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Abstract—Speed and current closed loops control represent
the heart of any advanced AC servo drive. These inner loops
usually feature high-dynamic feedback control, with possible
axes decoupling and a straight feedforward action of the back-
electromotive force (back-EMF). More sophisticated techniques
as single-rate or multi-rate control could be exploited for both
speed and current closed loops, and their performances compared
to that of the classic cascade feedback controllers. This represents
the goal of the present work, focusing on permanent magnet
synchronous motor (PMSM) drives.

I. I NTRODUCTION

PMSM drives for industrial applications usually feature a
classic cascade structure, with an inner current control loop
and an outer speed control loop. Usually, the regulators are
simple PI controllers, designed as to match specific require-
ments such as bandwidth and phase margin.

In the recent past years, new keen control strategies and
approaches emerged. Robust control using a disturbance ob-
server [1] and adaptive control using a self-tuning regulator
[2] have improved the speed control. The current control has
also been improved [3]. These are all feedback approaches.

Then, two-degrees-of-freedom (2-DOF) systems which con-
sist of not only feedback controllers but also feedforward
controllers are capable of superior tracking performances
with respect to classical cascade systems. One example is
represented by the perfect tracking control (PTC) strategy
[4], which is a well-known theory for the design of 2-DOF
systems.

Performances of the PTC for the outer control loops, such
as the speed loop, have been reported in previous works as [4]
and [5]. Usually, since the controlled system is described by
a transfer function with relative degree equal or greater than
two, a multi-rate approach is needed to design a feedforward
controller and guarantee perfect tracking [4]. No extended
investigations are reported so far for the case of single-rate
feedforward approaches, where the relative degree of the
transfer function is equal to one. This is the case of the inner
current control loop of a PMSM drive.

The hypothesis being presented in this work is that some
of the advantages of PTC can be profitably shifted to the
inner control loop, namely the current one. The combination
of single-rate feedforward for the control loop and multi-rate
feedforward for the speed loop can improve performances with

Table I
PMSM PARAMETERS.

InductanceL 130 mH
ResistanceR 5.15 Ω
Inertia J 4.0×10−4 kg·m2

Viscosity B 3.0×10−3 kg/(m·s)
Torque coefficientKt 0.44 mN·m/A
Back-EMF constantKe 0.22 V· s/rad

respect of classical cascade feedback approaches. The paper
gives the evidence of unabated speed and current tracking
capability of the proposed approach with reduced PWM carrier
frequency, with evident energy saving with respect to a high-
bandwidth cascade feedback controller with higher PWM
carrier frequency.

The paper illustrates the mathematical passages and the
needed background on PTC single-rate and multi-rate ap-
proaches, and it contains experimental results on a PMSM
drive. First, the cascade current feedback control is redesigned
based on pole placement theory. Then, a single-rate feedfor-
ward controller is designed for the current control. The carrier
frequency is decreased for the system with the feedforward
controller, showing that tracking performances are the same as
the classical cascade approach with higher carrier frequency.
The PMSM drive is completed with the PTC multi-rate control
applied to the outer speed loop. The robustness of the PTC
multi-rate feedforward controller is verified both theoretically
and experimentally.

II. I MPROVEMENTS OF THEq AXIS CURRENT CONTROL

In the first part of the work, a single-rate feedforward con-
troller along with a classic feedback controller were applied
for the q-axis control of a PMSM, whose data are reported in
Table I. A block scheme of a 2-DOF control system composed
by a single-rate feedforward controllerC1[z] and a feedback
controllerC2[z] is reported in Fig. 1. TheS block represents
the sample-and-hold operation whereTs is the PWM sample
time, while the presence of the delay betweenr[k] andyd[k]
will be cleared in the next Section II-B.

A. Design of the feedback controller

A block diagram which comprises the currentq axis of a
PMSM and the mechanical system is shown in Fig. 2.
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Usually, the feedback controller is designed without taking
into account the back-EMF term, so that the considered plant
model for the design ofC2[z] is:

Pi1(s) =
i

V
=

1
Ls + R

. (1)

Here, a feedback controller is designed as

Ci2(s) =
Ls + R

τis
, (2)

so that the closed-loop transfer function between the reference
and the measured current, neglecting the back-EMF term, is
equal to

i

iref
=

1
τis + 1

, (3)

where τi = 1/(2πfi). The parameterfi is selected as the
bandwidth of the current loop. In the classic approach, the
coupling term due to the back-EMF is rejected by a general
decoupling control, which consists of adding to the voltageV
a term equal toKeω.

B. Design of the feedforward controller

The feedforward componentC1[z] of Fig. 1 was designed
with a current model that considers the back-EMF contribu-
tion. In this case, the transfer function between voltage and
current reported in Fig. 2 is:

Pi(s)=
i

V
=

Js + B

LJs2+(RJ+LB)s+RB+KtKe
. (4)

The plant modelPi(s) is discretized by a zero-order-hold
(ZOH) discretization without unstable zeros, obtaining a dis-
crete plant model namedPi[z]. The feedforward controller is
then designed as:

Ci1[z] =
1

zPi[z]
, (5)

where one delay operatorz is needed for the feedforward
controllerC1[z] to be a biproper transfer function. Thus, when
plant is nominal,

y[k] =
1
z
r[k]. (6)

Here, if the referencer[k] of C1[z] is equal to the desired
outputyd[k + 1] of Fig. 1, perfect tracking is achieved as

yd[k] = y[k], (7)

in singlerate.
In the previous literature [6], a multi-rate feedforward

controller was designed from the precise plant model including
back-EMF term. However, in this case a stable single-rate
feedforward controller can be designed and exploited. The
reason is that a single-rate approach is not only easier, but
it can also guarantee perfect tracking for a smaller sample
time.

C. Experiments

First, the target trajectory of the current was set as a
sinusoidal wave with a frequency of 100 Hz. Two control
systems consisting of only feedback controls were performed,
one with a bandwidth of 1000 Hz and the other with a
bandwidth of 100 Hz. Here, the decoupling control to suppress
the back-EMF term is employed in both control systems.
Results are reported in the two upper plots of Fig. 3.

The tracking performance of the feedback control whose
bandwidth is 1000 Hz is remarkable, while that with a 100-Hz
bandwidth is poor. A delay of 45 degrees and an attenuation
of 3 dB are observed, as theoretically predictable because of
the reference frequency of 100 Hz. Carrier frequencies were
also artificially modified, using a 10 kHz carrier for the 1000-
Hz bandwidth system and a 5 kHz carrier for the 100-Hz
bandwidth system.

In the third plot of Fig. 3, a 2-DOF system which consists of
the 100-Hz-bandwidth feedback controller and the single-rate
feedforward controller was exploited. Carrier frequency was
set to 5 kHz. Performances are better than the system without
the feedforward controller, and comparable or better of those
with the 1000-Hz-bandwitdh feedback controller.

The same experiment was repeated using a different current
reference, that was a first-order delayed step-type trajectory,
in order to test the transient response. The time constant of
the trajectory is equal to 1 ms. Results are reported in Fig. 4.

Again, the performances of the 2-DOF system with low-
bandwidth feedback and feedforward are superior with respect
to the low-bandwidth case. As before, they are comparable to
those of the feedback controller with high bandwidth. The
main advantage, however, is that the carrier frequency was
halved, with evident energy saving. A bandwidth of 1000
Hz for the classic feedback controller cannot be practically
achieved for a system with 5-kHz carrier frequency, so per-
formances of the classic approach would have not been the
same as the ones of the feedforward approach.
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Fig. 3. Current control experimental results: sinusoidal reference.

III. I MPROVEMENT OF THE SPEED CONTROL

Considering again Fig. 2, the transfer function between the
voltageV and the mechanical speedw is:

Pω(s)=
ω

V
=

Kt

LJs2+(RJ+LB)s+RB+KtKe
. (8)

Here, the discrete plant by ZOH has an almost unstable zero,
because the relative degree of the transfer function is equal to
two. If a single-rate feedforward controller was designed, the
input would have led to vibrations and unwanted oscillations.
The inverse system of the plant cannot be applied in single-rate
discrete-time [7]. Therefore, the multi-rate technique is needed
to design a feedforward controller for perfect tracking.

A. Design of the feedback controller

Considering a perfect tracking between the current reference
and the actual current, the speed plant model is:

Pω1(s) =
ω

iref
=

Kt

Js + B
. (9)

The feedback controller is then designed as

Cω2(s) =
Js + B

Ktτωs
, (10)

so that the closed-loop transfer function between the speed
reference and the actual speed is

Tω(s) =
ω

ωref
=

1
τωs + 1

, (11)
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Fig. 4. Experimental results 2 of current control.
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where τω = 1/(2πfω). The parameterfω is selected as the
bandwidth of the speed loop.

B. Perfect tracking control

A PTC approach block diagram is reported in Fig. 5.
This system has two samplers for the reference signalr(t)

and the outputy(t), and one holder for the system input
u(t). Therefore, there exist three sampling periodsTr, Ty,
and Tu which represent the periods ofr(t), y(t), and u(t),
respectively.

PTC applies the multi-rate feedforward control in which the
control input u(t) is changedn times during one sampling
period Tr of the reference inputr(t), wheren is the plant
order. HM of Fig. 5 represents the multi-rate holder which
outputs the inputu[i] = [u1[k], · · · , un[k]]T , generated from
the long sampling periodTr to the short sampling periodTu.
Fig. 6 summarizes the concept.

From the plant model discretized by the short sampling
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periodTu, described as

x[k + 1] = Asx[k] + bsu[k] , y[k] = csx[k], (12)

the matricesA, B, C andD are given as:

[
A B
C D

]
=


An

s An−1
s bs · · · Asbs bs

cs 0 · · · 0 0
csAs csbs · · · 0 0

...
...

.. .
...

...
csA

n−1
s csA

n−2
s bs · · · csbs 0

 ,

(13)
Since the matrixB of (13) is non-singular, PTC can be
designed as

u0[i] = B−1(I − z−1A)xd[i + 1]

=
[

0 I
−B−1A B−1

]
xd[i + 1], (14)

y0[i] = z−1Cxd[i + 1] + Du0[i]. (15)

Expression (14) is the stable inverse system of the plant
when the references are state variablesxd[k + 1] (see Fig.
5). Therefore, the perfect tracking is assured on the sampling
period Tr. Feedback controlC2[z] suppresses the error be-
tween the outputy[k] and the nominal outputy0[k] to assure
robustness only when mismatch on plant parameters occurs.

C. Control system design

PTC is applied to a control system which consists of a
cascade feedback for the current loop and the velocity loop.

The controllable canonical form of (8) is given by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t), (16)

 Ac bc

cc 0

=


0 1 0

−RB + KtKe

LJ
−RJ + LB

LJ

Kt

LJ

1 0 0

,

(17)
wherex = [ω ω̇]T . The multi-rate feedforward controller is

designed by discretizing (16) with sampling periodTu, and
setting Tu = Ty = Tr/2. Matrices A, B, C, and D are
designed according to (13).

In order to obtain the the nominal currenti0 to feed the
inner current feedback controller, two matricesC ′ andD′ are
introduced, using (13) and the output equation of the current
plant model (4):

y = c′cx, c′c =
[

B
Kt

J
Kt

]
. (18)
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Fig. 8. Speed control experimental results.

Fig. 7 shows the complete proposed system. Again, feed-
back current controllerCi2[z] and feedback velocity controller
Cω2[z] work only when parameter mismatches occur.

D. Experiments

Experiments were performed in order to compare the pro-
posed system with the conventional cascade feedback system.
The target speed trajectory was set as a third-order polynomial,
and carrier and control period were both set to 140µs.
Bandwidth of the current loop was set to 100 Hz, while that
of the speed loop was set to 10 Hz.

Fig. 8 shows the experimental results. The proposed system
shows better performances with respect to the conventional
approach. In detail, two samples delay occur in order to
calculate the real speed by difference between two positions.
Therefore, the target trajectory of Fig. 8 and the nominal speed
ω0[k] of Fig. 7 are delayed by two samples.
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Fig. 9. Experimental robustness of the multi-rate feedforward control.
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E. Robustness of the multi-rate feedforward controller

The robustness of the multi-rate feedforward controller of
PTC was experimentally verified. Each parameter used to
design the multi-rate feedforward controller was changed from
-50% to +50% of its nominal value, while the feedback
controllers were not changed. Fig. 9 reports the obtained
results: the most sensitive parameter is the torque constant
Kt (= 2Ke), while the load inertiaJ is second one. Variation
of the inductanceL is the third sensitive parameter, while the
controller was robust against the variations of the viscosityB
and the resistanceR.

F. Robustness theoretical analysis

A theoretical approach to the robustness of the proposed
control system was performed. Fig. 10 shows the block scheme
of the control system simplified in the continuous time domain.

Piu(s) from the input to the current is equal to (4) and
Pωi(s) is equal to (9). It is assumed that nominal stable inverse
systemsP−1

iun(s) andP−1
ωin(s) can be designed.
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The tracking characteristic from the reference to the output
is represented as (neglecting the dependence ons):

ω

r
=

PωiPiu(CiCω + CiP
−1
ωin + P−1

ωinP−1
iun)

PωiPiuCiCω + PiuCi + 1
. (19)

If the plant is nominal (Piu = Piun and Pωi = Pωin),
perfect tracking is achieved (ω(t) = r(t)). When parameter
mismatches exist, parts of the feedforward inputsu0 and i0
are to be considered as disturbances. The input variations are
defined as

∆i0=(P−1
ωi (s) − P−1

ωin(s))r,
∆u0=(P−1

ωi (s)P−1
iu (s) − P−1

ωin(s)P−1
iun(s))r.

(20)

In case of an inertiaJ variation of +50% with respect of
its nominal value, the magnitude of the Bode diagrams of
the variations (20) are reported in Fig. 11. Speed control and
current control bandwidths have been set to 10 Hz and 100
Hz, respectively.

The transfer functions between the input variations to the
speed are

ω

∆i0
=

Pωi(s)Piu(s)Ci(s)
Pωi(s)Piu(s)Ci(s)Cω(s)+Piu(s)Ci(s)+1

,

ω

∆u0
=

Pωi(s)Piu(s)
Pωi(s)Piu(s)Ci(s)Cω(s)+Piu(s)Ci(s)+1

.

(21)
The Bode diagram magnitudes of the (21) are shown in Fig.
12 (a). The disturbance suppression could be better in plant-
pole cancellation feedback control: this is due to the fact that
the plant has a low mechanical pole (-J/B).

In order to improve robustness, the speed PI controller
Cω2(s) of (10) is redesigned without plant-pole cancellation
as in (9), using the following expressions:

Cω2(s) = Kp +
Ki

s
, (22)

Kp =
2ζclωclJ − B

Kt
, Ki =

Jω2
cl

Kt
. (23)

With this choice, the closed-loop characteristic polynomial of
the speed loop is given by

Acl(s) = s2 + 2ζclωcls + ω2
cl. (24)
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Fig. 13. Time responses (J : +50% of nominal value).

where the damping factorζcl was set to 1, andωcl = 2πfω

where fω is the bandwidth of the speed loop. The distur-
bance suppression responses without plant-pole cancellation
are shown in Fig. 12 (b).

The disturbance suppression is better than the one with
plant-pole cancellation. This is also proved by the comparison
the time responses (Fig. 13).

Finally, although stability margin is worse as shown in Fig.
14 and 15, the feedback without plant-pole cancellation still
has enough stability margin in the case of an inertia variation
of +50% with respect to its nominal value.

IV. CONCLUSION

A single-rate feedforward control has been designed, along
with a classic feedback control, in order to achieve perfect
tracking for the inner current control loop of a PMSM drive.
Results shows that in case of single-rate feedforward control
the carrier frequency could be decreased to obtain the same
performances of conventional cascade feedback approaches,
with evident energy savings.

The speed loop was improved by adding a multi-rate feed-
forward controller. Tracking performances were dramatically
enhanced with respect to the conventional approach. Robust-
ness of the multi-rate control against parameter variations
was tested experimentally, and some hints on the theoretical
approach to the robustness analysis were provided.
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Fig. 14. Nyquist diagrams (with plant-pole cancellation).
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Fig. 15. Nyquist diagrams (without plant-pole cancellation).
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