
Configuring Large High-Performance Clusters at Lightspeed:
A Case Study

Philip M. Papadopoulos†, Caroline A. Papadopoulos‡,
Mason J. Katz†, William J. Link† and Greg Bruno†

† The San Diego Supercomputer Center
University of California San Diego

La Jolla, CA 92093-0505
{phil,mjk,bill,bruno}@sdsc.edu

http://www.rocksclusters.org

‡ Physical Oceanography Research Division
Scripps Institution of Oceanography
University of California, San Diego

La Jolla, CA 92093-0505
caroline@ucsd.edu

November 9, 2005

Abstract

Over a decade ago, the TOP500 list was started as a
way to measure supercomputers by their sustained perfor-
mance on a particular linear algebra benchmark. Once re-
served for the exotic machines and extremely well-funded
centers and laboratories, commodity clusters now make
it possible for smaller groups to deploy and use high-
performance machines in their own laboratories. This pa-
per describes a weekend activity where two existing 128-
node commodity clusters were fused into a single 256-
node cluster for the specific purpose of running the bench-
mark used to rank the machines in the TOP500 supercom-
puter list. The resulting metacluster sits on the Novem-
ber 2002 list at position 233. A key differentiator for this
cluster is that it was assembled, in terms of its software,
from the NPACI Rocks open-source cluster toolkit as
downloaded from the public website. The toolkit allows
non-cluster experts to deploy and run supercomputer-
class machines in a matter of hours instead of weeks or
months. With the exception of recompiling the University
of Tennessee’s Automatically Tuned Linear Algebra Sub-
routines (ATLAS) library with a recommended version
of the GNU C compiler, this metacluster ran a “stock”
Rocks distribution. Successful first-time deployment of

the fused cluster was completed in a scant 6 hours. Par-
titioning of the metacluster and restoration of the two
128-node clusters to their original configuration was com-
pleted in just over 40 minutes.

This paper describes early (pre-weekend) benchmark
activities to empirically determine reasonably good pa-
rameters for the High-Performance Linpack (HPL) code
on both Ethernet and Myrinet interconnects. It fully
describes the physical layout of the machine, the
description-based installation methods used in Rocks to
re-deploy two independent clusters as a single cluster, and
gives the benchmark results that were gathered over the
40-hour period allotted for the complete experiment. In
addition, we describe some of the online monitoring and
measurement techniques that were employed during the
experiment. Finally, we point out the issues uncovered
with a commodity cluster of this size.

The techniques presented in this paper truly bring su-
percomputers into the hands of the masses of computa-
tional scientists.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357231329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The TOP500 [10] [3] is a open competition that, every
six months, ranks the top 500 entries in descending order
according to the results of running the LINPACK bench-
mark. The LINPACK benchmark solves a dense system of
linear equations and outputs the number of floating point
operations per second achieved during the calculation.

In 1995, the pioneers of commodity clusters, notably
Culler [1] and Sterling [8], observed the technology trends
and theorized that one day machines built from commod-
ity components would sit among the world’s fastest ma-
chines. Although the first cluster appeared on the TOP500
list in 1998 and proved the theory correct, this paper
presents how NPACI Rocks [7], the open-source cluster
toolkit, was utilized to put a cluster on the November 2002
TOP500 in just one weekend.

2 Rocks Overview

In November of 2000, the SDSC Grids and Clusters group
released the first version of the NPACI Rocks cluster
toolkit. This software was the initial result of our work
to make it possible for application scientists to build and
manage their own commodity clusters. Although this
first version still required some cluster expertise to build
a cluster, we had greatly simplified the task due in part
to our collaboration with the UC Berkeley Millennium
Project led by David Culler.

As our software has matured, we have reached the point
where non-cluster experts can indeed build and manage
their own clusters. Application scientists have used the
toolkit to build clusters ranging from small-scale testbeds
(e.g., 8-16 nodes) to world-class resources. This section
gives an overview of the design and technologies that en-
able anyone to do what was once the exclusive domain
of dedicated supercomputer centers and well-funded gov-
ernment laboratories.

2.1 Hardware Architecture

Figure 1 shows a traditional architecture commonly used
for high-performance computing clusters as pioneered by
the Network of Workstations project [1] and popularized
by the Beowulf project [8]. This system is composed of

Front-end Node(s)

Ethernet Network

eth0

eth0 eth0 eth0eth0

Node NodeNode Node

Application Message
Passing Network

eth1 Public Ethernet

Figure 1: Rocks hardware architecture. Based on a
minimal traditional cluster architecture.

standard high-volume servers, an Ethernet network and an
optional off-the-shelf high-performance cluster intercon-
nect (e.g., Gigabit Ethernet or Myrinet). We have defined
the Rocks cluster architecture to contain a minimal set of
high-volume components in an effort to build reliable sys-
tems by reducing the component count and by using com-
ponents with large mean-time-to-failure specifications.

2.2 Software Architecture

NPACI Rocks is a complete cluster-aware Linux distri-
bution based upon Red Hat with additional packages and
programmed configuration to automate the deployment of
high-performance Linux clusters1. The Red Hat distribu-
tion was chosen because of two key mechanisms found
within it: 1) It’s software packaging tool (RPM), and 2)
it’s script-driven software installation tool that describes
a node’s software stack (kickstart). By utilizing RPM
and kickstart, we’ve developed mechanisms that support
fully-automated node installation – an important property
when scaling clusters. Details on both RPM and kickstart
are found in section 2.3.

Although the focus of Rocks is on flexible rapid sys-
tem configuration (and re-configuration), the steady-state
behavior of Rocks has the look and feel much like any
other commodity cluster containingde-factocluster stan-
dard services (e.g., PBS, Maui, Ganglia and MPI).

1For a summary of other cluster-building tools, see [6].

2.2.1 Description-Based Software Installation

The process of installing software on any system always
contains two components: the installation of software
packages and the configuration of software packages. Of-
ten the configuration of a package is to simply accept the
defaults, and other times a wildly different configuration
from the default behavior is required. The traditional sin-
gle desktop approach to this process is to install software
and then, through a process of manual data entry, the soft-
ware is configured to one’s requirements. A common ex-
tension of this process to the parallel world of clusters, is
to hand configure a single node and replicate state of this
“golden image” onto all the nodes in a cluster. Although
this works with homogeneous hardware and static clus-
ter functional requirements, we have found that clusters
rarely have either of these attributes.

Rocks treats software installation and software config-
uration as separate components of a single process. This
means that hand configuration required to build a “golden
image” is instead automated. The key advantage is the
dissemination of intellectual property. Building cluster
“golden images” is more often than not an excercise in
replicating the work done by other cluster builders. By au-
tomating this configuration task out-of-band from system
installation, the software configuration is specified only
once for all the Rocks clusters deployed world-wide2.

Installation of software packages is done in the form
of package installs according to the functional role of a
single cluster node. This is also true for the software
configuration. Once both the software packages and soft-
ware configuration are installed on a machine, we refer to
the machine as anappliance. Rocks clusters often con-
tain Frontend, Compute, andNFSappliances. A simple
object-oriented framework (expressed in XML) is used to
allow cluster architects to define new appliance types and
take full advantage of code re-use for software installation
and configuration [6].

2.2.2 Staying on the Software Curve

One of the widely-claimed benefits of open source soft-
ware is the rapid pace of development. These benefits
range from the quick closure of security holes in software,

2A site-specific cluster database is used to customize individual clus-
ters with local configuration variables.

to rapid performance and functionality enhancements. Al-
though these are tremendous benefits of Linux (and open
source in general), this rapid turn around of software is
also a great burden on system administrators. For exam-
ple, in less than a year, Red Hat 6.2 for Intel had 124 up-
dated packages. There were also 74 security vulnerabil-
ities reported to www.securityfocus.com, for which sev-
eral of the updated packages were targeted. On average,
this amounts to one update every three days.

To integrate our software with Red Hat’s stock
and updated packages, we created a program called
rocks-dist . Rocks-dist gathers software compo-
nents from the official Red Hat distribution (includ-
ing updates), Rocks-developed software, other Rocks
community-developed software and third-party software.
This set of software is compiled to create a new distri-
bution that includes only the most recent versions of all
the software packages3. The resulting distribution has
the identical structure as a Red Hat distribution only with
some new and some updated packages.

By managing the software packages independently
from software configuration the same configuration can
be applied to different software distributions. Or in the
case of cluster testbeds, the same software distribution can
be used with multiple software configurations. We have
used both of these models in the software development
and production roles of NPACI Rocks.

2.3 Software Installation

Kickstart is the Red Hat provided mechanism for automat-
ing system installation. Kickstart, together with Red Hat’s
software packaging format (RPM), has enabled cluster
builders to specifya priori the exact software package and
software configuration of a system. This textual descrip-
tion is then used to build a software image on the target
platform. Although managing a single (or set of) Kick-
start files can be simpler than managing cluster “golden
images”, Kickstart is limited in terms of programability.
The lack of a macro language and a code re-use model
potentially requires a unique Kickstart file for every node
in a cluster.

Rocks solves this problem by generating Kickstart files

3There is also a mechanism to force a specific version of a software
package to be used.

on-the-fly based on the programmatic target system de-
scription, and the site-specific configuration data stored
in an SQL database. Integrating a cluster node requires
the node to boot an installation kernel using network boot
(PXE) or a physical boot media (e.g., CDROM, hard disk
or floppy). This installation kernel requests a Kickstart
file over HTTP and executes the Kickstart file installing
the appropriate software packages and applying software
configuration. Although the intended and most common
implementation of this process is to serve static Kickstart
files, Rocks replaces the static file with a script (CGI) to
dynamically produce a node-specific Kickstart file.

3 TOP500 Configuration

3.1 Hardware

At the Scripps Institution of Oceanography (SIO), there
are two independent, but nearly identical, 128-node com-
modity clusters – both are used by Dr. Detlef Stam-
mer’s research groups to explore ocean state estimation
techniques using an adjoint model formulation and atmo-
spheric models. The 128 compute nodes in the first clus-
ter (named ’Ecco’), are IBM xSeries 330 rack-mounted
servers. Each compute node has the following configura-
tion:

• Dual 1-GHz Intel Pentium III nodes, that is, there are
two 1-GHz Intel Pentium III CPUs per server (for a
total of 256 CPUs)

• 1 GB of main memory (PC133)

• ServerWorks LE chipset

• 18.2 GB SCSI disk drive

• 100 Mbit Ethernet port

• Myrinet PCI host copper-based interface (M3S-
PC164B-2)

There are 4 racks, each containing 32 compute nodes.
In each rack, the nodes’ 100-Mbit Ethernet links are con-
nected to a set of stacked Intel Express 10/100 switches
(530T and 535T). The stacked switch in each rack is con-
nected via Gigabit Ethernet to a central Intel Netstructure
470T Gigabit Ethernet switch. A 128-port Myrinet switch

(M3-E128) connects all the compute nodes’ Myrinet
adapters. This network is used for application message
passing, as shown in Figure 1. All the compute nodes are
connected via Ethernet to a frontend. The frontend has a
similar configuration to the compute nodes, except it has
two 36.4 GB disk drives and does not contain a Myrinet
interface. The second 128-node cluster (named ’Com-
pas’), is identical to the Ecco cluster except that fiber-
based connections are used for the Myrinet network in-
stead of copper.

Upon arrival at the machine room on Friday evening,
the first order of business was to physically merge the
two clusters into one metacluster (called ’Compas-Ecco’).
Both frontends were shutdown and a new node was con-
nected to serve as the single head node for the Compas-
Ecco metacluster. Then a single metacluster Ethernet net-
work was built by connecting both cluster’s private-side
networks. This was done with a single gigabit link con-
nected to each of the cluster’s central switches (Intel Net-
structure 470T).

Next, a single metacluster Myrinet network was built
by removing one 8-port fiber blade from the Compas
switch and replacing it with an 8-port copper blade. Af-
ter decommissioning 8 cluster nodes from each cluster
(bringing the total node count to 240), a total of 16 cop-
per ports were available for a cross-connect. Connecting
both switches with 8 copper cables, transformed two dis-
joint full-bisection Myrinet networks (128 Gbit/sec) into
a single fat-tree network with a bisection bandwidth of 16
Gbits/sec. The configuration is illustrated in Figure 2.

3.2 Software

After physically merging the clusters, efforts turned to-
ward software installation. The new frontend was in-
stalled with “stock” Rocks version 2.2.1 which took about
30 minutes.

A Rocks frontend is installed with 640 software pack-
ages (RPMs). One of these packages is ATLAS [11] – the
Automatically Tuned Linear Algebra Subroutines from
the Innovative Computing Laboratory at the University
of Tennessee which provides a library of efficient math-
ematical functions (e.g., matrix multiply). Rocks is built
upon stock Red Hat releases and, to simplify maintain-
ability, strives to use all the packages that Red Hat pro-
vides. Rocks version 2.2.1 is based on Red Hat 7.2 which

Front-end Node Ethernet Network

Ecco1

128 Port Myrinet
Switch

Public Ethernet

Ecco2 Ecco3 Ecco120

Compas1 Compas2 Compas3 Compas120

128 Port Myrinet
Switch

8 cables

Figure 2: Myrinet-connected Metacluster. In Ecco’s
and Compas’s original configuration, 128 compute nodes
are connected to a single Myrinet switch. Unifying the
Myrinet networks for the metacluster required switch-to-
switch cross connections. This was accomplished by re-
moving 8 nodes from Ecco and 8 nodes from Compas and
using those ports as cross connections, thus, the result-
ing Myrinet-connected metacluster contains 240 nodes in-
stead of 256.

includes gcc version 2.96 which, in turn, is known to
produce object code that is significantly slower (25-75%
degradation) than other versions of gcc. Based on ad-
vice from the ATLAS developers, we chose to rebuild the
ATLAS package with gcc 2.95 as ATLAS was originally
tuned using that version. We installed the new ATLAS
package on the frontend, rebuilt the High-Performance
Linpack (HPL) [5] package (to relink it with the new AT-
LAS libraries), and usedrocks-dist to compile a new
distribution. This distribution served as the software stack
for all compute node installations. Of the 640 packages
installed on a Rocks frontend, these were the only two
packages that differ from a stock installation4.

We proceeded to install compute nodes. It was deter-
mined that a fresh installation of all nodes would easily
assure that all of the cluster nodes had a common soft-
ware configuration5. By powering up each cabinet one at
a time, the frontend assigned physical location informa-
tion to each compute node (in this case, cabinet location).
The frontend (100-Mbit Ethernet network) identified and
completed installation of 32 nodes in about 20 minutes.
Initial install of the 256-node cluster in this phased man-
ner of one-rack-at-a-time consumed about 2.5 hours of
wall clock time.

4 Tuning

Once ATLAS and HPL were rebuilt and installed, empir-
ical testing was used to find parameters that delivered a
majority of the cluster’s peak performance. First, HPL’s
blocking factor(HPL’s NB parameter6) was examined.
After initial runs on a single node, we found a blocking
factor of 80 delivered good results (see Table 1).

After finding an acceptable blocking factor for a single
node, empirical experiments were run to determine which
blocking factors and matrix sizes would work well across
multiple nodes. In a tuning document, the authors of HPL
remark that small multiples of the blocking factor (NB) are

4This action will be unnecessary in the next release of Rocks, as it
will be based on Red Hat 8.0 which contains gcc version 3.2.

5At the end of this experiment, nodes were reinstalled with configu-
rations from their original frontends.

6This is the size of the sub-matrix that HPL internally uses during
its computation. The key is to find a value that best uses the processor’s
memory hierarchy as HPL will reuse data within the blocking factor
during its computation phase.

NB Seconds GFlops % of Peak
64 328.04 1.118 55.90
80 289.65 1.266 63.30
100 292.35 1.254 62.70

Table 1:Finding the Blocking Factor on a Single Node.The matrix size for all tests is 8,192. The Pentium III is a
single-issue machine (that is, it can issue at most one instruction per clock cycle), therefore, peak performance per 1
GHz CPU is 1 GFlop. Both CPUs on the compute node were used for this test, therefore, peak performance for the
node is 2 GFlops.

likely to work well as the size of the problem (N) is scaled
up. In Table 2, one observes that the single-nodeNBvalue
of 80 delivers relatively good results, but as the problem
size scales, a blocking factor of 160 (a small multiple of
80) further improves performance by approximately 6%
on a 16K X 16K Matrix.

After settling on a blocking factor, we investigated what
problem size should be attempted. The starting point was
looking at various matrix sizes on a single node. By ex-
amining the results in Table 3, a (sub)matrix size between
8,192 and 10,000 was selected for each node. These sub-
matrix sizes fill most of the available 1 GB memory on
each node.

We scaled the problem size up across multiple nodes.
In Table 4, a per-node matrix size of 10,000 delivers the
highest performance on our compute node configuration.
This followed expectations as a 10,000 x 10,000 matrix
of 64-bit floating-point values represents approximately
800 MB of storage and as mentioned above, each com-
pute node contains 1 GB of main memory. Therefore,
a 10,000 x 10,000 matrix will occupy approximately 80%
of main memory. By leaving 20% of main memory for op-
erating system functions, this matrix size strategy avoids
swapping by the virtual memory subsystem which would
negatively affect system performance. In general, if one
starts with anP ×Q processor mesh, then the overall ma-
trix size chosen is approximately10000×

√
PQ.

Although the HPL benchmark scales quite well, it does
benefit from faster networks. Results from using the 100-
Mbit Ethernet network are in Table 5 and should be com-
pared to the Myrinet results in Table 6. HPL performance
over the 100-Mbit Ethernet network dropped 27% as the
problem scaled from 2 to 32 CPUs. It appeared that if the
Ethernet network was used for the final run, the resulting

benchmark would simply be too slow.7

When scaling HPL from 2 to 32 CPUs using Myrinet,
we observed a more acceptable decrease in performance
of 7%. Myrinet was therefore the interconnect used for
HPL.

5 Results

5.1 TOP500 Linpack Results

After the tuning runs, jobs were submitted to the 240-
node (480 CPU) Myrinet-connected metacluster using
mpirun , the job launcher for Message Passing Interface
(MPI) [4]. Because 16 Myrinet ports were used to cross-
connect the clusters, a total of 240 nodes (instead of 256)
were actually interconnected. Table 7 shows the results of
scaling the problem size up to 240 CPUs.

While satisfied with 284 GFlops, there was still a half
day before the original clusters (and configurations) were
to be returned to the SIO researchers. Further experiments
with the blocking factor (NB) and broadcast (BCAST) pa-
rameters (see Table 8) were conducted. The broadcast pa-
rameter determines how results from the CPUs are com-
municated among each other. There are six settings for
BCASTbut the HPL documentation states that settings 1,
3 and 4 should work well. Due to the long execution time
of the benchmark, we chose not to experiment with broad-
cast setting 4.

By using a blocking factor of 200 and a broadcast
parameter of 3, the final result of 285.9 GFlops was

7Which turned out to be true. The last entry in the November 2002
TOP500 list is 195.8 GFlops. Had the efficiency of HPL dipped to 38%,
the 512 CPU metacluster would have registered only 194.56 GFlops.

CPUs Matrix Size (N) NB Seconds GFlops % of Peak
4 8,192 64 188.09 1.949 48.73
4 8,192 80 171.35 2.140 53.50
4 8,192 100 176.03 2.083 52.08
4 8,192 120 162.95 2.250 56.25

8 16,384 80 733.61 3.997 49.96
8 16,384 120 704.45 4.163 52.04
8 16,384 160 692.56 4.234 52.93
8 16,384 180 707.23 4.146 51.83
8 16,384 200 697.88 4.202 52.53

32 40,000 125 2756.69 15.48 48.38
32 40,000 140 2763.76 15.44 48.25
32 40,000 160 2674.72 15.95 49.84
32 40,000 180 2728.98 15.64 48.88

Table 2:Finding the Blocking Factor Across Multiple Nodes.The matrix size isN x N. The blocking factor isNB.
As the problem size scales, a blocking factor of 160 delivers the best results.

Matrix Size (N) Seconds GFlops % of Peak
2,048 5.08 1.129 56.45
4,096 36.65 1.261 63.05
8,192 274.38 1.336 66.80
10,000 503.78 1.324 66.20

Table 3:Determining the Problem Size for a Single Node.All tests are conducted on both CPUs on a single node.
The blocking factor (NB) is 160. A matrix size between 8,192 and 10,000 delivers good results.

Per-Node Matrix Size Total Matrix Size (N) Seconds GFlops % of Peak
2,048 23,170 74.49 111.3 43.48
4,096 46,340 473.08 140.2 54.77
8,192 92,681 3311.59 160.3 62.62
10,000 113,137 5869.91 164.5 64.26

Table 4:Determining the Problem Size Across Multiple Nodes.This test was conducted on 128 nodes (256 CPUs)
with a blocking factor (NB) of 160. A per-node matrix size of 10,000 delivers the highest performance.

CPUs Matrix Size (N) Seconds GFlops % of Peak
2 8,192 289.65 1.266 63.30
8 16,384 692.56 4.234 52.93
32 32,768 1584.16 14.81 46.28

Table 5:HPL Performance Over the 100-Mbit Ethernet Network. The blocking factor (NB) is 160. Scaling the
problem up from 2 CPUs to 32 CPUs results in a decrease in efficiency of 27%.

CPUs Matrix Size (N) Seconds GFlops % of Peak
2 8192 274.38 1.336 66.80
8 16,384 580.99 5.047 63.09
32 32,768 1192.45 19.67 61.47

Table 6:HPL Performance Over the Myrinet Network. The blocking factor (NB) is 160. Scaling the problem up
from 2 CPUs to 32 CPUs results in a decrease in efficiency of 7%.

Matrix Size (N) Seconds GFlops % of Peak
15,000 16.90 133.1 27.73
30,000 98.21 183.3 38.19
60,000 624.02 230.8 48.08
120,000 4127.16 279.1 58.15
150,000 7922.17 284.0 59.17
151,000 8162.24 281.2 58.58
153,000 8385.06 284.8 59.33
155,000 8761.34 283.4 59.04

Table 7:HPL Performance on the Metacluster. The blocking factor (NB) is 160 and the number of CPUs is 480.
While the matrix size of 153,000 outputs a slightly higher GFlop value, we selected a matrix size of 150,000 for the
experiments conducted in Table 8, as time was limited and HPL completes almost 8 minutes faster with a matrix size
of 150,000 vs. 153,000.

Matrix Size (N) NB BCAST Seconds GFlops % of Peak
150,000 180 1 8160.99 275.7 57.44
150,000 180 3 8107.64 277.5 57.81
150,000 200 1 7910.33 284.4 59.25
150,000 200 3 7870.43 285.9 59.56

Table 8:Experimenting with NBand BCASTParameters on the Metacluster. The number of CPUs for all runs is
480.

Figure 3: Final Result. The Compas-Ecco metacluster
ranks number 233 on the November 2002 TOP500 list.

achieved. This result was submitted to the TOP500 orga-
nizers and the Rocks-powered Compas-Ecco metacluster
now ranks number 233 on the November 2002 TOP500
list (see Figure 3).

In the approximate 40 hours that it took to run the ex-
periment, over 24 hours were devoted to benchmark runs.
The 256-node metacluster was installed twice (once using
100 Mbit Ethernet and once using Gigabit Ethernet), and
the original 128 node clusters were each installed twice
for benchmarking the installation performance. The rest
of this paper describes the underlying system software
that allowed us to quickly reconfigure these machines into
their desired configurations.

5.2 Software Installation Results

The Rocks toolkit uses installation as a simple method
for users to keep cluster nodes with a consistent set of
software. While administrators may want to make small
changes while the cluster is “online,” we find it easier and,
in general, faster to do a complete re-installation of nodes
for larger changes. Indeed, in our fused-cluster experi-
ment, we found that the initial host name assigned to a
machine was actually buried quite deeply into the stan-
dard configuration. More than an hour was consumed try-
ing to find all the places where the name is registered on
installation. Duplicate names (the separate clusters used
the same internal node naming scheme) led to some con-

fusion when the clusters were connected as one. In this
case, it was simply faster in terms of wall clock time to
reinstall all nodes instead of searching deeply into the file
system to make changes. In the above example, other
methods (such as cfEngine [2]) that “patch” existing in-
stallations could have been layered on top of Rocks to
achieve the same result. But, we see this approach as
an additional layer of complexity and management. Our
simple, fast installation method performs the functions of
these other configuration utilities as well as providing a
method for installing, updating and configuring cluster
software ranging from one package to the entire software
stack.

On Friday evening, it was determined that the shortest
time to completion to getting the metacluster configured
as a single cluster was to reinstall all the nodes. By staging
each rack of machines, the complete system was rebuilt in
about two and a half hours (20 minutes/rack) using a sin-
gle 100 Mbit-connected frontend. Each node downloads
approximately 250 MBytes of package data during its in-
stallation. Assuming that a Linux-based webserver can
serve 10 MB/sec, total web traffic for 32 nodes is 32 x
25 seconds or about 13.3 minutes to serve out data for all
nodes. In aggregate, package downloading from a single
100-Mbit frontend would consume about 107 minutes for
the entire 256-node cluster.

One method of scaling performance is to replicate
package servers and then point nodes to different HTTP-
based package servers. Doubling the number of package
servers would half the aggregate download time, as the
bandwidth of the package server effectively doubles. A
second method is simply to scale the package server from
100 Mbit to Gigabit Ethernet. After completing bench-
mark runs Sunday morning, installation benchmarks were
run, but against a frontend connected by Gigabit Ethernet
instead of 100 Mbit. Simple TCP/IP benchmarks using
either ttcp or iperf show that single stream perfor-
mance can routinely deliver more than 800 Mbits (100
MB/sec). A conservative estimate is that a Linux-based
HTTP server can deliver 400 Mbits or 40 MB/sec. In this
case, packages downloaded from a single frontend would
consume about 27 minutes of total network time when se-
rialized across 256 nodes.

5.2.1 Initial Issues at Scale

When benchmarking the metacluster installation, our first
reinstallation at a gigabit consumed about 40 minutes.
However, we found two key errors at this scale: 1)
database connections were left open by our Kickstart gen-
erator, and 2) the DHCP client used by Red Hat was con-
servative regarding DHCP retries, timed out and failed to
retrieve its network settings. For database access, after
about 100 Kickstart generations done in quick succession,
the MySQL server returned errors regarding “too many
open connections”. The connections would eventually
timeout and Kickstart generation would complete. The
Rocks-enhanced Red Hat installer has a watchdog timer
so that if Kickstart generation for an installing node fails,
the node reboots and tries again. When sequencing by
racks (that is, 32 nodes at a time), this problem did not
occur.

The second problem occurred because the DHCP client
was not tolerant to dropped responses. The DHCP client
first sends adiscovermessage and when the DHCP server
receives the message, it responds with anoffer. The client
upon receiving the offer must request the offered address,
to which the server responds with anacknowledgment.
Under heavy traffic loads, it was found that the second
phase DHCP acknowledgments often were dropped. The
client should re-request the address before giving up, but
the standard client only performed one such request and
then gave up. Both of these issues have been addressed in
the latest release of Rocks (version 2.3).

5.2.2 Monitoring and Reboot Performance

Figure 4 indicates several key metrics on a single 128-
node cluster as monitored and visualized by the Ganglia
Toolkit [9]. Ganglia development is led my Matt Massie
at UC Berkeley, and Rocks team members are collabora-
tors and are the key authors for the web presentation of
data. The toolkit and graphs are standard in a Rocks in-
stallation, as end-users have summary overviews of the
cluster enabled automatically and transparently. More de-
tailed data is available simply by clicking on individual
nodes (shown at the bottom of the figure). Ganglia pro-
vides a critical capability for system monitoring.

The topmost graph shows the number of online CPUs.
The first dip of 64 CPUs is the time from start to finish of

Figure 4:Cluster Monitoring with Ganglia.

a 32-node reinstallation – about 15 minutes. The second
dramatic drop in online CPUs illustrates the time to reboot
a 128-node cluster – a touch over 2 minutes. Finally, the
upper right graph shows memory usage. Toward the right-
hand side, one can clearly see HPL starting up and using
varying amounts of memory as different sized matrices
are benchmarked. The total time base in these plots is 1
hour.

6 Summary and Future Work

Rocks makes it easy to rapidly build high-performance
computing systems, and this paper details the truth behind
that statement. Over one weekend in August of 2002, two
128-node clusters were taken out of production and phys-
ically combined into one 256-node metacluster, the soft-
ware stack on every node of the metacluster was reconfig-
ured by installing a complete operating environment from
the ground up, HPL was run repeatedly, the metacluster
was repartitioned into its original two 128-node clusters,
all nodes were reinstalled with their original operating
environment and the clusters were returned to their re-
spective production roles. Additionally, the resulting HPL
benchmark placed the metacluster in the top half (number

233) on the November 2002 TOP500 list. Not bad for a
weekend.

The speed at which Rocks can deploy and manage
high-performance computing resources is one of the rea-
sons Rocks has been selected as the software environment
in support of several large Information Technology Re-
search (ITR) initiatives funded by the National Science
Foundation. Three notable ITR grants that will use Rocks
include: 1) OptIPuter, a $13.5 million award, 2) Geo-
sciences Network (GEON), an $11.25 million award and,
3) UCSD’s Center for Theoretical Biological Physics, a
$10.5-million award.

Rocks will continue to integrate and develop software
technologies in order to support high-performance clus-
ters. In April of 2003, Rocks was released for both x86
and Itanium 2 platforms. While the underlying operat-
ing environment is different for these two platforms (Red
Hat 7.3 vs. Red Hat Advanced Workstation 2.1), the clus-
ter environment (PBS/Maui, Sun Grid Engine, MPICH,
compilers, etc.) are exactly the same. Additionally,
at the Supercomputing 2002 conference, demonstrations
of MPI applications utilizing Intel’s pre-production 10-
Gigabit Ethernet were shown.

We continue to develop services and methods
that enable researchers to deploy large-scale clus-
ters. Recently, the BIO-X project at Stanford Univer-
sity (http://biox.stanford.edu/) has deployed a 300-node
Rocks cluster. Each node is a dual Pentium 4 with hyper-
threading enabled, that is, to the software services, each
node appears to have 4 processors. There was one scaling
issue discovered on this 1200-processor cluster – Maui
was unable to track over 511 active jobs. After increasing
Maui’s global value, the single frontend can now manage
more than 511 active jobs. No other scaling issues have
been reported.

7 Acknowledgments

We’d like to thank Dr. Detlef Stammer8 and Dr. Daniel
Cayan9 of SIO who graciously let us “borrow” their com-
puting resources for a weekend.

8Supported in part by the ONR DURIP Grant Number: N00014-01-
1-0514

9Supported in part by the NSF MRI Grant Number: OCE0116643

Also, we’d like to thank Federico D. Sacerdoti for his
insightful reviews of various drafts of this paper.

References

[1] Thomas E. Anderson, David E. Culler, and David A.
Patterson. A case for NOW (networks of worksta-
tions). IEEE Micro, 15(1):54–64, February 1995.

[2] M. Burgess. Cfengine a site configuration engine. In
USENIX Computing Systems, volume 8, 1995.

[3] Jack J. Dongarra. Performance of various comput-
ers using standard linear equations software, (lin-
pack benchmark report). Technical Report CS-89-
85, University of Tennessee, 2002.

[4] William Gropp, Ewing Lusk, Nathan Doss, and An-
thony Skjellum. High-performance, portable im-
plementation of the MPI Message Passing Inter-
face Standard.Parallel Computing, 22(6):789–828,
1996.

[5] HPL - A Portable Implementation of
the High-Performance Linpack Bench-
mark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/.

[6] M. J. Katz, P. M. Papadopoulos, and G. Bruno.
Leveraging standard core technologies to program-
matically build linux cluster appliances. InPro-
ceedings of 2002 IEEE International Conference on
Cluster Computing, Chicago, Il, October 2002.

[7] P. M. Papadopoulos, M. J. Katz, and G. Bruno.
NPACI Rocks: Tools and techniques for easily de-
ploying manageable linux clusters. InProceedings
of 2001 IEEE International Conference on Cluster
Computing, New Port, CA, October 2001.

[8] T. Sterling, D. Savarese, D. J. Becker, J. E. Dor-
band, U. A. Ranawake, and C. V. Packer. BE-
OWULF: A parallel workstation for scientific com-
putation. InProceedings of the 24th International
Conference on Parallel Processing, volume I, pages
11–14, Oconomowoc, WI, 1995.

[9] The Ganglia Toolkit.
http://ganglia.sourceforge.net/.

[10] TOP500 - The TOP500 Supercomputer Sites.
http://www.top500.org/.

[11] R.C. Whaley, , A. Petitet, and J.J. Dongarra. Auto-
mated empirical optimizations of software and the
atlas project. Parallel Computing, 27(1-2):3–35,
January 2001.

Appendix

Below is theHPL.dat configuration file that generated the result we submitted for consideration in the TOP500 list.
A suggestion by the HPL developers to increase performance is to strive for a “square” processor grid. HPL

multipliesPs by Qs to determine the node count from the specified processor grid. In the example below,Ps = 16
andQs = 15 which is 240. Threadingin ATLAS ensures all 480 CPUs are utilized. We compiled ATLAS with
threading enabled – a feature that recognizes all CPUs on an SMP node and spawns a thread for each CPU. This
increases performance as messages sent between threads on the same node use shared memory to communicate rather
than an external communication fabric (e.g., Ethernet or Myrinet). With threading enabled, the number of compute
nodes needs to be specified for HPL, not the total number of CPUs.

HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
2 # of problems sizes (N)
1000 150000 Ns
2 # of NBs
180 200 NBs
1 # of process grids (P x Q)
16 Ps
15 Qs
16.0 threshold
1 # of panel fact
1 PFACTs (0=left, 1=Crout, 2=Right)
1 # of recursive stopping criterium
8 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
2 RFACTs (0=left, 1=Crout, 2=Right)
2 # of broadcast
1 3 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin-exch,1=long,2=mix)
160 swapping threshold
0 L1 in (0=transposed,1=no-transposed) form
0 U in (0=transposed,1=no-transposed) form
1 Equilibration (0=no,1=yes)
8 memory alignment in double (> 0)

