
Algorithms for Minimum-Cost Paths in Time-Dependent
Networks with Waiting Policies

Brian C. Dean
M.I.T., Department of Electrical Engineering and Computer Science, Cambridge, MA 02139

We study the problem of computing minimum-cost
paths through a time-varying network, in which the
travel time and travel cost of each arc are known func-
tions of one’s departure time along the arc. For some
problem instances, the ability to wait at nodes may allow
for less costly paths through the network. When waiting
is allowed, it is constrained by a (potentially time-vary-
ing) waiting policy that describes the length of time one
may wait and the cost of waiting at every node. In dis-
crete time, time-dependent shortest path problems with
waiting constraints can be optimally solved by straight-
forward dynamic programming algorithms; however, for
some waiting policies these algorithms can be compu-
tationally impractical. In this article, we survey several
broad classes of waiting policies and show how tech-
niques for speeding up dynamic programming can be
effectively applied to obtain practical algorithms for
these different problem variants. © 2004 Wiley Periodicals,
Inc. NETWORKS, Vol. 44(1), 41–46 2004

Keywords: shortest paths; time-dependent networks; time-
varying networks; waiting

1. INTRODUCTION

Time-dependent shortest path (TDSP) problems often
arise in vehicular transportation applications, where arc
travel times and costs vary with time in a predictable fash-
ion and at a fast enough rate that conditions may change
significantly during transit through the network. Take G
� (N, A) to be a directed graph with n � �N� nodes and m
� �A� � �(n) arcs. Along with each arc is specified an
arrival time function aij(t) and a travel cost function cij(t),
which give, respectively, the arrival time at node j and the
cost of traveling on the arc, if one departs from node i at
time t. The all-to-one minimum-cost TDSP problem in-
volves computing a minimum-cost path from every node
and every point in time to a specified destination node d
� N, with no restriction on the arrival time at d. Similarly,
for the one-to-all minimum-cost TDSP problem one must

compute minimum-cost paths from a single source node and
departure time to every other node, where again there is no
restriction on the arrival time at these nodes. In this article
we focus exclusively on the all-to-one problem, although all
of our results are straightforward to adapt to the one-to-all
problem without loss of running time.

TDSP problems were first introduced in a discrete-time
framework in 1966 by Cooke and Halsey [6], and have been
subsequently studied in both discrete-time [3–5, 19] and
continuous-time settings [12, 17, 18]. At the present time,
one finds almost exclusive adoption of discrete-time solu-
tions in practice due to their relative simplicity and more
predictable performance guarantees. This article focuses
entirely on the discrete-time domain, involving time values
t � [T] � {0, 1, 2, . . . , T � 1}, where T denotes the
length of time until the “planning horizon” for the problem
instance under consideration. We can either represent the
functions aij and cij for a particular arc (i, j) as length-T
vectors or assume an “oracle” model in which these func-
tions are analytically specified in some more concise form
(e.g. piecewise linear) that can be queried in constant time.
In discrete time the goal of the all-to-one problem is to
compute for each (i, t) � N � [T] the cost Pi(t) of the
optimal path to the destination departing from node i at time
t. For now we assume for simplicity that travel at any point
in time t � T beyond the planning horizon is forbidden.
This restriction can be relaxed, if we assume that network
characteristics remain static for t � T, although this has a
slight impact on the running times of our algorithms—we
discuss this issue further in Section 4.

It is a well-known result that waiting at nodes is never
beneficial if one wishes to compute minimum-time paths
and all aijs are nondecreasing (known as the FIFO condi-
tion). On the other hand, if we either want minimum-cost
paths or if the FIFO condition fails to hold, then waiting at
nodes may allow for better paths to the destination. The
simplest waiting models in the literature assume that wait-
ing at a given node is either forbidden or allowed for an
unrestricted amount of time. However, more generally one
may specify for each node i � N a function Ci(t, �), which
gives the cost of waiting for � units of time after arriving at
node i at time t, departing at time t � �. Waiting can be
forbidden at certain times and for certain durations by

Received January 2003; accepted March 2004
Correspondence to: B. Dean; e-mail: bdean@theory.lcs.mit.edu
DOI 10.1002/net.20013
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2004 Wiley Periodicals, Inc.

NETWORKS—2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357231266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

appropriate use of infinite waiting costs. Unfortunately, by
allowing such a general waiting cost function as input no
TDSP algorithm can hope to achieve a better worst-case
running time than O(nT2) due to the need to potentially
examine all of its input. As a result, we wish to consider
more succinct waiting policies such as the following:

1.1. Duration-Dependent Waiting Costs

The waiting cost function of node i is duration-depen-
dent if Ci(t, �) � DWCi(�), where DWCi(�) is called the
duration waiting cost function of node i. Lower and upper
bounds on the amount of time one may wait at i may be
imposed by setting DWCi(�) to infinity for appropriate
values of the waiting duration �.

1.2. Location-Dependent Waiting Costs

Let us assign a unit waiting cost Ci(t, 1) to every (i, t)
� N � [T].

We say waiting costs are location-dependent if they only
depend on the “locations,” in time and space, at which
waiting occurs; that is,

Ci�t, �� � �
u�t

u�t���1

Ci�u, 1�.

One may also characterize location-dependent costs as be-
ing “memoryless,” because in this case the cost of waiting
at every (node, time) location is independent of the amount
of waiting that has previously taken place in the network.
Infinite unit waiting costs can be used to prohibit waiting at
certain nodes during certain time intervals. We will find it
convenient to define location-dependent waiting costs in
terms of a cumulative cost of waiting function CCWi(t)
� ¥u�0

t�1 Ci(u, 1), so that Ci(t, �) � CCWi(t � �)
� CCWi(t).

1.3. Mixed Waiting Costs

Waiting cost in this case is the sum of a duration-
dependent component plus a location-dependent compo-
nent: Ci(t, �) � DWCi(�) � CCWi(t � �) � CCWi(t).

The contribution of this article is a set of more efficient
algorithms for the minimum-cost TDSP problem with
mixed waiting costs, where the duration-dependent compo-
nent is either convex, concave, or a piecewise combination
of convex and concave functions (we define a convex func-
tion as having a nonnegative second derivative). This class
is sufficiently broad that it should encompass many waiting
policies found in practice. As noted above, we can restrict
both the time intervals during which waiting may occur as
well as the allowable durations of waiting. Parking a vehicle
in a private lot or garage typically involves a concave cost
function over the duration of waiting. Convex functions

may be used in locations where only brief waiting is desired,
because the marginal cost of waiting becomes increasingly
larger over time. Our results are based on techniques for
speeding up dynamic programming that were initially de-
veloped for a host of applications, most notably sequence
alignment in computational biology.

2. PREVIOUS WORK AND SUMMARY OF
RESULTS

If waiting costs are location-dependent, simple dynamic
programming algorithms [3, 4, 19] can be used to solve the
all-to-one TDSP problem in O(mT) time, based on the
following recursive formulation:

Pi�t�

� �
�	, if t � T,
0, if t � T and i � d,
min�Ci�t, 1� � Pi�t � 1�,

min
cij�t� � Pj�aij�t�� : �i, j� � A��, if t � T and i � d.

(1)

We arrive at a nice interpretation for dynamic program-
ming algorithms based on (1) by noting that these equations
give precisely Bellman’s optimality conditions for an equiv-
alent static shortest path problem in a time-expanded net-
work [Fig. 1(a)]. Since the pioneering work of Ford and
Fulkerson [8], many dynamic network optimization prob-
lems have been shown to be equivalent to static problems
appropriately cast within a time-expanded network, and the
TDSP problem is no exception: here, we wish to compute
the shortest path from every time-expanded node (i, t) � N
� [T] to the set of destination nodes d � [T]. Assuming
that aij(t) � t for all (i, j) � A, the time-expanded network
is acyclic. It is well known that the single-source shortest
path problem can be solved in acyclic networks in linear
time, in this case O(mT) time. Acyclic shortest path algo-
rithms work via dynamic programming by processing nodes
in a topological ordering, which in this case corresponds to
enumerating the nodes of the time-expanded network in
successive time levels in reverse chronological order. In the
input model where the aij and cij functions are represented
by length-T vectors, the O(mT) running time is worst-case
optimal and linear in the input size.

A slightly more complicated cost policy involves the use
of location-dependent costs where waiting of only bounded
duration is allowed. The bounded duration constraint can be
specified by a duration-dependent cost function that jumps
to infinity at some point. For zero-cost bounded-duration
waiting, Cai, Cloks, and Wong [3] provide an algorithm
with running time of O(nT log T � mT). Chabini and Dean
[5] later improved the running time to O(mT) while also
allowing for location-dependent waiting costs.

For the more general mixed waiting cost policy, a
slightly more complicated dynamic programming formula-
tion yields an O(nT2 � mT) algorithm. Let us define Pi

w(t)

42 NETWORKS—2004

to be the optimal path cost from (i, t) to the destination
where waiting is allowed prior to departure, and let Pi

nw(t)
be the optimal path cost where no waiting is allowed. Then
we have

Pi
nw�t�

� ��	, if t � T,
0, if t � T and i � d,
min
cij�t� � Pj

w�aij�t�� : �i, j� � A�, if t � T and i � d,

(2)

Pi
w�t� � min

��0

DWCi��� � CCWi�t � �� � Pi
nw�t � ���

� CCWi�t�. (3)

Again, we can interpret this dynamic program as the
computation of shortest paths through an acyclic time-
expanded network [Fig. 1(b)], where each time-expanded
node (i, t) is split into a “waiting node” (iw, t) and a
“nonwaiting” node (inw, t). In contrast to the previous
O(mT) algorithm, however, the O(nT2 � mT) running
time of this algorithm is not linear in the input size, because
a mixed waiting policy is specified by at most O(nT)
elements of data. Therefore, in this case we have some hope
of achieving more efficient running times. In practice, we
can typically realize substantial savings by only applying
(2) and (3) for nodes with duration-dependent or mixed
waiting costs—for example, if waiting happens to be pro-
hibited at most nodes in our network. This simplification
reduces the running time to O(n
T2 � mT), where n
 is the
number of nodes with “complicated” waiting policies; how-
ever, the troublesome T2 term still persists. In Section 3, we
describe how to speed up the dynamic programming com-
putation so as to reduce the running time from O(nT2

� mT) down to O(nT�(T) � mT) where each duration-
dependent cost component has a constant number of convex
and/or concave pieces and �� denotes a version of the

inverse Ackermann function to be defined later. This reduc-
tion in running time has significant implications for the
computational feasibility of solving large problem in-
stances.

3. BOUNDED WAITING WITH LOCATION-
DEPENDENT WAITING COSTS

For completeness, we briefly summarize the result of
Chabini and Dean [5], which yields an O(mT) running time
when waiting costs are location-dependent and waiting du-
rations are bounded. Their basic dynamic programming
algorithm repeatedly applies (2) and (3) in reverse chrono-
logical order to determine the optimal labels for nodes in the
time-expanded network. In total (2) requires O(mT) time
and (3) requires O(nT2) time. We will show how to eval-
uate each of the nT occurrences of (3) in constant amortized
time, reducing the total back down to O(mT).

We define the bounded waiting constraint by means of a
function Mi(t) that specifies the latest time until which one
may wait after arriving at node i at time t. If bounded
waiting is specified by a duration-dependent waiting cost
function that jumps to infinity after some duration D, we get
the constant function Mi(t) � D. However, more generally
we can consider Mi(t) to be any nondecreasing function. In
other words, we can think of there being a window of
feasible waiting durations [t, Mi(t)], and as t monotonically
decreases over the course of our dynamic programming
algorithm, the upper end point of the window Mi(t) will also
be monotonically decreasing. By setting Qi(t) � Pi

nw(t)
� CCWi(t), we can simplify (3) to

Pi
w�t� � min
Qi�t � �� : t 	 t � � 	 Mi�t�� � CCWi�t�. (4)

As we scan backward through time, we can think of the
evaluation of (4) as the selection of the minimum element
from a FIFO queue whose elements represent the cost of
waiting plus departure at each feasible waiting duration.

FIG. 1. Graphical depiction of time-expanded networks. In (a), waiting is allowed for unlimited duration with
location-dependent costs at node i, and is forbidden at node j (the “waiting arcs” from (j, t) to (j, t � 1) have
infinite cost and are not drawn). In (b), waiting is allowed at i with mixed waiting costs.

NETWORKS—2004 43

When time is reduced from t to t � 1, a new element Qi(t
� 1) is added to the back of the queue and a set of Mi(t)
� Mi(t � 1) elements is removed from the front. There-
fore, we can reduce our problem to the following data
structure problem: design a queue-like data structure that
supports insert, remove, and find-min operations each in
O(1) amortized time. It is not difficult to build such a data
structure: it is a standard FIFO queue in which elements will
have increasing values as we move from the front of the
queue to the back. Whenever an element is inserted in the
back of the queue, we delete all elements in front of it
having larger value (a contiguous block of elements), and
record the size of this deleted block alongside the new
element (to accommodate subsequent calls to remove, in the
case that we ask to remove an already-deleted element).

3.1. Piecewise Linear Duration-Dependent Waiting Costs

If we have mixed waiting costs involving duration-de-
pendent components that are piecewise linear with at most
P total pieces across all arcs, the result above can be used to
obtain an O(PT � mT) running time via a node-splitting
transformation. Suppose the duration-dependent component
DWCi(�) of the waiting cost at node i is piecewise linear
with p pieces, so for k � 1 . . . p,

DWCi��� � �k�� � �k�1� �
k for �k�1 	 � � �k,

where �0 � 0 and �p � T. We split i into p � 2 nodes i
,
i�, and i1 . . . ip (each of which corresponds to one of the
pieces of DWCi). There is a directed arc from i
 to each of
the nodes i1 . . . ip and a directed arc from each of i1 . . . ip

to i�, and i� will have the same set of outgoing arcs as the
original node i. No waiting is allowed at i
 and i�, and
waiting at ik is allowed for at most �k � �k�1 � 1 units of
time. While traveling through the time-expanded network, a
commodity will arrive first at i
, at which point it selects the
linear piece k, 1 	 k 	 p, of DWCi until which it will wait.
It then moves to node ik, waits for some amount of time, and
finally moves to i� from which it immediately departs to
some other node. The time-dependent characteristics of i
,
i�, and i1 . . . ip are as follows:

ci
ik�t� � CCWi��k�1� � CCWi�t�, ai
ik�t� � t � �k�1,

ciki��t� �
k, aiki��t� � t,

ci�j�t� � cij�t�, ai�j�t� � aij�t�,

Cik�t, 1� � Ci�t, 1� � �k.

Because nodes i1 . . . ip each contribute two new edges,
a total of O(PT) extra time will be required by the algorithm
beyond its original O(mT) running time. Also note that we
had previously assumed that aij(t) � t for all edges (i, j) to
assure acyclicity of the time-expanded network. The trans-

formation above does create some edges for which aij(t)
� t, but these new edges never create time-expanded cy-
cles. Thus, our dynamic programming algorithm can still be
successfully applied, but we must now, however, be careful
to process nodes within each time-level in a proper topo-
logical ordering.

4. DURATION-DEPENDENT WAITING COSTS

In this section we consider mixed waiting cost policies
with duration-dependent components made up from convex
and concave pieces. If all such pieces are convex and there
are at most P pieces across all arcs in the network, we will
achieve a running time of O(PT � mT). If concave pieces
exist, the running time increases very slightly to O(PT�(T)
� mT). In both cases, however, there is a substantial
improvement over the naı̈ve algorithm that includes an
O(nT2) term. The function �(T) is a version of the inverse
Ackermann function defined as �(T) � min{k�fk(T) 	 k},
where f�1(n) � n/ 2 and fk(n) � min{i�fk�1

(i) 	 1} (f(i)

denotes the function f applied for i iterations). The function
�(T) grows much slower than log T and can be informally
thought of as a constant for all conceivable values of T
encountered in practice; for example, �(2256) 	 3.

We utilize techniques for speeding up certain classes of
“one-dimensional” dynamic programming algorithms that
were initially motivated by a host of problems from various
fields, most notably by sequence alignment problems from
computational biology. These problems are based on the
following fundamental recurrence for computing D(t) and
E(t) for t � [T]:

E�t� � min
��0

D�t � �� � f����, (5)

where D(t) can be computed from E(t) in constant time. In
the context of sequence alignment between two strings A
and B, D(t) represents the optimal cost of aligning a given
suffix of A starting exactly at position t in B, and E(t)
represents the optimal cost of alignment at position t in B
where a “gap” of some length � is allowed (so the suffix of
A would actually be aligned starting at position t � � in B).
The function f(�) specifies a gap penalty that depends on the
gap length, which is often concave for sequence alignment
in computational biology.

In the context of the TDSP problem, we see that (5) is
essentially the same as the equation used to compute Pi

w(t)
in (3). If DWCi(�) is the duration-dependent component of
Ci(t, �), we can express (3) as

Pi
w�t� � min

��0

Qi�t � �� � DWCi���� � CCWi�t�, (6)

which is equivalent in structure to (5). In our case, waiting
plays the same role as a gap in sequence alignment, and the
waiting cost function DWCi(�) corresponds directly to the
gap penalty function f(�).

44 NETWORKS—2004

The straightforward dynamic programming algorithm for
solving (5) for t � [T] runs in O(T2) time, and for arbitrary
gap penalty functions f it is currently not known if one can
do better. For convex f, Hirschberg and Larmore [13] show
how to speed up the dynamic programming computation to
run in O(T log T) time, and when f is concave Miller and
Myers [16] give an O(T log T) algorithm. Galil and Gian-
carlo [10] also provide O(T log T) algorithms for both the
convex and concave cases. Following these results, a sig-
nificant breakthrough was achieved by Wilber [20], whose
devised an O(T) algorithm for the convex case based on fast
matrix searching techniques due to Aggarwal et al. [1].
However, Wilber’s technique cannot be used for our TDSP
problem because it does not run in linear time for many
problems consisting of several interleaved computations
based on (5). Wilber’s algorithm occasionally makes “mis-
takes” that require it to recompute D(t) from E(t) multiple
times for a given t. If D(t) can be computed from E(t) in
constant time this does not adversely affect the running
time; however, in our case D and E correspond to the Pnw

and Pw labels and to compute D from E requires application
of (2), which is not a constant-time operation. Subsequent to
Wilber’s result several authors proposed enhancements that
allowed for interleaved computation in O(T) time, includ-
ing Klawe [14], Galil and Park [10], and Eppstein [7]. For
the concave case Klawe and Kleitman [15] give an
O(T�(T)) algorithm also based on matrix searching, and
for functions composed of a series of p convex and concave
pieces, Eppstein [7] shows how to achieve a running time of
O(pT�(T/p)) � O(pT�(T)). See also Galil and Park [11]
for a good survey of these results.

By applying these techniques, we can achieve an O(mT)
running time for the TDSP problem if duration-dependent
costs are convex, and we obtain a running time of
O(PT�(T) � mT) by applying Eppstein’s technique,
where among all arcs we find a total of P convex and/or
concave pieces. If all pieces are convex, we can apply the
node-splitting transformation from the previous section in
conjunction with [7, 10, 14] to reduce the running time back
down to O(PT � mT).

5. CONCLUDING REMARKS

We have discussed several techniques for speeding up
computation of minimum-cost paths in time-dependent net-
works with various waiting policies. Our discussion has
been centered on the all-to-one TDSP problem; however, all
techniques carry over to the one-to-all problem with the
same running time if we adapt them to “forward” dynamic
programming that operates in increasing, rather than de-
creasing chronological order of time. We have shown that in
the presence of duration-dependent waiting costs, the struc-
ture of the dynamic programming formulation for the TDSP
problem is equivalent to well-studied dynamic program-
ming problems from other fields; hence, any subsequent
improvements for those problems (e.g., removal of the

inverse Ackermann function for the concave case) would
carry over to the TDSP problem.

We have assumed throughout this article that arc travel
times are strictly positive, to ensure an acyclic time-ex-
panded network. In the event that this assumption fails and
we have “zero-delay” arcs, the same efficient approaches
can still be used to handle waiting constraints and costs.
However, we incur a slight increase in running time because
the computation of (2) within each “time-level” of the
time-expanded network will now require a shortest path
computation. If SSP(m) denotes the running time for solv-
ing a static shortest path problem with m arcs, the presence
of zero-delay arcs raises the O(mT) term in our running
time expressions up to O(SSP(m) � T). A common special
case of the zero-delay scenario arises when we wish to
model the fact that travel beyond time T � 1 is permitted,
given that arc travel times and costs remains static for t � T
� 1. This is accomplished through the use of zero-delay
arcs on the final time level, by setting aij(T � 1) � T � 1
for all (i, j) � A, and it results in an additive penalty of
O(SSP(m)) for all of our running times. In particular, this
extension allows us to solve the all-to-one problem for all
nodes and all values t � 0 in time, because the minimum-
cost path departing node i at time t � T is now the same as
the minimum-cost path departing from i at time t � T � 1.
Related to this special case is the case of networks with
temporally repeated time-dependent characteristics (see,
e.g., [2]). It is not clear whether or not any of the techniques
from this article might carry over to the temporally repeated
case, and this might be an interesting direction for future
research. One may also wish to investigate how well these
results carry over to problems formulated in continuous-
time settings, for example, in networks with piecewise
constant or piecewise linear time-dependent characteristics.

REFERENCES

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R.
Wilber, Geometric applications of a matrix-searching algo-
rithm, Algorithmica 2 (1987), 195–208.

[2] R. Ahuja, J. Orlin, S. Pallottino, and M.G. Scutella, Mini-
mum time and minimum cost path problems in street net-
works with periodic traffic lights, Transport Sci 36 (2002),
326–336.

[3] X. Cai, T. Kloks, and C.K. Wong, Time-varying shortest
path problems with constraints, Networks 29 (1997), 141–
149.

[4] I. Chabini, Discrete dynamic shortest path problems in
transportation applications: Complexity and algorithms with
optimal run time, Transport Res Rec 1645 (1998).

[5] I. Chabini and B. Dean, Shortest path problems in discrete-
time dynamic networks: Complexity, algorithms, and im-
plementations, Unpublished manuscript (1999).

[6] L. Cooke and E. Halsey, The shortest route through a
network with time-dependent internodal transit times, J
Math Anal Applicat 14 (1966), 492–498.

NETWORKS—2004 45

[7] D. Eppstein, Sequence comparison with mixed convex and
concave costs, J Algorithms 11 (1990), 85–101.

[8] L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton
University Press, Princeton, NJ, 1962.

[9] Z. Galil and R. Giancarlo, Speeding up dynamic program-
ming with applications to molecular biology, Theoret Com-
put Sci 64 (1989), 107–118.

[10] Z. Galil and K. Park, A linear-time algorithm for concave
one-dimensional dynamic programming, Informat Process
Lett 33 (1990), 309–311.

[11] Z. Galil and K. Park, Dynamic programming with convex-
ity, concavity and sparsity, Theoret Comput Sci 92 (1992),
49–76.

[12] J. Halpern, Shortest route with time-dependent length of
edges and limited delay possibilities in nodes, Zeitschrift
Operat Res 21 (1977), 117–124.

[13] D.S. Hirschberg and L.L. Larmore, The least weight subse-
quence problem, SIAM J Comput 16 (1987), 628–638.

[14] M. Klawe, A simple linear-time algorithm for concave

one-dimensional dynamic programming, Technical Report
89-16, Department of Computer Science, University of Brit-
ish Columbia, 1990.

[15] M.M. Klawe and D.J. Kleitman, An almost linear time
algorithm for generalized matrix searching, SIAM J Discr
Math 3 (1990), 81–97.

[16] W. Miller and E.W. Myers, Sequence comparison with
concave weighting functions, Bull Math Biol 50 (1988),
97–120.

[17] A. Orda and R. Rom, Shortest-path and minimum-delay
algorithms in networks with time-dependent edge length, J
ACM 37 (1990), 607–625.

[18] A. Orda and R. Rom, Minimum weight paths in time-
dependent networks, Networks 21 (1991), 295–320.

[19] S. Pallottino and M. Skutella, Shortest path algorithms in
transportation models: Classical and innovative aspects,
Technical Report TR-97-06, Univerità di Pisa, 1997.

[20] R. Wilber, The concave least-weight subsequence problem,
J Algorithms 9 (1988), 418–425.

46 NETWORKS—2004

