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A macroscopic two-phase blood flow through
a stenosed artery with permeable wall

Amit Medhavi∗
Department of Mechanical Engineering, Kamla Nehru Institute of Technology, Sulanpur, India

Abstract. The present paper concerns with the fluid mechanical study on the effects of the permeability of the wall through
an overlapping stenosis in an artery assuming that the flowing blood is represented by a macroscopic two-phase model. The
expressions for the blood flow characteristics, the impedance, the wall shear stress distribution in the stenotic region, shearing
stress at the stenosis throats and at the stenosis critical height have been derived. Results for the effects of permeability as well
as of hematocrit on these blood flow characteristics are shown graphically and discussed briefly.
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1. Introduction

Arteriosclerosis or stenosis, stems from the Greek
words arthero (gruel or paste) and sclerosis (hardness),
is narrowing of any body passage, tube or orifice, is
an abnormal and unnatural growth in the arterial wall
thickness that develops at the various locations of the
cardiovascular system under diseased conditions and
occasionally results in to serious consequences (cere-
bral strokes, myocardial infarction, angina pectoris,
cardiac arrests, etc.). It is believed that the disease
occurs due to the deposits of the cholesterol, fatty sub-
stances, cellular waste products, calcium and fibrin in
the inner lining of an artery. Irrespective of the cause,
it is well known that once the constriction has devel-
oped, it brings about the significant changes in the flow
field, and results into significant changes in pressure
distribution, wall shear stress and the impedance (flow
resistance). The flow accelerates and consequently the
velocity gradient near the wall region is steeper due
to the increased core velocity resulting relatively large
shear stress on the wall even for a mild stenosis, in
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the narrowing region of the artery. With the advent of
the discovery that the cardiovascular disease, steno-
sis is closely associated with the flow conditions and
other hemodynamic factors, since the first investiga-
tion of Mann et al. [20], a large number of researchers
including Young [47, 48], Young and Tsai [46], Caro
et al. [7], Shukla et al. [35], Ahmed and Giddens [1],
Sarkar and Jayaraman [34], Pralhad and Schultz [32],
Jung et al. [13], Liu et al. [16], Srivastava [43], Misra
and Shit [26], Mishra and Verma [24], Ponalagusamy
[30], Layek et al. [14, 15], Joshi et al. [12], Mekheimer
and Elkot [22], Tzirtzilakis [45], Mandal and cowork-
ers [17–19], Politis et al. [28, 29], Sankar and Lee [33],
Srivastava and coworkers [39, 40], Singh et al. [36],
Biswas and Chakraborty [5, 6], Medhavi [21], Mishra
and Siddiqui [25], Nadeem et al. [27], Mekheirmer
et al. [23], Ponalagusamy and Selvi [31], Bandy-
opadhyay and Layek [2, 3], Chakraborty et al. [8],
Srivastava et al. [44] and many others have addressed
the stenotic development problems under various flow
situations.

Being a suspension of corpuscles, at low shear
rates blood behaves like a non-Newtonian fluid in
small diameter tubes. Besides, experimental obser-
vations of Cokelet [10] and theoretical investigation
of Haynes [11] indicate that blood cannot be treated
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Fig. 1. Flow geometry of an overlapping stenosis in an artery with
permeable wall.

as a single-phase homogeneous viscous fluid while
flowing through narrow arteries (of diameter ≤1000
� m). Srivastava and Srivastava [38] observed that the
individuality of red cells (of diameter 8 � m) is signif-
icant even in such a large vessels with diameter up to
hundred cells diameter and concluded that blood can
be suitably represented by a macroscopic two-phase
model (i.e., a suspension of red cells in plasma) in
small vessels (of diameter ≤2400 � m). A brief dis-
cussion and survey on suspension modeling of blood
flow has recently been presented by Srivastava [41]. In
addition, the endothelial walls are known to be highly
permeable with ultra microscopic pores through which
filtration occurs. Cholesterol is believed to increase the
permeability of the arterial wall. Such increase in per-
meability results from dilated, damaged or inflamed
arterial walls. A survey of the published literature of the
subject further indicates that the majority of the investi-
gations, reported so far, have considered axisymmetric
and non-symmetric single stenoses. However, in real-
istic situations stenosis may develop in series (multiple
stenosis), overlapping or of composite in nature [40].
In view of the discussion given above, assuming that
the flowing blood is represented by a macroscopic
two-phase model, i.e., a suspension of erythrocytes in
plasma, the research reported here is devoted to study
the flow of blood through an overlapping stenosis in
an artery with permeable wall. The flow in the perme-
able boundary is described by Darcy law which states
that the rate at which a fluid flows through a permeable
substance per unit area is equal to the permeability
(a property of the substance through which the fluid
is flowing) times the pressure drop per unit length of
flow, divided by the viscosity of the fluid. To neglect the
entrance, end and special wall effects the artery length
is considered large enough as compared to its radius.

The wall in the vicinity of the stenosis is usually solid
when stenosis develops in living vasculature.

2. Formulation of the problem

Consider the axisymmetric flow of blood through an
overlapping stenosis, specified at the position as shown
in Fig. 1, in an artery with permeable wall. The geom-
etry of the stenosis which is assumed to be manifested
in the arterial wall segment is described [9, 14, 40] as

R(z)

R0
= 1 − 3

2

δ

R0L4
0

[
11(z − d)L3

0

− 47(z − d)2L2
0 + 72(z − d)3L0

− 36(z − d)4
]
, d ≤ z ≤ d + L0,

= 1 otherwise, (1)

where R(z) and R0 be respectively the radius of the
tube with and without stenosis, L0 is the length of the
stenosis, L is the length of the tube and d indicates its
location, δ is the maximum projection of the stenosis
into the lumen, appears approximately at the locations:
z = d + L0/6 and d + 5L0/6, z being the axial coordi-
nate. The height of the stenosis at z = d + L0/2, called
critical height, is 3δ/4.

The flowing blood is assumed to be represented by
a macroscopic two-phase model, that is, a suspension
of erythrocytes (red cells) in plasma. The equations
describing the steady flow of a two-phase macroscopic
model of blood may be expressed [37, 38] as
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ρp
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where ∇2= ∂/∂r2 + (1/r) (∂/∂r) + ∂2/∂z2 is the two-
dimensional Laplacian operator, (r, z) are (radial, axial)
coordinate (Fig. 1). (uf, vf) and (up, vp) are the (axial,
radial) components of the fluid particle velocities,
respectively, C denotes the volume fraction density
of the particles, p is the pressure, �s(C) � �s is the
mixture viscosity (apparent or effective viscosity), ρf
and ρp are respectively, the actual density of the mate-
rial constituting the plasma (fluid) and the erythrocyte
(particle) phases, (1–C) ρf and Cρp are respectively,
the fluid and the particle phases densities, S is the drag
coefficient of interaction and the subscripts f and p
denote the quantities associated with the plasma and
erythrocyte phases, respectively. The expressions for
drag coefficient of interaction, S and the viscosity of
the suspension, �s for the present study are selected
[42] as

S =
9

2

�o

a2
o

4 + 3[8C − 3C2]1/2 + 3C

(2 − 3C)2 , (8)

�s(C) = �o

1 − mC
,

m = 0.070 exp [2.49C + (1107/T) exp (−1.69C)], (9)

where T is the measure in absolute scale of temperature
(K), �o is the constant plasma viscosity and ao is the
radius of an erythrocyte.

To obtain the solution of Equations (2)–(7) is almost
a formidable task. Depending however, on the size of
the stenosis, certain terms in theses equations are of less
significance than others. Now following the reports of
Young [47], Srivastava and Rastogi [39], the equations
governing the laminar, steady, one-dimensional flow
of blood in an artery in the case of a mild stenosis (i.e.,
δ/R0 << 1) are derived from Equations (2)–(7) as
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C
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The appropriate boundary conditions [4] may be
stated as

∂ uf

∂ r
= 0 at r = 0, (12)

uf = uB and
∂ uf

∂ r
= α√

k
(uB − uporous) at r = R(z),

(13)

where uporous = − k
�0

dp
dz , uporous is the velocity in the

permeable boundary, uB is the slip velocity, �0 is the
plasma (fluid) viscosity, k is Darcy number and �
(called the slip parameter) is a dimensionless quantity
depending on the material parameters which charac-
terize the structure of the permeable material with in
the boundary region.

3. Analysis

The expressions for velocities, uf and up obtained
as the solutions of Equations (10)–(11), subject to the
boundary conditions (12)–(13), are given as
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where � = �s/ �0.
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The volumetric flow flux, Q is now calculated as

Q = 2π (1 − C)
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with β = 8C(1 − C)�s /SR2
0, a non-dimensional sus-

pension parameter.
From Equation (16), one now obtains
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dz
= −8 (1 − C) �s Q

πR4
o

φ(z), (17)
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The pressure drop,�p ( = p at z = 0, − p at z = L)
across the stenosis in the tube of length, L is obtained as

�p =
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0

(
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)
dz =
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ψ, (18)

where
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d

φ(z) dz

+
L∫

d+L0

[φ(z)]R/R0=1 dz. (19)

The analytical evaluation of the second integral in
the expression for ψ obtained above seems to be a
formidable task therefore shall be evaluated numer-
ically whereas the analytical evaluations of first and

the third integrals in the closed form are straightfor-
ward. Using now the definitions from the published
literature [39, 47], the expressions for the impedance
(flow resistance), λ, the wall shear stress distribution
in the stenotic region, τw, shearing stress at the steno-
sis throats, τs and shear stresses at the stenosis critical
height, τc in their non-dimensional form are derived as
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L
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⎭, (20)
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k
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√
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}
,

a = 1 − 1.25δ/R0, b = 1 − 0.75δ/R0.
λ = λ/λ0, (τw, τs, τc) = (τw,τs, τc) /τ0, λ0 = 8 �0

L/πηR4
0, τ0 = 4 �0Q/πηR3

0 are the flow resistance
and shear stress, respectively for a Newtonian fluid
in a normal artery (no stenosis), and λ, τw and τs are
the impedance, wall shear stress and shearing stress
at stenosis throat, respectively in their dimensional
form obtained from the definitions: λ = �p/Q, τw =
( − R/2)dp/dz, τs = (τw)R/R0=a and τc = (τw)R/R0=b.

4. Numerical results and discussion

To have an estimate of quantitative effects of
the various parameters on the result of the study,
computer codes are develop to evaluate the ana-
lytical results obtained in Equations (13)–(16)
numerically in a tube of radius 0.01 cm at the
temperature of 37◦C. The values of the parameters
selected [43, 47] as: d = 0; L0(cm) = 1; L(cm) =
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Fig. 2. Impedance, λ versus stenosis height, δ/Ro for different C.

Fig. 3. Impedance,λ versus stenosis height, δ/Ro for different Darcy
number, k1/2.

1, 2, 5; C = 0, 0.2, 0.4, 0.6; α = 0.1, 0.2, 0.3, 0.4, 0.5;√
k (square root of Darcy number, k and hereafter

referred as Darcy number) = 0.1, 0.2, 0.3, 0.4; δ/R0 =
0, 0.05, 0.10, 0.15, 0.20. It is to note here that the
present analysis corresponds to the flow in a normal
artery (no stenosis) and to the flow of a Newto-
nian fluid for parameters value δ/R0 = 0 and C = 0,
respectively.

The flow resistance (impedance), λ increases with
hematocrit, C for any given stenosis height, δ/R0 and
also increases with the stenosis height, δ/R0 for any
given hematocrit, C (Fig. 2).

The impedance, λ increases with increasing Darcy
number,

√
k for any given set of other parameters

(Fig. 3). The flow characteristic, λ is found to be
independent of the Darcy number,

√
k for a normal (no

Fig. 4. Impedance, λ versus stenosis height, δ/Ro for different slip
parameter, α.

stenosis) artery (Fig. 3). One observes that the blood
flow characteristic, λ increases with the slip parame-
ter, � for other given parameters and the magnitude of
the same is independent of the slip parameter, α for
a normal artery (Fig. 4). The impedance, λ decreases
with the increasing value of the parameter, L which
in turn implies that λ increases with stenosis length,
L0 (Fig. 5). The resistance to flow, λ steeply increases
with the hematocrit, C for any given value of α,

√
k

and δ/R0 (Fig. 6). For other given set of parameters,
the blood flow characteristic, λ decreases from its max-
imal magnitude at

√
k = 0 to its asymptotic value at√

k = 0.15 (Fig. 7). This concludes that the flow resis-
tance assumes considerably higher magnitude in the
artery without permeable wall than its corresponding
value in the artery with permeable wall. One notices
that flow resistance, λ increases with the slip parame-
ter, � from its minimal value at α = 0.1 and achieves
an asymptotic magnitude at about α = 0.5 (Fig. 8).

The wall shear stress in the stenotic region, τw
increases rapidly from its approached value (at z/L0 =
0) and achieves its maximal magnitude at steno-
sis first throat located approximately at z/L0 = 1/6,
it then decreases steeply to its value at the steno-
sis critical height at z/L0 = 1/2 and further increases
steeply to its peak value at the stenosis second throat
(same magnitude as at the stenosis first throat) located
approximately at z/L0 = 5/6 and finally decreases
rapidly to its approached value at the end point of the
constriction profile (i.e., at z/L0 = 1). The blood flow
characteristic, τw increases with the hematocrit, C and
the stenosis height, δ/R0 for any axial location in the



6 A. Medhavi / A macroscopic two-phase blood flow

Fig. 5. Impedance, λ versus stenosis height, δ/Ro for different L.

Fig. 6. Impedance, λ versus C for different stenosis height, δ/Ro.

Fig. 7. Impedance,λversus Darcy number, k1/2 for different stenosis
height, δ/Ro.

Fig. 8. Impedance, λ versus slip parameter, α for different stenosis
height, δ/Ro.

Fig. 9. Wall Shear stress distribution, τw in stenotic region for dif-
ferent δ/Ro and C.

stenotic region. It is to note that the blood flow charac-
teristic, τw assumes a constant magnitude for a given
hematocrit, C for δ/R0 = 0 (Fig. 9).

For any given set of other parameters, the wall shear
stress increases with the Darcy number,

√
k (Fig. 10).

At any axial location in the stenotic region, the flow
characteristic τw increases with the slip parameter, α
(Fig. 11).

The shear stress at stenosis throats, τs (as observed
above the shear stress at stenosis two throats assumes
the same magnitude) increases with the hematocrit, C
as well as with the stenosis height, δ/R0 (Fig. 12).
τs also increases with Darcy number,

√
k as well as

with the slip parameter, α (Figs. 13 and 14). The blood
flow characteristic τs possesses characteristic similar
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Fig. 10. Wall Shear stress distribution, τw in stenotic region for
different k1/2.

Fig. 11. Shear stress at stenosis throat, τs versus stenosis height,
δ/Ro for different α.

Fig. 12. Shear stress at stenosis throat, τs versus stenosis height,
δ/Ro for different C.

Fig. 13. Shear stress at stenosis throat, τs versus stenosis height,
δ/Ro for different k1/2.

Fig. 14. Shear stress at stenosis throat, τs versus stenosis height,
δ/Ro for different α.

to that of the flow resistance, λ with respect to any
parameter. The shear stress at stenosis critical height,
τc too increases with the hematocrit, C, Darcy number,√

k, slip parameter, � and the stenosis height, δ/R0
(Fig. 15). The variations in τc is similar to that of the
shear stress at stenosis throats, τs and the impedance,
λ with respect to any given parameter. However,
τc assumes significantly smaller magnitude than the
corresponding magnitude of the shear stress at stenosis
throats, τs (Figs. 12–15).
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Fig. 15. Shear stress at stenosis throat critical height, τc versus
stenosis height, δ/Ro for different C, α and k1/2.

5. Conclusions

A macroscopic two-phase model of blood has been
applied to discuss the flow through an overlapping
stenosed artery with permeable wall. The flow resis-
tance increases with the hematocrit, stenosis size
(height and length both), Darcy number as well as
with the slip parameter. The informations that the
impedance assumes considerably lower magnitude in
the artery with permeable wall than its correspond-
ing magnitude in the artery with non-permeable wall
and the flow resistance decreases with the hematocrit
seems to be of certain clinical use and the practical
applications. The increasing permeability of the artery
wall and the decreasing hematocrit thus seem to be
helpful in the functioning of the diseased artery. The
wall shear stress at any axial location in the stenotic
region possesses the variations similar to that of the
impedance with respect to any parameter. The magni-
tude of the shear stress at the two stenosis throats is
same and is significantly higher than its corresponding
value at the stenosis critical height. The shear stress
at stenosis throats and at the stenosis critical height
possess characteristic similar to that of the impedance.
The magnitude of the shear stress at stenosis critical
height is reasonably smaller than its corresponding
value at the throats. Although, some useful conclusions
have been drawn above, however, author feels that
considerable amount of research is necessary to
address the problem more realistically and to draw
powerful conclusions.
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