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Abstract. Field data, obtained in heterogeneous aquifers, show behaviors not compatible with Fick's law, which holds for 
homogeneous media, and states that the flux of  a passive tracer is proportional to the gradient of the concentration. Depending on 
the medium, deviations may be due to trapping sites or to preferential paths. Here, we focus on the second possibility, which 
corresponds to concentration profiles showing heavy tails and skewness.  
 For those situations, small scale models are random walks with Lévy laws for the jump-length distribution. On the large scale, they 
correspond to partial differential equations involving fractional derivatives for the evolution of the concentration. The solutions to 
those equations were shown to satisfy fractional variants of Fick's law, with flux proportional to a fractional derivative of the 
concentration, in infinite domains. 
Here, we use a natural and physical definition of fractional derivatives, which allows us to extend the result to domains limited by 
boundary-conditions, more especially when the jump-length distribution is non-symmetric. 
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1. Introduction  

 
Many field data indicate that mass spreading in underground porous media may depart from Fick’s law. This may 

be due to memory effects, which we disregard here, focusing on situations dominated by heavy tails, not compatible 
with the notion of a mean square displacement (Benson et al (2000, 2001), Cushman et al (2000), Zhang et al ( 2005), 
and Deng et al (2006)). Lévy Flights serve as a small scale model for such situations. They are random walks, more 
general than Brownian motion since trajectories result from successive increments, distributed by stable Lévy laws. On 
the macroscopic scale, the corresponding density of particles satisfies a Space-Fractional Dispersion Equation (Scalas  
and al (2004)) , and in infinite media both points of view are equivalent.   

In semi-infinite media, due to non-locality of fractional derivatives, it may be necessary to modify such equations 
(Krepysheva et al (2006a & 2006b)), depending on the physical properties of the boundary, limiting the domain. For 
symmetric Lévy flights, the result was obtained by considering the even extension of the density of spreading particles. 
For skewed random walks the method becomes uncomfortable.  

In fact, addressing directly the flux of particles performing Lévy Flights is possible, in bounded or unbounded 
media. We will see that the flux is given by a fractional variant of Fick’s law, which agrees with previous results for 
infinite media, and adapts to possibly skewed Lévy flights in domains, limited by reflective or absorbing barriers. The 
result is based upon a novel expression for the left inverse of Riemann-Liouville’s fractional integrals (Samko et al 
(1993)).  
  
2. The flux of particles performing Lévy Flights 
                    
Independent walkers are said to perform Lévy flights when each of them makes successive instantaneous independent 
jumps whose amplitudes are distributed according to the density 1( ) ( )x

l l lx Lθαϕ = , which accounts for the possibility, 

for dissolved particles, to travel very fast very far, as in media with hidden preferential paths. Here Lθα  denotes the 

density of a normalized Lévy law of stability index α  and skewness parameter θ  (Gnedenko et al (1968)). Waiting 

times between jumps are independent too, and distributed according to the density 1( )
t

t e τ
τ τψ −= . Here, τ  is the mean 

waiting time, and l  is a length scale.  
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Let  be the density of the probability of finding a walker in [ ](P x t, ) x x dx, +  at time . The flux through abscissa  
is the balance of particles crossing  to the right or to the left during [

t x
x [t t dt, + , divided by , and the probability of 

making one jump during infinitesimal time interval [
dt

[t t dt, +  is dt
τ . Hence, in an infinite medium, the flux is  

 
1

0 0
[ ( ) ( ) ( ) ( )y yP x y t F dy P x y t F dy

l lα θ α θτ
∞ ∞− + −

, ],

−
− , − + , ,∫ ∫                                                                                 (1) 

 

with  being the probability ( )F y lα θ
+
, / 1 ( ) ( )ly y l

L z l dz L z dzα θ α θ

+∞ +∞

, /
/ =∫ ∫ ,  for a jump to be to the right while having 

an amplitude of more than y . Similarly, (F y lα θ
−
, )− /  is the probability 1 ( )

y

l L z l dzα θ

−

,−∞
/∫  for a jump to have a 

modulus of more than , but to the left. Since there is no confusion, we will skip t  in  from now on, except in 
final results at the end of Section 4.  

y ( )P t.,

Expression (1) giving the flux on the small scale may be modified more or less deeply by the presence of a boundary at, 
say , depending on whether it is allowed to release particles or not.  0x =
To see this, consider an absorbing boundary, such that walkers are killed when hitting the wall. Then, (1) holds with 
HP  in place of  on the right-hand side. Here P H  denotes Heavisde’s function. Oppositely, imagine a purely 
reflecting wall such that each particle hitting the barrier flies the length of the jump, which had been assigned to it 
before the shock, just remaining on the same side ( ) see Krepysheva et al (2006a). Then, when counting particles 
crossing  to the left or to the right, we have to take into account that jumps, directed to the left and starting from 

 ( ), arrive at the right of  hence do not enter the balance if the amplitude is larger than 

0x >
x

x y+ 0y > x 2x y+ . Jumps 
directed to theleft and starting from x y− , with 0 y x< < , may cross  to the right if the amplitude is of more than x
2x y− . In this case the flux is  

 
0 0

( ) 2 ( ) 2[ ( ) ( )] [ ( ) ( )]
x P x y y y x P x y y x yF F dy F F

l l l lα θ α θ α θ α θ dy
τ τ

∞+ − + −
, , , ,

− − + − −
+ − −∫ ∫

−
.  

 
Setting  for  and ( ) ( )P x P x∗ = 0x > ( ) ( )P x P x∗ = −  for 0x <  (even extension of ) we obtain that this 
expression is  

P

 

0 0

( ) ( ) ( )( ) ( ) ( ( ) ( ))
x

P x y y P x y y P x y y yF dy F dy F F
l l lα θ α θ α θ α θτ τ τ

∗ ∗∞ ∞ ∞+ − +
, , ,

− + − −
− − −∫ ∫ ∫ dy

l
−
,

−
                 (2) 

 
Since fractional dispersion equations were shown to hold in the diffusive limit ( ) provided the scaling 

 (Scalas et al (2004))  holds, we address (1) and (2) in this context.  
0l →

ł Kα τ/ =
          
3.  Fractional tools  
          

Some mathematical tools make it possible to see that the limits of (1) and (2) combine several kinds of fractional 
derivatives of the density .  P
                       
3.1.  A novel expression for for Riemann-Liouville’s derivatives 
          

Left and right-sided Riemann-Liouville integrals of the order of α′ , which we use here are those of Samko et al 
(1993) associated with semi-infinite intervals according to  

 
11 1( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
x

x

1I x x y y dy I x y xα α αϕ ϕ ϕ
α α

+∞′ ′ ′−
+ −−∞

= − , = −
′ ′Γ Γ∫ ∫ y dyα ϕ′− .       (3) 

 
The left-sided Riemann-Liouville derivative of order α′  is [ ] 1 1 { }( ) ( )d

dxD x Iα αϕ′ ′ + −
+ +

α ′= =   
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[ ] 1 { }1( ) ( ) ( )
([ ] 1 )

xd x y y
dx

α ϕ
α α

′ +

−∞
−

′ ′Γ + − ∫ dyα ′− ,                                                                                          (4) 

 
where  denotes integer part, while {} is defined by [ ]. . [ ] { }α α α′ ′ ′= + . The right-sided Riemann-Liouville 

derivative is  
 

[ ] 1 1 { }( ) ( )d
dxD x Iα α αϕ′ ′ ′+ −

− −= −  [ ] 1 { }1( ) ( ) ( )
([ ] 1 ) x

d y x y dy
dx

α α ϕ
α α

+∞′ ′+ −= − − .
′ ′Γ + − ∫                                  (5) 

 
For a large set of functions, they coincide with Marchaud’s derivatives which are left inverses to fractional integrals 

I α ′± . We will not give here the proof of a new result by Néel and Abdennadher (2007), stating that the limit, when  

tends to zero, of 

l

0
( ) ( )y

ll f x y Fα ∞ ±− ±∫ dy  is the left inverse of 1Iα −
± , hence a Marchaud’s derivative of order 1α − .  

The claimed result holds provided , integrable over [0F [,+∞ , satisfies  while, moreover, it is 

of the form of 
0

( ) 0F y dy
∞

=∫
1( )F y Cy α−+ , with  and 1F 1

1( )F y yα −  being integrable near infinity.  

Expressions of the form of 
0

( ) ( )y
ll f x y F dα

α θ

∞−
,±∫ ∓∓ y  are present on the right-hand sides of (1)-(2). 

Nevertheless, cumulated probabilities  and ( )Fα θ
−
, −. Fα θ

+
,  satisfy 2 ( )H α , but of course not . Hence, we will take a 

function 

1H

fα θ, , supported in [0  (e.g.) and satisfying 1],
0 0

( ) ( )f y dy J F y dyα θ α θ α θ

+∞ +∞ −
, , ,= = −∫ ∫ . Due to (15), 

proved in Appendix B, Jα θ,  is also equal to , so that setting  yields 

functions 
0

( )F y dyα θ

+∞ +
,∫ ( ) ( ) ( )y F y f yFα θ α θ α θ

± ±
, , ,= −�

Fα θ
±
,�  matching the conditions for . With these notations, since F 1 Kl ατ − −=  holds, the second integrals on 

the right-hand side of (1), 
0

( ) ( )y
lKl P x y F dyα

α θ

∞ −− −
,+∫ , is equal to  

 
1

0 0
[ ( ) ( ) ( ) ( ( ) ( )) ( ) ]y yKl P x J P x y dy P x y P x f dyF l l

α
α θα θ α θ

∞ ∞−−
,, ,

−
+ + + + −∫ ∫� .                                  (6) 

 

Similarly, the first expression in (1), 
0

( ) ( )y
lKl P x y F dyα

α θ

∞− +
,−∫ , is equal to  

 
1

0 0
[ ( ) ( ) ( ) ( ( ) ( )) ( ) ]y yKl P x J P x y dy P x y P x f dyF l l

α
α θα θ α θ

∞ ∞+−
,, ,+ − + − −∫ ∫� .                                                (7) 

 
The ( )l P x t Jα

α θ
−

,,  in (1) or (2) cancel each other when we take the difference between (6) and (7). Moreover, we 

will see that appropriately choosing fα θ,  yields that the limits of 
0

( ( ) ( )) ( )y
ll P x y P x fα

α θ

∞−
,± −∫ dy  are 

Kolwankar and Gangal’s local fractional derivatives, which are less currently used than the ones of Riemann, Liouville 
and Marchaud, and will be recalled in next Subsection.  

 
3.2.  Kolwankar and Gangal’s local fractional derivatives 
 
The notion of a local fractional derivative was introduced  by Kolwankar and Gangal (1996) in view of building a tool, 
designed for the study of continuous but nowhere differentiable functions frequently occuring in Nature and Economics. 
Those fractional derivatives vanish for derivable functions, and hence can become “invisible”.  
For  between 0  and 1, the right and left-sided Kolwankar and Gangal’s fractional derivatives  of order 

 of function , computed at , are obtained from Riemann-Liouville derivatives by letting the range of integration 

q ( )KG qD f x,
±

q f x
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tend to zero. To be more precise, it is the limit of 1

( ) ( )1
(1 ) ( )

(1 ) q

x h f y f xqd
dh q x h yx

t −

+ −−
Γ − + −

−∫ dt  when  tends to zero. When it 

does exist, it is equal to the limit of 

h
1

(1 ) 0
(1 ) ( ( ) ( ))q qh

q t f x th f x d− −
Γ − − + −∫ t , due to L’Hôpital’s rule.  

For 2α < , choosing 1
[0 1]( ) (2 )(1 )f t J t α

α θ α θ α χ−
, ,= − − ,  yields that , when  has a local derivative (w.r.t. space) 

of order 

P

1α −  at point x + , , equal to 

, has a limit when l  tends to zero. And the limit is 

. At the left,  tends to 

. Moreover, when  is derivable at ,  is equal to zero.  

0
( )( ( ) ( ))l f y l P x y P x t dyα

α θ

+∞−
, / + − ,∫

11 1

0
(2 ) (1 ) ( ( ) ( ))J l s P x ls P x dsα α

α θ α− −
, − − + −∫

1(3 ) ( )KGJ D α
α θ α , −
, +Γ − P x ( ) ( ))l f P x y P x dyα

α θ

+∞−
, / − −∫

P x x
0

( )(y l
1(3 ) ( )KGJ D α

α θ α , −
, −− Γ − P x 1 ( )KGD Pα, −

±

Both kinds of fractional derivatives, local and non-local, appear in the limits when l  tends to zero, of expressions (1) 
and (2), hence in the macroscopic flux.  
         
4.  Fractional Fick’s law and dispersion equation 
 
4.1. Limits of the right-hand sides of (5) and (6) 

 
Let α  be strictly between 1 and . When  has Marchaud’s and Kolwankar-Gangal’s derivatives of order 2 P 1α − , 
which are integrable, bounded and continuous, terms on the right-hand sides of (7) and (6) have limits when l  tends to 

zero. The limit is  for 1 ( )D P xαλ −
+ + 0

( ) ( )y
ll P x y dFα

α θ

∞ −−−
,+∫ � y )D P xαλ −

− − in (6) and  for 1 (

0
( ) ( )y

ll P x y dFα
α θ

∞ +−
,−∫ � y  in (7), with  

 
1 1

0 0
( ) ( )I H y dy I H y dFα α

α θ α θλ λ
+∞ +∞+− −

,+ + − += , =∫ ∫� yF
−
, − .�                                                                                    (8) 

 
 

For integrals , the limit is  
0

( )( ( ) ( ))Kl f y l P x y f x dyα
α θ

+∞−
, / ± −∫ 1 ( )KGKJ D P xα

α θ
, −

, ±∓

which is zero on intervals where  is derivable. For parameter P Jα θ, , we have the exact expression (15).  

To compute λ± , let us compare  against the limit of 1D fα −
± 0

( ( ) ( )) ( )y
ll f x y f x Fα

α θ

∞−
,± −∫ ∓∓ dy  for some 

particular function . For instance, we take f [1 2[f χ ,= . For  in x ]1 2[, , the local derivative exists and is equal to 

zero, while we have  
0 2

( ( ) ( )) ( ) ( )
x

l f x y f x F y l dy l F y l dy−∫α α
α θ α θ

+∞ +∞− − −
, ,−

+ − − / = − /∫
1(2 )
1 ( )xC O l

α

α θ α

−−
,− −= +  

for 1 2α< < , with Cα θ,−  being defined by (13). We also have 
1(2 )1 1

[1 2[ (1 ) (2 )2
( ) x

x
D x y dy

αα α
α αχ

−+∞ −− −−
− , Γ − Γ −−

= =∫ . This 

implies 2sin ( )(2 )
1 siC

π

n
α θα

α θαλ +Γ −
− ,−−= − = πα , and similarly 2sin ( )

sin

π α θ
παλ −

+ = .  

 
4.2.  Fractional Fick’s law  
    Hence, the limit of (1), which is the flux  through  (in an infinite medium) on the macroscopic scale is  ( )Q x P x
 

12 2sin ( ) sin ( )( ) ( ) ( )
sin sin

Q x P K D P x D P x
π π

αα θ α θ
πα πα

−
+

− +⎛ ⎞= −⎜ ⎟
⎝ ⎠

1α−
−

.

                                                             (9) 

 
  1 1(3 )[ ( ) ( )]KG KGKJ D P x D P xα α

α θ α , − , −
, + −− Γ − +
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This is a fractional variant of Fick’s law, which Paradisi et al (2001) obtained for derivable functions, of course 
satisfying  identically.  1 0KGD Pα, −

± =
In a semi-infinite domain limited by a reflective barrier, according to (2) the flux is given by the same expression, with 

 instead of , but we have to add , which tends to 

. Hence, for  the macroscopic flux is  

P∗ P
0

((1 ) )( )( ( ) ( ))Kl H P x y F y l F y l dyα
α θ α θ

+∞− ∗ − +
, ,− − − − / − /∫

1( ) ((1 ) )D H Pαλ λ− + − ∗
+− − ( )x 0x >

 
12 2sin ( ) sin ( )

( ) [ ( )( ) ( )( )]
sin sin

Q x P K D P x D P x
π π

α α 1α θ α θ
πα πα

− −
+ −

− +
= − ∗                             (10) 

 

1 12 2sin ( ) sin ( ) ((1 ) )( ) (3 )[ ( ) ( )]
sin

KG KGK D H P x KJ D P x t
π π

α α
α θ

α θ α θ α
πα

− ∗ , − , − ∗
+ , + −

+ − −
+ − − Γ − , 1D P xα+

                                                                                           
Case 2α =  had been left apart in Subsection 3.2. To retrieve Fick’s law, take 1 2( )A l l− /= . Parameter θ  is equal to 
zero, and it is enough to consider the case of an infinite medium, since due to 0θ =  (2) is exactly of the form of (1), 
with  instead of . We have  P∗ P
 

( )2 1
2 0 2 0 2 00 0 ( )

( ) ( )( )( ( ) ( )) ( ) ( )( ( ) ( ))
A ly

l A l

P x ly P xl F P x y P x dy F y dy l F y P x ly P x dy
ly

+∞ +∞− ± ± − ±
, , ,

+ −
+ − = + + −∫ ∫ ∫ .

 

When  is differentiable at point , P x
( ) ( ) ( )

2 00
( )

A l P x ly P x
lyF y dy+ −±

,∫  tends to the usual derivative , times 

, itself equal to  due to 

xP∂

2 00
( )F y ydy

+∞ ±
,∫∓ 1 2/∓

2 4
2 0

1( )
2

y

x
F x e dy

π

+∞± −
, = ∫ /

dy

. And 

 is less than 1
2 0( )

( )( ( ) ( ))
A l

l F y P x ly P x
+∞− ±

, + −∫ 2
2 0 ( )

( ( )) ( ) ( )
A l

l F A l P x y P x dy
+∞− ±

, + −∫ , which tends to  

when  is integrable and fixed. Similar results are obtained at the left of , hence for 

0

P x 2α = , in the limit “ l  tends to 
zero” operator flux tends to , which is classical Fick’s law.  xK P− ∂
The more general fractional version implies a space-fractional variant of the classical diffusion equation.  
                  
4.3 Space-fractional diffusion equation  

 
When the density of particles and the macroscopic flux are derivable, mass conservation without sources implies 

. Moreover, we have t P∂ = −∂ xQ D1
xDα α−

±∂ = ± ± , and local Kolwankar-Gangal derivatives with order of less than 

 are identically zero. Hence, in an infinite medium, (9) implies that  evolves according to  1 P
2 2sin ( ) sin ( )

( ) [ ( ) ( )]
sin sint P x t K D P x t D P x t
π π

α αα θ α θ
πα πα+

− +
∂ , = − , + ,− .                                                            (11) 

This Fractional Dispersion Equation had been obtained by Gorenflo et al (2002) via Fourier’s analysis, from the 
Generalized Master Equation for the density of particles performing possibly skewed Lévy flights.  
In a medium, limited by a reflective barrier, (10) implies  

2 2sin ( ) sin ( )
( ) [ ( ) ( )

sin sint P x t K D P x t D P x t
π π

α ]αα θ α θ
πα πα

∗
+

− +
∂ , = − , + ,−                                                            (12) 

 

 2 2sin ( ) sin ( )
((1 ) )( )

sin
K D

π π
α H P x t

α θ α θ
πα

∗
+

− − +
− − , .  
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Figure 1 Numerical solution of (12), compared with Monte Carlo simulation of skewed Lévy flights with a 
reflective barrier, for 1 5α = . , with 0 2θ = .  at the left and 0 2θ = − .  at the right. Full line represents the numerical 
solution to (12) with 1K =  at instant , and circles stand for random walk histograms. Histograms at time 4t = 1t =  

correspond to symbols “plus”. 
 

For symmetric random walks (with 0θ = ) we retrieve a result of Krepysheva et al (2006a, 2006b). That (12) 
represents the evolution of the concentration of walkers had been checked in Krepysheva et al (2006a) by comparing 
the discretized solution of the partial differential equation against Monte Carlo simulations of symmetric Lévy flights.  
                            
4.4  Numerical illustration of (12) 
                           

In order to solve (12), derivatives of order α  were discretized according to a shifted Grünwald-Letnikov scheme 
(Gorenflo et al (2002)), and we have set 1K = , as in Krepysheva et al (2006a). The issue was compared with 
histograms of Lévy flights corresponding to smallvalues of τ  and  satisfying l lατ = . In order to keep coherent data, 
we had to take into account that Dirac impulses are easy to implement in Monte Carlo simulations, but not in the 
discretized partial differential equation (12). Hence numerical simulations of (12) were started at time 1t =  from 
corresponding histograms, represented by symbols “plus” on Figures 1 and 2. Random walks were started at 0t =  
from Dirac impulses applied at .  5x =
We observe that already at instant , the maximum of the density of particles has moved from initial impulse’s 
location , to the left for 

1t =
5x = 0 2θ = . , and to the right for 0 2θ = − . . The trend is confirmed at larger values of t , 

but for positive valued θ , the peak of the distribution of particles is perturbed by the wall (at ).  0x =
                            
5. Conclusion 

 
For a cloud of particles, performing one-dimensional Lévy flights with time and length scales τ  and  satisfying l
Klατ = , the mass flux through abscissa  is a difference between convolutions involving the density of walkers, in 

infinite media. In the limit when  tends to zero, the convolutions of this form tend to combinations of non-local and 
local fractional derivatives of order 

x
l

1α − . That distribution functions of stable Lévy laws on the left and on the right 
have equalintegrals over ]  and [0 , even when they are skewed was essential for that. Hence a fractional 
generalization of Fick’s law was derived, without passing through any partial differential equation for the time 
evolution of the concentration. That it adapts to domains, limited by boundaries, was shown for two examples, trivial 
and less trivial.  

0]− ∞, [,+∞

The thus obtained fractional Fick’s law, when recast into mass conservation principle, yields a fractional dispersion, 
equation, provided local derivatives are zero, which holds when the concentration is derivable (w.r.t. space).  

 
6. Appendixes 
 
6.1. Densities of alpha stable Lévy laws 
 

The random variable X , with law , is said to be stable if, for any sequence of independent random variables F
iX  distributed like X , there exists a sequence  of positive numbers such that nc 1 n

n

X X
c
+...  be distributed according to 

 itself for any positive integer  (Feller (1970) and Gnedenko et al (1968)). Then,  is a power of , and the 

inverse 

F n nc n
α  of the exponent belongs to ]0  and serves as a label for the law: it is called the stability exponent of the 2],
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α  stable law. The value 2α =  corresponds to normal law, which is symmetric. For ]0 2[α ∈ , , stable laws may be 
symmetric or skewed.  

Stable laws play an important role in Nature because they are attractors, again in the context of the addition of 
many independent random variables nX , distributed according to law . Probability law G  is an attractor for  if 

there exists sequences  and 

F F

nA nB , with , such that the law of 0nB > 1 n

n

X X
nB A+...+ −  tends to G  when n  tends to ∞  

(Feller (1970)). When α  belongs to , ]0 2[, α stable laws are attractors for probability laws whose density behaves 
asymptotically as . Normal law (1x α− − 2α = ) is an attractor for laws whose asymptotics is 1x γ− −  with 2γ ≥  (Feller 
(1970) and Gnedenko et al (1968)).  

In general, the density of a stable law cannot be given in closed form. But, up to translations and dilatations, the 

Fourier transform is . Hence, the corresponding density 
( )( ) 2i sign kk ee

π θα /− Lθα  satisfies ( ) ( )L x L xθ
α α

−− = θ , is labeled by 

the stability exponent α , and the skewness parameter θ , which belongs to [ 2 2 ]α α− , − . Moreover, for α  stricly 
between  and  with 1 2 2 2α θ− < ≤ −α , provided  holds with 0x A> > A  large enough, we have 

(1 )1
1 2( ) ( ) sin ( )nn n

nx nL x x αθ α π
α π θ αΓ ++∞ −

= != Σ − − . We will denote by  
 

1 (1 )sin ( )
2

Cθ
α

πα θ α
π
−

= Γ + −                                                                                                                     (13) 

 
the coefficient of the leading term in this expansion.  
 
6.2 Integrals of cumulated alpha stable Lévy laws 

 

In Subsection 3.1, we use the fact that  and  are equal. To prove the claim, 

notice that . Then, we will uses Mellin’s transform, defined 

by 

0
( )F y dyα θ

+∞ +
,∫ 0

( )F y dα θ

+∞ −
, −∫ y

+
,−( ) ( ) ( ) ( )

x

x
F x L y dy L y dy F xθ θ
α θ α α α θ

− +∞− −
, −∞
− = = − =∫ ∫

1

0
( ) ( )zM z t tω ω

+∞ −= ∫ dt  for function ω . With 1z =  we see that  , while we have 

, hence .  

0
( ) (1)F y dy MFα θ α θ

+∞ +
, =∫ +

,

1( ) ( )F x I L xθ
α θ α
+ −
, −= 1

0
( ) ( )(1)F y dy MI L θ

α θ α

+∞ + −
, −=∫

For Re( ) 0zα > >  and sufficiently good-behaved functions in neighbourhoods of ∞ , such as Lθα , we have  
 

1 ( )( )( ) ( )( 1
( 1)

zMI z M z
z

ω ω−

Γ
= +
Γ +

),

θ

 

 

According to Rubin (1996, see at page 44). From this, due to , we deduce  1( ) ( ) ( )
x

F x L y dy I L xθ
α θ α α

+∞+
, −= =∫

 
( )( )( ) ( )(

( 1)
d zMF z ML z

z
θ

α θ α,

Γ
= +
Γ +

1).  

 
The Mellin transform MLθα  is given in Schneider (1986)  for 0 ( )Re z 1< <   
 

1

2 2

1 ( ) ((1 ) )( )( )
((1 ) ) (1 (1 ) )

z zML z
z z

θ
α α θ α θ

α α

α
α

−

− −

Γ Γ −
= .

Γ − Γ − −
 

 
This implies  
 

1 1( )( ) ( ) ( )sin((1 ) )
2

zML z z zθ
α

α θπ
πα α

− −
= Γ Γ −

α
                                                                                              (14) 
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due to complements formula for Gamma functions (Abramowitz and Stegun (1965)). Nevertheless, ( )ML zθ

α , as a 

function of , is holomorphic for z 0 ( )Re z 1α< < + , due to the behavior of ( )L xθ
α  for large real values of . On 

the right-hand side of (14), 

x
1( ) ((1 ) )z z α −Γ Γ −  is holomorphic also except at poles of 1((1 ) )z α −Γ − . Then, analytic 

continuation extends (14) to { 0 ( ) 1} {z C Re z 1}α∈ / < < + − .  
From this we deduce  
 

0
( ) ( )(2)F y dy MFα θ α θ

+∞ + +
, ,=∫   

(2) ( 1 ) ( 1 )sin cos
2 2

α θ α α θπ π
απ α απ

Γ Γ − / − Γ − /
= = −

α
                               (15) 

 
is an even function of θ , hence the claimed result.  
 
7 References 
 
Abramowitz M and Stegun I, 1965, “Handbook of mathematical functions”, Dover Publication Inc., New York, p. 443.  
Benson DA, Wheatcraft SW and Meerschaert MM, 2000,“The fractional-order governing equation of Levy motion”.   
         Water Resour. Res. Vol. 36, pp. 1413-1424.  
Benson DA, Schumer R, Meerschaert MM and. Wheatcraft SW, 2001,“Fractional dispersion, Lévy motion, and the               
          MADE tracer tests”, Transp. Por. Med. Vol. 42, pp. 211-240.   
Cushman JH and Ginn TR, 2000, “The fractional ADE is a classical mass balance with convoution-fickian flux”, Water  
          Resour. Res. Vol. 36, pp. 3763-3766. 
Deng ZQ, de Lima JLMP, de Lima MIP and Singh VP,2006 ,”A fractional dispersion model for overland solute  
          transport”, Water Resour. Res.Vol. 42, W03416, doi:10.1029/2005WR004146.W03416. 
Feller W, 1970 An Introduction to Probability Theory and its Applications, vol. II (Wiley Series in probability and       
          mathematical statistics, J. Wiley and sons, New York, Chichester, Brisbane, Toronto)  
Gnedenko BV and Kolmogorov AN, 1968, “Limit distributions for sums of independent variables”, Revised edition  
        Addison-Wesley Publishing Company. Reading, Massachusetts, p. 293.   
Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P, 2002, “Fractional Diffusion: probability distributions and  
          random walk models”, Physica A. Vol. 305, pp. 106-112. 
Kolwankar KM and Gangal AD, 1996, “Fractional differentiation of nowhere differentiable functions and dimension”,       
          Chaos. Vol. 6, pp. 505-513. 
Krepysheva N, Di Pietro and Néel MC, 2006a, “Fractional diffusion and reflective boundary condition”, Physica A.  
          Vol. 368, pp. 355-361.  
Krepysheva N, Di Pietro L and Néel MC, 2006b, “Space-Fractional advection-diffusion and reflective boundary   
           condition”,   Phys. Rev. E. Vol. 73.  021104. 
Néel MC and  Abdennadher A, 2007, “Fractional flux and non-normal diffusion”, accepted by Elect. J. Diff. Eq. 
Paradisi P, Cesari R, Mainardi F, and Tampieri F ,2001, “The fractional Fick’s law for non-local transport processes “,  
          Physica A. Vol.  293, pp. 130-142. 
Rubin B ,1996 , “Fractional integrals and potentials”, Pitman Monographs and Surveys in Pure and Applied  
           Mathematics, 82. Longman, Harlow, p. 409. 
Samko SG, Kilbas AA and Marichev OI, 1993, “Fractional integrals and derivatives: theory and applications”,    
           Gordon and Breach Sci. Publ. New York, p. 973. 
Scalas E, Gorenflo R and Mainardi F, 2004, “Uncoupled continuous random walks: solutions and limiting behaviour of  
           the master equation”, Phys. Rev E. Vol. 69.  2011107.  
Schneider WR, 1986, “Stochastic process in classical and quantum systems”. Ed. S. Albeveiro, G. Casatti, D. Merlini,  
           Springer Verlag, Berlin.   
Zhang X, Crawford JW, Deeks LK, Stutter MI, Bengough AG and Young IM, 2005, “A mass balance based numerical  
          method for the fractional advection-dispersion equation: Theory and application”, Water Resour. Res. Vol. 41.  
          W07029,  doi: 10.1029/2004WR003818.  
 
 
 

 


