1 meteorologist#1

lated through collocation (as with amateur#2, which, inci-
dentally, is incorrectly disambiguated) and more general se-
mantic relatedness (telescope#1, star#{1,3}, planet#{1,3},
galaxy+#3, observatory#1, redshift#1, etc.).

Equally important is the absence of relations to semanti-
cally similar concepts to which the targets are not strongly
semantically related. Consider, for example, the fact that
astronomer#1 is related to some hyponyms of scientist#1
(physicist#1, mathematician#1, chemist#1), but not oth-
ers (linguist#1, psychologist#1, medical_scientist#1, etc.),
despite the fact that quantitative relatedness measures based
on the WordNet ontology would erroneously associate as-
tronomer#1 to all these terms with nearly equal strength.

The network also associates astronomer#1 with astrolo-
ger#1, which is clearly related, but is surprisingly far re-
moved from astronomer#1 in WordNet. (Their first shared
hypernym in the ontology is person#1.)

Finally, notice the relation of astronomer#1 to astrophysi-
cist#1 and mathematician#1, but neither astrophysics#1
nor mathematics#1, although it is transitively related to the
latter concepts by way of the former, as well as by way of as-
tronomy#1. Similarly, mechanisms of spreading activation
transitively relate astronomer#1 to additional concepts like
light_year#1 by way of star#{1,3}, radio_astronomy#1 by
way of astronomy#1, and so on. This is arguably quite on-
tologically sound. The astronomer himself is more strongly
related to the astrophysicist and the celestial body senses of
“star” than to the light year or the study of astrophysics,
although he is indirectly related to the latter concepts.

8. CONCLUSIONS

We have automatically acquired a semantic network of
related concepts. The network is derived from relatedness
between nouns co-occurring in Wikipedia texts, which are
automatically disambiguated to their corresponding Word-
Net 3.0 noun senses (i.e., concepts). At present, monose-
mous noun targets form the basis of the network, each be-
ing related to an average of 27.81 concepts (denoted both
by monosemous and polysemous nouns). The network cur-
rently relates 17,543 nouns, with 27,312 distinct noun senses
among them, and is available for download on-line.

There are several potential applications for this resource,
including semantic interpretation, exploration of spreading
activation mechanisms [5], contextual frameworks for com-

27

puter vision (cf. Torralba et al. [32]), noun sense dis-
ambiguation, question answering systems, query prediction,
and user profiling for providing recommendations in multi-
media content delivery systems.

In future work, we expect to continue expanding and re-
fining the semantic network. Polysemous targets and tar-
gets that occur fewer than 1,500 times in Wikipedia need
to be incorporated into both the network of nouns and the
network of related concepts. We are investigating the feasi-
bility of applying our algorithm to these targets and using
the existing semantic network to guide (i.e., bootstrap) the
process, which is more error prone with nouns that occur
infrequently in the corpus and does not currently resolve
ambiguity of polysemous-to-polysemous noun relations.
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