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This paper investigates the stability of stochastic discrete-time neural networks (NNs) with discrete time-varying delays and leakage
delay. As the partition of time-varying and leakage delay is brought in the discrete-time system, we construct a novel Lyapunov-
Krasovskii function based on stability theory. Furthermore sufficient conditions are derived to guarantee the global asymptotic
stability of the equilibrium point. Numerical example is given to demonstrate the effectiveness of the proposed method and the
applicability of the proposed method.

1. Introduction

Neural networks (NNs) have receivedmuch interest owing to
their wide application in the areas of signal processing, pat-
tern recognition, and static image processing in [1, 2]. One of
the most important and challenging questions in theoretical
analysis of neural networks (NNs) is dynamical behaviors of
the neural networks, for example, stability, instability, peri-
odic oscillatory, and chaos. Among them analysis of stability
has received much attention and various stability conditions
have been obtained in [3–10]. The main problem of stability
analysis is how to construct appropriate Lyapunov functions
which are widely used in various fields [11–18]. Then the
construction of Lyapunov functions is determined by the
structure of neural networks. The study of neural networks
generally considers the following factors.

It is well known that time delay is inherent in various
systems, including artificial neural networks, owing to the
finite speed of signal transmission [3]. Delays in a systemmay
cause oscillation and divergence andmay degrade the perfor-
mance. Hence, stability analysis of systems with time delay
is widespread. Scholars classify the analysis of stability into
delay-independent and delay-dependent ones. It has been
proved in [4, 5] that the delay-dependent criterion is less
conservative than the delay-independent one, especially for
smaller values of delay. Delay-dependent stability condition

for continuous-time NNs with time-varying delays has been
reported in literatures [4–10]. The approaches to handle the
time-varying delay in most literatures are based on intro-
ducing free weighting matrices [19], model transformation
method [20], and linear matrix inequality (LMI) approach
and employing the delay partitioning approach in [21, 22].

In the digital life, most of the signals including the con-
tinuous-time NNs need to be processed, experimentalized,
or computed by the computer, such that we must discretize
the continuous-time signals before delivering them to the
computer.Therefore, the stability of discrete-time neural net-
works is necessary, andmore andmore literature about it was
published [22–28].

As pointed out in [29], discrete-time delays were intro-
duced into bidirectional associative memory (BAM) neural
networks which were known as leakage (or forgetting) terms.
From literatures [30–36] it can be found that the leakage
terms had a tendency to destabilize the neural networks. In
the literatures [30, 31], the system with leakage delays had
been studied. However, different from [29], the leakage delays
changed to be time varying. Not only that, different kinds of
neural networks with time delays in the leakage terms were
studied, especially the effect of leakage term on the dynamical
behavior of various kinds of neural networks [32–42]. In
[33], passivity analysis of neural networks with time-varying
delays and leakage delay was considered. And they used
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the free-weighting matrix method and stochastic analysis
technique. Furthermore, Li and others in [34, 35] researched
stability of various differential systems including neural net-
works in leakage terms, by using contraction mapping the-
orem, Brouwers fixed point theorem, Lyapunov-Krasovskii
functional method, and free weighting matrix technique.
Unfortunately, neural networks with the leakage terms in
most literatures are continuous systems, and there is not
any thesis about discrete neural networks with the leakage
delay. On the other hand, it has now been well recognized
that stochastic disturbances are mostly inevitable owing to
noise in electronic implementations. It has also been revealed
that certain stochastic inputs could make a neural network
unstable.

In this paper, the stability problem is considered for dis-
crete-time neural networks with time-varying delays in the
leakage terms. Firstly, the mathematical models are estab-
lished. Secondly, a less conservative and new stability crite-
rion is derived by using a novel Lyapunov-Krasovskii func-
tional which depends on the circumstance of the delay par-
tition. Thirdly, a numerical example is provided to show the
effectiveness of the main result.

Notation. Throughout this paper, R𝑛 denotes the 𝑛-dimen-
sional Euclidean space, and R𝑛×𝑚 denotes the set of all real
matrices.The superscript𝑇 denotes matrix transposition and
the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌, resp.), where 𝑋 and 𝑌 are
symmetricmatrices, means that𝑋−𝑌 is positive semidefinite
(positive definite, resp.). In symmetric block matrices, the
symbol∗ is used as an ellipsis for terms induced by symmetry.
| ⋅ | stands for the Euclidean vector norm in R𝑛. E{𝑥} and
E{𝑥 | 𝑦} denote the expectation of 𝑥 and the expectation of 𝑥
conditional on 𝑦. (Ω,F,P) is a probability space, whereΩ is
the sample space,F is the 𝜎-algebra of subsets of the sample
space, andP is the probability measure onF.

2. Preliminaries

Discretizing the continuous-time NNs with leakage terms
[39], we will consider the following discrete-time systems
with time-varying delays in leakage terms:

𝑥 (𝑘 + 1)

= 𝑥 (𝑘) − 𝐶𝑥 (𝑘 − 𝜎) + 𝐴𝐹 (𝑥 (𝑘)) + 𝐵𝐺 (𝑥 (𝑘 − 𝜏 (𝑘))) ,

(1)

where 𝑥(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)]
𝑇 is the state vector at

time 𝑘;𝐶 = diag[𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
]with𝐶 > 0 is the state feedback

coefficient matrix; the 𝑛 × 𝑛 matrices 𝐴 = [𝑎
𝑖𝑗
]
𝑛×𝑛

and 𝐵 =

[𝑏
𝑖𝑗
]
𝑛×𝑛

are the connection weight matrix and the discretely
delayed connection weight matrix, respectively; 𝐹(𝑥(𝑘)),
𝐺(𝑥(𝑘)) are the neuron activation functions, which satisfy
𝐹(𝑥(𝑘)) = [𝐹

1
(𝑥
1
(𝑘)), 𝐹

2
(𝑥
2
(𝑘)), . . . , 𝐹

𝑛
(𝑥
𝑛
(𝑘))]
𝑇, 𝐺(𝑥(𝑘)) =

[𝐺
1
(𝑥
1
(𝑘)), 𝐺

2
(𝑥
2
(𝑘)), . . . , 𝐺

𝑛
(𝑥
𝑛
(𝑘))]
𝑇; 𝜏(𝑘) denotes the dis-

crete time-varying delay; 𝜎means the leakage delays.

Assumption 1. For any 𝑥, 𝑦 ∈ 𝑅, (𝑥 ̸= 𝑦), 𝑖 ∈ {1, 2, . . . , 𝑛}, the
activation functions satisfy

̂
𝑓
−

𝑖
≤

𝐹
𝑖
(𝑥) − 𝐹

𝑖
(𝑦)

𝑥 − 𝑦

≤
̂
𝑓
+

𝑖
; 𝑔

−

𝑖
≤

𝐺
𝑖
(𝑥) − 𝐺

𝑖
(𝑦)

𝑥 − 𝑦

≤ 𝑔
+

𝑖
,

(2)

where ̂
𝑓
−

𝑖
, ̂𝑓+
𝑖
, 𝑔−
𝑖
, and 𝑔+

𝑖
are constants.

Remark 2. The condition on the activation functions in
Assumption 1 was originally employed in [6, 7] and has been
subsequently used in recent papers with the problem of
stability of neural networks; see [21–28].

The system (1) has equilibrium points under
Assumption 1. Let 𝑥∗ be the equilibrium point of system (1),
and shift it to the origin by letting 𝑦(𝑘) = 𝑥(𝑘) − 𝑥

∗, and then
system (1) with stochastic disturbances can be rewritten as

𝑦 (𝑘 + 1) = 𝑦 (𝑘) − 𝐶𝑦 (𝑘 − 𝜎) + 𝐴𝑓 (𝑦 (𝑘))

+ 𝐵𝑔 (𝑦 (𝑘 − 𝜏 (𝑘))) + 𝛿 (𝑘, 𝑦 (𝑘)) 𝜔 (𝑘) ,

(3)

where 𝑦(𝑘) = [𝑦
1
(𝑘), 𝑦
2
(𝑘), . . . , 𝑦

𝑛
(𝑘)]
𝑇 is the state vector

of the transformed system, 𝑦(𝑘 − 𝜎) = 𝑥(𝑘 − 𝜎) − 𝑥
∗, and

the transformed neuron activation functions are 𝑓(𝑦(𝑘)) =
𝐹(𝑥(𝑘)) − 𝐹(𝑥

∗

), 𝑔(𝑦(𝑘)) = 𝐺(𝑥(𝑘)) − 𝐺(𝑥
∗

), and 𝜔(𝑘) is a
scalar Wiener process on a probability space (Ω,F,P) with
E{𝜔(𝑘)} = 0, E{𝜔2(𝑘)} = 1, E{𝜔(𝑖)𝜔(𝑗)} = 0 (𝑖 ̸= 𝑗). Then
̂
𝑓
−

𝑖
≤ (𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦))/(𝑥 − 𝑦) ≤

̂
𝑓
+

𝑖
; 𝑔−
𝑖
≤ (𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦))/(𝑥 −

𝑦) ≤ 𝑔
+

𝑖
can be verified from Remark 2.

Assumption 3. The noise intensity function vector 𝛿(⋅, ⋅) :

N × N𝑛 → N𝑛 satisfies the Lipschitz condition; that is, the
nonlinear function 𝛿(𝑘, 𝑥) satisfies the following inequality:

𝛿 (𝑘, 𝑥)
𝑇

𝛿 (𝑘, 𝑥) ≤ 𝜉𝑥
𝑇

𝑥, (4)

where 𝜉 is a known scalar constant.

Assumption 4. The time-varying delay 𝜏(𝑘) is bounded, 0 <

𝜏
𝑚

≤ 𝜏(𝑘) ≤ 𝜏
𝑀
, and its probability distribution can be

observed. Assume that integer 𝜏(𝑘) is satisfied in 𝜏
𝑖
≤ 𝜏(𝑘) ≤

𝜏
𝑖+1

, 𝑑
𝑖
= 𝜏
𝑖
− 𝜏
𝑖−1

̸= 0, 𝑖 = 1, 2, . . . , 𝑙, which means we divide
[𝜏
𝑚
, 𝜏
𝑀
] into 𝑙 parts, and Prob{𝜏(𝑘) ∈ [𝜏

𝑖−1
, 𝜏
𝑖
)} = 𝜌

𝑖
= 1 − 𝜌

𝑖
,

where 0 ≤ 𝜌
𝑖
≤ 1, ∑

𝑖
𝜌
𝑖
= 1, 𝑖 = 1, . . . , 𝑙, and 𝜏

0
= 𝜏
𝑚
, 𝜏
𝑙
= 𝜏
𝑀
.

To describe the probability distribution of time-varying
delay, we define the following setA

𝑖
= (𝜏
𝑖−1
, 𝜏
𝑖
], 𝑖 = 1, 2, . . . , 𝑙.

Define mapping functions

𝜏
𝑖
(𝑘) =

{

{

{

𝜏 (𝑘) , 𝜏 (𝑘) ∈ A
𝑖

𝜏
𝑖−1
, else,

𝜌
𝑖
(𝑘) =

{

{

{

1, 𝜏 (𝑘) ∈ A
𝑖

0, else.
(5)

Remark 5. Consider Prob{𝜌
𝑖
(𝑘) = 1} = E{𝜌

𝑖
(𝑘)} = 𝜌

𝑖
,

Prob{𝜌
𝑖
(𝑘) = 0} = 𝜌

𝑖
, E{𝜌
𝑖
(𝑘) ∗ 𝜌

𝑗
(𝑘)} = {

𝜌
𝑖
, 𝑖=𝑗

0, else.

Remark 6. In the literature [21], the delay-partitioning pro-
jection technique is used. In [21], they partition 𝜏(𝑡) into
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several components, that is, 𝜏(𝑡) = ∑
𝑚

𝑖=1
𝜏
𝑖
(𝑡), where 𝑚 is

a positive integer, in order to derive some less restrictive
stability criteria. Different from the literature [21], we use the
knowledge of probability to describe the partition of time
delay. This way has the advantage of reducing the amount of
calculation.

Then the system (3) can be rewritten as
𝑦 (𝑘 + 1) = 𝑦 (𝑘) − 𝐶𝑦 (𝑘 − 𝜎) + 𝐴𝑓 (𝑦 (𝑘))

+

𝑙

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝐵𝑔 (𝑦 (𝑘 − 𝜏

𝑖
(𝑘))) + 𝛿 (𝑘, 𝑦 (𝑘)) 𝜔 (𝑘) .

(6)

3. New Stability Criteria

In this section, we will establish new stability criteria for
system (1). The following lemma is needed in order to derive
our main results.

Lemma7 (Zhu andYang [23] discrete Jenson inequality). For
any constant matrix𝑀 ∈ 𝑅

𝑛×𝑛,𝑀 = 𝑀
𝑇

> 0, integers 𝛾
2
≥ 𝛾
1
,

vector function𝜔 : [𝛾
1
, 𝛾
1
+1, . . . , 𝛾

2
] → 𝑅

𝑛 such that the sums
in the following are well defined, and then

− (𝛾
2
− 𝛾
1
+ 1)

𝛾2

∑

𝑖=𝛾1

𝜔
𝑇

(𝑖)𝑀𝜔 (𝑖)

≤ −(

𝛾2

∑

𝑖=𝛾1

𝜔 (𝑖))

𝑇

𝑀(

𝛾2

∑

𝑖=𝛾1

𝜔 (𝑖)) .

(7)

The next theorem can be obtained if the stochastic term
𝜔(𝑘) is removed in the system (6).

Theorem 8. Under Assumptions 1 and 4, the system (6) with
𝜔(𝑘) = 0 is globally asymptotically stable, if there exist
positive matrices 𝑃, 𝑅

1
, 𝑅
2
, 𝑅
3
, 𝑄, 𝑆

𝑖
(𝑖 = 1, . . . , 𝑙), 𝑊 =

diag[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑙
], U = diag[𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑙
], and free matrix

𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙
+ 1, 𝑉

1
, 𝑉
2
, 𝑉
3
with any appropriate dimensions,

such that the following LMI holds:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

Γ
1,5

Γ
1,6

0 Γ
1,8

Γ
1,9

0 0

∗ Γ
2

0 0 0 0 0 0 0 0 Γ
2,11

∗ ∗ Γ
3

0 0 Γ
3,6

0 0 0 0 0

∗ ∗ ∗ Γ
4

0 Γ
4,6

0 0 0 Γ
4,10

0

∗ ∗ ∗ ∗ Γ
5

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0 Γ
6,10

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ
8,9

Γ
8,10

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
10

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
11

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≤ 0,

Γ
1
= 𝐶
𝑇

𝑃𝐶 + 𝜎
2

𝑅
3
− 𝑅
1
− 𝑈𝐹
1
−𝑊𝐺

1
− 𝑉
𝑇

1
− 𝑉
1
,

Γ
1,2

= 𝑅
1
, Γ

1,4
= −𝐶
𝑇

𝑃𝐴 + 𝑈𝐹
2
,

Γ
1,5

= 𝑊𝐺
2
, Γ

1,6
= (−𝜌

1
𝐶
𝑇

𝑃𝐵, . . . , −𝜌
𝑙
𝐶
𝑇

𝑃𝐵) ,

Γ
1,8

= 𝑉
1
− 𝑉
𝑇

2
, Γ

1,9
= 𝑉
1
− 𝑉
𝑇

3
,

Γ
2
=

[

[

[

[

[

[

[

[

[

−2𝑅
1

𝑅
1

𝑅
1

−2𝑅
1
d

d d d

d −2𝑅
1

𝑅
1

𝑅
1

−𝑅
1

]

]

]

]

]

]

]

]

]

−

[

[

[

[

[

[

[

[

[

0

𝑊𝐺
1

d

𝑊𝐺
1

0

]

]

]

]

]

]

]

]

]

+

𝑙+1

∑

𝑖=1

(Φ
𝑖
+ Φ
𝑇

𝑖
) ,

Γ
2,6

= diag [0,𝑊𝐺
2
, . . . ,𝑊𝐺

2
, 0] ,

Γ
2,11

= diag [𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙+1
] ,

Γ
3
= −𝑅
3
, Γ

4
= 𝐴
𝑇

𝑃𝐴 − 𝑈,

Γ
4,6

= (𝜌
1
𝐴
𝑇

𝑃𝐵, . . . , 𝜌
𝑙
𝐴
𝑇

𝑃𝐵) , Γ
4,10

= 𝐴
𝑇

Γ
10
,

Γ
5
=

𝑙

∑

𝑖=1

(𝜏
𝑖
− 𝜏
𝑖−1

+ 1) 𝑆
𝑖
−𝑊,

Γ
6
= Ψ
1
− diag [𝑊 + 𝑆

1
, . . . ,𝑊 + 𝑆

𝑙
] ,

Ψ
1
= diag [𝜌

1
𝐵
𝑇

𝑃𝐵, . . . , 𝜌
𝑙
𝐵
𝑇

𝑃𝐵] ,

Γ
6,10

= (𝜌
1
Γ
𝑇

10
𝐵, 𝜌
2
Γ
𝑇

10
𝐵, . . . , 𝜌

𝑙
Γ
𝑇

10
𝐵)

𝑇

, Γ
7
= −𝑃,

Γ
8
= 𝑉
2
+ 𝑉
𝑇

2
, Γ

8,9
= 𝑉
2
+ 𝑉
𝑇

3
,

Γ
9
= 𝑉
3
+ 𝑉
𝑇

3
−

1

𝜎

𝑄,

Γ
10
= (𝜏
𝑀
− 𝜏
𝑚
) ℎ𝑅
1
+ (𝜏
𝑀
− 𝜏
𝑚
) 𝑅
2
+ 𝜎𝑄,

Γ
11
= −

1

ℎ

diag [𝑅
2
, 𝑅
2
, . . . , 𝑅

2
] ,

Φ
𝑖
= 𝑇
𝑖
𝐼
𝑖
, 𝐹

1
= diag [ ̂𝑓−

1

̂
𝑓
+

1
,
̂
𝑓
−

2

̂
𝑓
+

2
, . . . ,

̂
𝑓
−

𝑛

̂
𝑓
+

𝑛
] ,

𝐹
2
= diag[

̂
𝑓
−

1
+
̂
𝑓
+

1

2

,

̂
𝑓
−

2
+
̂
𝑓
+

2

2

, . . . ,

̂
𝑓
−

𝑛
+
̂
𝑓
+

𝑛

2

] ,

𝐺
1
= diag [𝑔−

1
𝑔
+

1
, 𝑔
−

2
𝑔
+

2
, . . . , 𝑔

−

𝑛
𝑔
+

𝑛
] ,

𝐺
2
= diag [

𝑔
−

1
+ 𝑔
+

1

2

,

𝑔
−

2
+ 𝑔
+

2

2

, . . . ,

𝑔
−

𝑛
+ 𝑔
+

𝑛

2

] ,

ℎ = max
𝑖=2,3,...,𝑙

{𝜏
𝑖
− 𝜏
𝑖−2
} ,

(8)
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where 𝐼
𝑖
∈ R𝑛×(𝑙+2)𝑛, (𝑖 = 1, 2, . . . , 𝑙, 𝑙 + 1) denotes a matrix

with the 𝑖th element 𝐼
𝑛×𝑛

while the 𝑖 + 1th element is −𝐼
𝑛×𝑛

, and
other elements are zero matrixes. For example, Φ

2
= [0 𝐼 −

𝐼 0 ⋅ ⋅ ⋅ 0].

Proof. For convenience, we denote Δ(𝑦(𝑘)) = 𝑦(𝑘+1)−𝑦(𝑘);
that is, Δ{𝑦(𝑘) − 𝐶∑𝑘−1

𝑖=𝑘−𝜎
𝑦(𝑖)} = 𝑦(𝑘 + 1) − 𝑦(𝑘) − 𝐶𝑦(𝑘) +

𝐶𝑦(𝑘−𝜎), and then systems (6) with𝜔(𝑘) = 0 can be rewritten
as follows:

𝜁 (𝑘 + 1) = Δ{𝑦 (𝑘) − 𝐶

𝑘−1

∑

𝑖=𝑘−𝜎

𝑦 (𝑖)} = −𝐶𝑦 (𝑘) + 𝐴𝑓 (𝑦 (𝑘))

+

𝑙

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝐵𝑔 (𝑦 (𝑘 − 𝜏

𝑖
(𝑘))) .

(9)

We construct a new Lyapunov-Krasovskii functional
𝑉(𝑦
𝑘
, 𝑘) as

𝑉 (𝑦
𝑘
, 𝑘) =

6

∑

𝑖=1

𝑉
𝑖
(𝑦
𝑘
, 𝑘) , (10)

where

𝑉
1
(𝑦
𝑘
, 𝑘) = 𝜁

𝑇

(𝑘) 𝑃𝜁 (𝑘) ,

𝑉
2
(𝑦
𝑘
, 𝑘) = ℎ

−1

∑

𝑖=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑅
1
𝜂 (𝑗) ,

𝑉
3
(𝑦
𝑘
, 𝑘) =

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑅
2
𝜂 (𝑗) ,

𝑉
4
(𝑦
𝑘
, 𝑘) = 𝜎

−1

∑

𝑖=−𝜎

𝑘−1

∑

𝑗=𝑘+𝑖

𝑦
𝑇

(𝑗) 𝑅
3
𝑦 (𝑗) ,

𝑉
5
(𝑦
𝑘
, 𝑘) =

𝑙

∑

𝑖=1

𝑘−1

∑

𝑗=𝑘−𝜏𝑖(𝑘)

𝑔
𝑇

(𝑦 (𝑗)) 𝑆
𝑖
𝑔 (𝑦 (𝑗))

+

𝑙

∑

𝑖=1

𝜏𝑖−1

∑

𝑗=𝜏𝑖−1

𝑘−1

∑

𝑚=𝑘−𝑗

𝑔
𝑇

(𝑦 (𝑚)) 𝑆
𝑖
𝑔 (𝑦 (𝑚)) ,

𝑉
6
(𝑦
𝑘
, 𝑘) =

−1

∑

𝑖=−𝜎

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗)𝑄𝜂 (𝑗) ,

𝜂 (𝑘) = 𝑦 (𝑘 + 1) − 𝑦 (𝑘) .

(11)

Taking the difference of the functional along the solution
of (9), we obtain

E {Δ𝑉 (𝑦
𝑘
, 𝑘)} =

6

∑

𝑖=1

E {Δ𝑉
𝑖
(𝑦
𝑘
, 𝑘)} , (12)

E {Δ𝑉
1
(𝑦
𝑘
, 𝑘)}

= E {𝑉
1
(𝑦
𝑘+1

, 𝑘 + 1) − 𝑉
1
(𝑦
𝑘
, 𝑘)}

= E {𝜁
𝑇

(𝑘 + 1) 𝑃𝜁 (𝑘 + 1) − 𝜁
𝑇

(𝑘) 𝑃𝜁 (𝑘)}

= E
{

{

{

𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐶𝑦 (𝑘) − 2𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

− 2

𝑙

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

+ 2

𝑙

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ (

𝑙

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝐵𝑔 (𝑦 (𝑘 − 𝜏

𝑖
(𝑘))))

𝑇

⋅ 𝑃(

𝑙

∑

𝑗=1

𝜌
𝑗
(𝑘) 𝐵𝑔 (𝑦 (𝑘 − 𝜏

𝑗
(𝑘))))

− 𝜁
𝑇

(𝑘) 𝑃𝜁 (𝑘)

}

}

}

.

(13)

According to Remark 5, it is easy to get

E {Δ𝑉
1
(𝑦
𝑘
, 𝑘)}

= 𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐶𝑦 (𝑘) − 2𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

− 2

𝑙

∑

𝑖=1

𝜌
𝑖
𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

+ 2

𝑙

∑

𝑖=1

𝜌
𝑖
𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝛼
𝑇

2
(𝑘)Ψ
1
𝛼
2
(𝑘) − 𝜁

𝑇

(𝑘) 𝑃𝜁 (𝑘) ,

(14)

where 𝛼
2
(𝑘) = [𝑔

𝑇

(𝑦(𝑘 − 𝜏
1
(𝑘))) ⋅ ⋅ ⋅ 𝑔

𝑇

(𝑦(𝑘 − 𝜏
𝑙
(𝑘)))]

𝑇.
Consider

E {Δ𝑉
2
(𝑦
𝑘
, 𝑘)}

= E {𝑉
2
(𝑦
𝑘+1

, 𝑘 + 1) − 𝑉
2
(𝑦
𝑘
, 𝑘)}

= E
{

{

{

ℎ

−1

∑

𝑖=−𝜏𝑀

𝑘

∑

𝑗=𝑘+𝑖+1

𝜂
𝑇

(𝑗) 𝑅
1
𝜂 (𝑗)

− ℎ

−1

∑

𝑖=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑅
1
𝜂 (𝑗)

}

}

}



Mathematical Problems in Engineering 5

= E{ℎ𝜏
𝑀
𝜂
𝑇

(𝑘) 𝑅
1
𝜂 (𝑘) − ℎ

−1

∑

𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑅
1
𝜂 (𝑘 + 𝑖)} ,

E {Δ𝑉
3
(𝑦
𝑘
, 𝑘)}

= E {𝑉
3
(𝑦
𝑘+1

, 𝑘 + 1) − 𝑉
3
(𝑦
𝑘
, 𝑘)}

= E
{

{

{

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝑘

∑

𝑗=𝑘+𝑖+1

𝜂
𝑇

(𝑗) 𝑅
2
𝜂 (𝑗)

−

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑅
2
𝜂 (𝑗)

}

}

}

= E{(𝜏
𝑀
− 𝜏
𝑚
) 𝜂
𝑇

(𝑘) 𝑅
2
𝜂 (𝑘)

−

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑅
2
𝜂 (𝑘 + 𝑖)} ,

E {Δ𝑉
4
(𝑦
𝑘
, 𝑘)}

= E {E {𝑉
4
(𝑦
𝑘+1

, 𝑘 + 1) | 𝑦
𝑘
} − 𝑉
4
(𝑦
𝑘
, 𝑘)}

= E
{

{

{

𝜎

−1

∑

𝑖=−𝜎

𝑘

∑

𝑗=𝑘+𝑖+1

𝑦
𝑇

(𝑗) 𝑅
3
𝑦 (𝑗)

− 𝜎

−1

∑

𝑖=−𝜎

𝑘−1

∑

𝑗=𝑘+𝑖

𝑦
𝑇

(𝑗) 𝑅
3
𝑦 (𝑗)

}

}

}

= 𝜎
2

𝑦
𝑇

(𝑘) 𝑅
3
𝑦 (𝑘) − 𝜎

𝑘−1

∑

𝑖=𝑘−𝜎

𝑦
𝑇

(𝑖) 𝑅
3
𝑦 (𝑖) ,

Δ𝑉
5
(𝑦
𝑘
, 𝑘)

= 𝑉
5
(𝑦
𝑘+1

, 𝑘 + 1) − 𝑉
5
(𝑦
𝑘
, 𝑘)

=

𝑙

∑

𝑖=1

𝑘

∑

𝑗=𝑘+1−𝜏𝑖(𝑘+1)

𝑔
𝑇

(𝑦 (𝑗)) 𝑆
𝑖
𝑔 (𝑦 (𝑗))

+

𝑙

∑

𝑖=1

𝜏𝑖−1

∑

𝑗=𝜏𝑖−1

𝑘

∑

𝑚=𝑘−𝑗+1

𝑔
𝑇

(𝑦 (𝑚)) 𝑆
𝑖
𝑔 (𝑦 (𝑚))

−
[

[

𝑙

∑

𝑖=1

𝑘−1

∑

𝑗=𝑘−𝜏𝑖(𝑘)

𝑔
𝑇

(𝑦 (𝑗)) 𝑆
𝑖
𝑔 (𝑦 (𝑗))

+

𝑙

∑

𝑖=1

𝜏𝑖−1

∑

𝑗=𝜏𝑖−1

𝑘−1

∑

𝑚=𝑘−𝑗

𝑔
𝑇

(𝑦 (𝑚)) 𝑆
𝑖
𝑔 (𝑦 (𝑚))

]

]

=

𝑙

∑

𝑖=1

(𝑔
𝑇

(𝑦 (𝑘)) 𝑆
𝑖
𝑔 (𝑦 (𝑘))

− 𝑔
𝑇

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘))) 𝑆

𝑖
𝑔 (𝑦 (𝑘 − 𝜏

𝑖
(𝑘))))

+

𝑘−1

∑

𝑗=𝑘−𝜏𝑖(𝑘+1)+1

𝑔
𝑇

(𝑦 (𝑗)) 𝑆
𝑖
𝑔 (𝑦 (𝑗))

−

𝑘−1

∑

𝑗=𝑘−𝜏𝑖(𝑘)+1

𝑔
𝑇

(𝑦 (𝑗)) 𝑆
𝑖
𝑔 (𝑦 (𝑗))

+

𝜏𝑖−1

∑

𝑗=𝜏𝑖−1

(𝑔
𝑇

(𝑦 (𝑘)) 𝑆
𝑖
𝑔 (𝑦 (𝑘))

− 𝑔
𝑇

(𝑦 (𝑘 − 𝑗)) 𝑆
𝑖
𝑔 (𝑦 (𝑘 − 𝑗)))

≤

𝑙

∑

𝑖=1

(𝜏
𝑖
− 𝜏
𝑖−1

+ 1) 𝑔
𝑇

(𝑦 (𝑘)) 𝑆
𝑖
𝑔 (𝑦 (𝑘))

− 𝑔
𝑇

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘))) 𝑆

𝑖
𝑔 (𝑦 (𝑘 − 𝜏

𝑖
(𝑘))) ,

Δ𝑉
6
(𝑦
𝑘
, 𝑘)

= 𝑉
6
(𝑦
𝑘+1

, 𝑘 + 1) − 𝑉
6
(𝑦
𝑘
, 𝑘)

=

−1

∑

𝑖=−𝜎

𝑘

∑

𝑗=𝑘+1+𝑖

𝜂
𝑇

(𝑗)𝑄𝜂 (𝑗) −

−1

∑

𝑖=−𝜎

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗)𝑄𝜂 (𝑗)

=

−1

∑

𝑖=−𝜎

(𝜂
𝑇

(𝑘) 𝑄𝜂 (𝑘) +

𝑘−1

∑

𝑗=𝑘+1+𝑖

𝜂
𝑇

(𝑗) 𝑄𝜂 (𝑗)

−

𝑘−1

∑

𝑗=𝑘+1+𝑖

𝜂
𝑇

(𝑗) 𝑄𝜂 (𝑗)) − 𝜂
𝑇

(𝑘 + 𝑖) 𝑄𝜂 (𝑘 + 𝑖)

= 𝜎𝜂
𝑇

(𝑘) 𝑄𝜂 (𝑘) −

−1

∑

𝑖=−𝜎

𝜂
𝑇

(𝑘 + 𝑖) 𝑄𝜂 (𝑘 + 𝑖) .

(15)

Using the algebraic expression −ℎ∑−1
𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘+𝑖)𝑅
1
𝜂(𝑘+

𝑖) in Δ𝑉
2
(𝑦
𝑘
, 𝑘) and by using Lemma 7, we can get

− ℎ

−1

∑

𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑅
1
𝜂 (𝑘 + 𝑖)

= −ℎ

𝑘−1

∑

𝑖=𝑘−𝜏𝑚

𝜂
𝑇

(𝑖) 𝑅
1
𝜂 (𝑖) − ℎ

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏1(𝑘)

𝜂
𝑇

(𝑖) 𝑅
1
𝜂 (𝑖)

− ℎ

𝑘−𝜏1(𝑘)−1

∑

𝑖=𝑘−𝜏2(𝑘)

𝜂
𝑇

(𝑖) 𝑅
1
𝜂 (𝑖) − ⋅ ⋅ ⋅ − ℎ

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

(𝑖) 𝑅
1
𝜂 (𝑖)

≤ −(

𝑘−1

∑

𝑖=𝑘−𝜏𝑚

𝜂 (𝑖))

𝑇

𝑅
1
(

𝑘−1

∑

𝑖=𝑘−𝜏𝑚

𝜂 (𝑖))

− (

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏1(𝑘)

𝜂 (𝑖))

𝑇

𝑅
1
(

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏1(𝑘)

𝜂 (𝑖))
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− (

𝑘−𝜏1(𝑘)−1

∑

𝑖=𝑘−𝜏2(𝑘)

𝜂 (𝑖))

𝑇

𝑅
1
(

𝑘−𝜏1(𝑘)−1

∑

𝑖=𝑘−𝜏2(𝑘)

)

− ⋅ ⋅ ⋅ − (

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖))

𝑇

𝑅
1
(

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖))

= − (𝑦 (𝑘) − 𝑦 (𝑘 − 𝜏
𝑚
))
𝑇

𝑅
1
(𝑦 (𝑘) − 𝑦 (𝑘 − 𝜏

𝑚
))

− (𝑦 (𝑘 − 𝜏
𝑚
) − 𝑦 (𝑘 − 𝜏

1
(𝑘)))
𝑇

⋅ 𝑅
1
(𝑦 (𝑘 − 𝜏

𝑚
) − 𝑦 (𝑘 − 𝜏

1
(𝑘)))

− (𝑦 (𝑘 − 𝜏
1
(𝑘)) − 𝑦 (𝑘 − 𝜏

2
(𝑘)))
𝑇

⋅ 𝑅
1
(𝑦 (𝑘 − 𝜏

1
(𝑘)) − 𝑦 (𝑘 − 𝜏

2
(𝑘)))

− ⋅ ⋅ ⋅ − (𝑦 (𝑘 − 𝜏
𝑙
(𝑘)) − 𝑦 (𝑘 − 𝜏

𝑀
))
𝑇

⋅ 𝑅
1
(𝑦 (𝑘 − 𝜏

𝑙
(𝑘)) − 𝑦 (𝑘 − 𝜏

𝑀
)) .

(16)

Let 𝛼
1
(𝑘) = (𝑦

𝑇

(𝑘 − 𝜏
𝑚
), 𝑦𝑇(𝑘 − 𝜏

1
(𝑘)), 𝑦𝑇(𝑘 −

𝜏
2
(𝑘)), . . . , 𝑦

𝑇

(𝑘 − 𝜏
𝑙
(𝑘)), 𝑦𝑇(𝑘 − 𝜏

𝑀
))
𝑇; then

− ℎ

𝑘−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

(𝑖) 𝑅
1
𝜂 (𝑖)

≤ [𝑦
𝑇

(𝑘) 𝛼
𝑇

1
(𝑘)]

⋅

[

[

[

[

[

[

[

[

[

[

−𝑅
1

𝑅
1

0 ⋅ ⋅ ⋅ 0

∗ −2𝑅
1
𝑅
1

⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

.

.

.

∗ ∗ ∗ −2𝑅
1

𝑅
1

∗ ∗ ∗ ∗ −𝑅
1

]

]

]

]

]

]

]

]

]

]

[

𝑦 (𝑘)

𝛼
1
(𝑘)

]

≜ [𝑦
𝑇

(𝑘) 𝛼
𝑇

1
(𝑘)]Ψ

2
[

𝑦 (𝑘)

𝛼
1
(𝑘)

] .

(17)

As is well known, for any vectors 𝑥, 𝑦 and any symmetric
matrix 𝑍 > 0, the following inequality holds:

−2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑍
−1

𝑥 + 𝑦
𝑇

𝑍𝑦. (18)

Denoting 𝑥 = 𝑇
𝑇

𝑙+1
𝛼
1
(𝑘), 𝑦 = ∑

𝑘−𝜏𝑙(𝑘)−1

𝑗=𝑘−𝜏𝑀

𝜂(𝑗), 𝑍 = 𝑅
2
/(𝜏
𝑙
−

𝜏
𝑙
(𝑘)), where 𝑇

𝑙+1
is free matrix, then the last inequality can

be expressed as follows:

− 2𝛼
𝑇

1
(𝑘) 𝑇
𝑙+1

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖)

≤ 𝛼
𝑇

1
(𝑘) 𝑇
𝑙+1
𝑍
−1

𝑇
𝑙+1
𝛼
𝑇

1
(𝑘) + (𝜏

𝑙
− 𝜏
𝑙
(𝑘))

⋅ (

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖))

𝑇

𝑅
2
(

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖))

≤ 𝛼
𝑇

1
(𝑘) 𝑇
𝑙+1
𝑍
−1

𝑇
𝑇

𝑙+1
𝛼
𝑇

1
(𝑘) +

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖)
𝑇

𝑅
2
𝜂 (𝑖)

(19)
which is equal to

−

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂 (𝑖)
𝑇

𝑅
2
𝜂 (𝑖)

≤ (𝜏
𝑙
− 𝜏
𝑙
(𝑘)) 𝛼

𝑇

1
(𝑘) 𝑇
𝑙+1
𝑅
−1

2
𝑇
𝑇

𝑙+1
𝛼
𝑇

1
(𝑘)

+ 2𝛼
𝑇

1
(𝑘) 𝑇
𝑙+1

𝑘−𝜏𝑙(𝑘)−1

∑

𝑗=𝑘−𝜏𝑀

𝜂 (𝑗) .

(20)

Similarly, we can get

−

𝑘−𝜏𝑖(𝑘)−1

∑

𝑗=𝑘−𝜏𝑖+1(𝑘)

𝜂 (𝑗)
𝑇

𝑅
2
𝜂 (𝑗)

≤ (𝜏
𝑖+1

(𝑘) − 𝜏
𝑖
(𝑘)) 𝛼

𝑇

1
(𝑘) 𝑇
−1

𝑖+1
𝑅
2
𝑇
𝑇

𝑖+1
𝛼
𝑇

1
(𝑘)

+ 2𝛼
𝑇

1
(𝑘) 𝑇
𝑖+1

𝑘−𝜏𝑖(𝑘)−1

∑

𝑗=𝑘−𝜏𝑖+1(𝑘)

𝜂 (𝑗) .

(21)

Combining those inequalities, we obtain

−

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑅
2
𝜂 (𝑘 + 𝑖)

= −

𝑘−𝜏𝑚−1

∑

𝑖=𝑘−𝜏1(𝑘)

𝜂
𝑇

(𝑖) 𝑅
2
𝜂 (𝑖) −

𝑘−𝜏1(𝑘)−1

∑

𝑖=𝑘−𝜏2(𝑘)

𝜂
𝑇

(𝑖) 𝑅
2
𝜂 (𝑖)

− ⋅ ⋅ ⋅ −

𝑘−𝜏𝑙(𝑘)−1

∑

𝑖=𝑘−𝜏𝑀

𝜂
𝑇

(𝑖) 𝑅
2
𝜂 (𝑖)

≤ (𝜏
𝑙
− 𝜏
𝑙
(𝑘)) 𝛼

𝑇

1
(𝑘) 𝑇
𝑙+1
𝑅
−1

2
𝑇
𝑇

𝑙+1
𝛼
𝑇

1
(𝑘)

+ 2𝛼
𝑇

1
(𝑘) 𝑇
𝑙+1

𝑘−𝜏𝑙(𝑘)−1

∑

𝑗=𝑘−𝜏𝑀

𝜂 (𝑗)

+

𝑙−1

∑

𝑖=1

{

{

{

(𝜏
𝑖+1

(𝑘) − 𝜏
𝑖
(𝑘)) 𝛼

𝑇

1
(𝑘) 𝑇
𝑖+1
𝑅
−1

2
𝑇
𝑇

𝑖+1
𝛼
𝑇

1
(𝑘)

+ 2𝛼
𝑇

1
(𝑘) 𝑇
𝑖+1

𝑘−𝜏𝑖(𝑘)−1

∑

𝑗=𝑘−𝜏𝑖+1(𝑘)

𝜂 (𝑗)

}

}

}

+ (𝜏
1
(𝑘) − 𝜏

𝑚
) 𝛼
𝑇

1
(𝑘) 𝑇
1
𝑅
−1

2
𝑇
𝑇

1
𝛼
𝑇

1
(𝑘)

+ 2𝛼
𝑇

1
(𝑘) 𝑇
1

𝑘−𝜏𝑚−1

∑

𝑗=𝑘−𝜏1(𝑘)

𝜂 (𝑗) .

(22)
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According to the equation in Assumption 1, we have

(𝑓 (𝑦 (𝑘)) −
̂
𝑓
−

𝑖
𝑦 (𝑘)) (𝑓 (𝑦 (𝑘)) −

̂
𝑓
+

𝑖
𝑦 (𝑘)) ≤ 0,

(𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘))) − 𝑔

−

𝑖
𝑦 (𝑘 − 𝜏

𝑖
(𝑘)))

⋅ (𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘))) − 𝑔

+

𝑖
𝑦 (𝑘 − 𝜏

𝑖
(𝑘))) ≤ 0.

(23)

It can be deduced that there existU = diag[𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
] > 0

and𝑊 = diag[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
] > 0, such that

𝑛

∑

𝑖=1

𝑢
𝑖
[

𝑦 (𝑘)

𝑓 (𝑦 (𝑘))

]

𝑇

[

[

[

[

̂
𝑓
−

𝑖

̂
𝑓
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

̂
𝑓
−

𝑖
+
̂
𝑓
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

̂
𝑓
−

𝑖
+
̂
𝑓
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

⋅ [

𝑦 (𝑘)

𝑓 (𝑦 (𝑘))

]

= [

𝑦 (𝑘)

𝑓 (𝑦 (𝑘))

]

𝑇

[

𝑈𝐹
1

−𝑈𝐹
2

−𝑈𝐹
2

𝑈

][

𝑦 (𝑘)

𝑓 (𝑦 (𝑘))

] ≤ 0,

𝑛

∑

𝑖=1

𝑤
𝑖
[

𝑦 (𝑘)

𝑔 (𝑦 (𝑘))

]

𝑇

[

[

[

[

𝑔
−

𝑖
𝑔
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

⋅ [

𝑦 (𝑘)

𝑔 (𝑦 (𝑘))

]

= [

𝑦 (𝑘)

𝑔 (𝑦 (𝑘))

]

𝑇

[

𝑊𝐺
1

−𝑊𝐺
2

−𝑊𝐺
2

𝑊

][

𝑦 (𝑘)

𝑔 (𝑦 (𝑘))

] ≤ 0,

𝑛

∑

𝑖=1

𝑤
𝑖

[

[

𝑦 (𝑘 − 𝜏
𝑗
(𝑘))

𝑔 (𝑦 (𝑘 − 𝜏
𝑗
(𝑘)))

]

]

𝑇

[

[

[

[

𝑔
−

𝑖
𝑔
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

⋅
[

[

𝑦 (𝑘 − 𝜏
𝑗
(𝑘))

𝑔 (𝑦 (𝑘 − 𝜏
𝑗
(𝑘)))

]

]

=
[

[

𝑦 (𝑘 − 𝜏
𝑗
(𝑘))

𝑔 (𝑦 (𝑘 − 𝜏
𝑗
(𝑘)))

]

]

𝑇

[

𝑊𝐺
1

−𝑊𝐺
2

−𝑊𝐺
2

𝑊

]

⋅
[

[

𝑦 (𝑘 − 𝜏
𝑗
(𝑘))

𝑔 (𝑦 (𝑘 − 𝜏
𝑗
(𝑘)))

]

]

≤ 0,

(24)

where 𝑒
𝑖
denotes the unit column vector having one ele-

ment on its 𝑟th row and zeros elsewhere. Derived from
∑
𝑘−1

𝑖=𝑘−𝜎
𝜂(𝑖) = 𝑦(𝑘)−𝑦(𝑘−𝜎), we can get the following equation

for any matrices 𝑉 = (𝑉
𝑇

1
, 𝑉
𝑇

2
, 𝑉
𝑇

3
)
𝑇 with appropriate

dimensions:

𝜇 (𝑘) = 2 [𝑦
𝑇

(𝑘) 𝑦
𝑇

(𝑘 − 𝜎)

𝑘−1

∑

𝑖=𝑘−𝜎

𝜂
𝑇

(𝑖)]

⋅ 𝑉(−𝑦 (𝑘) + 𝑦 (𝑘 − 𝜎) +

𝑘−1

∑

𝑖=𝑘−𝜎

𝜂 (𝑖)) = 0.

(25)

Combining (12)–(25), we obtain

E {Δ𝑉 (𝑦 (𝑘) , 𝑘)}

≤ E{𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐶𝑦 (𝑘) − 2𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

− 2

𝑙

∑

𝑖=1

𝜌
𝑖
𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

+ 2

𝑙

∑

𝑖=1

𝜌
𝑖
𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝛼
𝑇

2
(𝑘) Ψ
1
𝛼
2
(𝑘) − 𝜁

𝑇

(𝑘) 𝑃𝜁 (𝑘) − 𝛼
𝑇

1
(𝑘) Ψ
2
𝛼
1
(𝑘)

+

𝑙

∑

𝑖=1

[(𝜏
𝑖
− 𝜏
𝑖−1

+ 1) 𝑔
𝑇

(𝑦 (𝑘)) 𝑆
𝑖
𝑔 (𝑦 (𝑘))

− 𝑔
𝑇

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘))) 𝑆

𝑖
𝑔 (𝑦 (𝑘 − 𝜏

𝑖
(𝑘)))]

+

𝑙

∑

𝑖=1

[(𝜏
𝑖
− 𝜏
𝑖−1

+ 1) 𝑦
𝑇

(𝑘) 𝑄
𝑖
𝑦 (𝑘)

− 𝑦
𝑇

(𝑘 − 𝜏
𝑖
(𝑘)) 𝑄

𝑖
𝑦 (𝑘 − 𝜏

𝑖
(𝑘))]

+ (𝜏
𝑙
− 𝜏
𝑙
(𝑘)) 𝛼

𝑇

1
(𝑘) 𝑇
𝑙+1
𝑅
−1

2
𝑇
𝑇

𝑙+1
𝛼
1
(𝑘)

+

𝑙−1

∑

𝑖=1

(𝜏
𝑖+1

(𝑘) − 𝜏
𝑖
(𝑘)) 𝛼

𝑇

1
(𝑘) 𝑇
𝑖+1
𝑅
−1

2
𝑇
𝑇

𝑖+1
𝛼
1
(𝑘)

+ (𝜏
1
(𝑘) − 𝜏

𝑚
) 𝛼
𝑇

1
(𝑘) 𝑇
1
𝑅
−1

2
𝑇
𝑇

1
𝛼
1
(𝑘)

+

𝑙−1

∑

𝑖=1

2𝛼
𝑇

1
(𝑘) 𝑇
𝑖+1

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘)) − 𝑦 (𝑘 − 𝜏

𝑖+1
(𝑘)))

+ 2𝛼
𝑇

1
(𝑘) 𝑇
1
(𝑦 (𝑘 − 𝜏

𝑚
) − 𝑦 (𝑘 − 𝜏

1
(𝑘)))

+ 2𝛼
𝑇

1
(𝑘) 𝑇
𝑙+1

(𝑦 (𝑘 − 𝜏
𝑙
(𝑘) − 𝑦 (𝑘 − 𝜏

𝑀
)))

+ 𝜂
𝑇

(𝑘) [(𝜏
𝑀
− 𝜏
𝑚
) ℎ𝑅
1
+ (𝜏
𝑀
− 𝜏
𝑚
) 𝑅
2
+ 𝜎𝑄] 𝜂 (𝑘)

−

1

𝜎

−1

∑

𝑖=−𝜎

𝜂
𝑇

(𝑘 + 𝑖) 𝑄

−1

∑

𝑖=−𝜎

𝜂 (𝑘 + 𝑖) + 𝜇 (𝑘)}
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≤ 𝜃
𝑇

(𝑘)(Ξ + Φ
𝑇

Γ
10
Φ + (𝜏

𝑀
− 𝜏
𝑙
(𝑘))

̃
𝑇
𝑙+1
𝑅
1

̃
𝑇
𝑇

𝑙+1

+

𝑙−1

∑

𝑖=1

(𝜏
𝑖+1

(𝑘) − 𝜏
𝑖
(𝑘))

̃
𝑇
𝑖+1
𝑅
1

̃
𝑇
𝑇

𝑖+1

+ (𝜏
1
(𝑘) − 𝜏

𝑚
)
̃
𝑇
1
𝑅
1

̃
𝑇
𝑇

1
)𝜃 (𝑘) ,

(26)

𝜃 (𝑘) = (𝑦
𝑇

(𝑘) , 𝛼
𝑇

1
(𝑘) ,

𝑘−1

∑

𝑖=𝑘−𝜎

𝑦 (𝑖) , 𝑓
𝑇

(𝑦 (𝑘)) , 𝑔
𝑇

(𝑦 (𝑘)) ,

𝛼
𝑇

2
(𝑘) , 𝜁
𝑇

(𝑘) , 𝑦
𝑇

(𝑘 − 𝜎) ,

𝑘−1

∑

𝑖=𝑘−𝜎

𝜂
𝑇

(𝑖))

𝑇

,

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1

0 0 Γ
1,4

Γ
1,5

Γ
1,6

0 Γ
1,8

Γ
1,9

∗ Γ
2

0 0 0 Γ
2,6

0 0 0

∗ ∗ Γ
3

0 0 0 0 0 0

∗ ∗ ∗ Γ
4

0 Γ
4,6

0 0 0

∗ ∗ ∗ ∗ Γ
5

0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ
8,9

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Φ = (0, 0, 0, 𝐴, 0, 𝜌
1
𝐵, 𝜌
2
𝐵, . . . , 𝜌

𝑙
𝐵, 0, −𝐶, 0) ,

̃
𝑇
𝑖
= [0 𝐼 0 ⋅ ⋅ ⋅ 0]

𝑇

𝑇
𝑖
.

(27)

Then if

Ξ + Φ
𝑇

Γ
10
Φ + (𝜏

𝑙
− 𝜏
𝑙
(𝑘))

̃
𝑇
𝑙+1
𝑅
1

̃
𝑇
𝑇

𝑙+1

+

𝑙−1

∑

𝑖=1

(𝜏
𝑖+1

(𝑘) − 𝜏
𝑖
(𝑘))

̃
𝑇
𝑖+1
𝑅
1

̃
𝑇
𝑇

𝑖+1

+ (𝜏
1
(𝑘) − 𝜏

𝑚
)
̃
𝑇
1
𝑅
1

̃
𝑇
𝑇

1
≤ 0

(28)

we can conclude that ∑+∞
𝑘=1

E{‖ 𝑦(𝑘) ‖
2

} is convergent and
lim
𝑘→+∞

E{‖ 𝑦(𝑘) ‖
2

} = 0, which implies that the system
(6) is globally asymptotically stable. Using Schur complement
and the boundary condition 𝜏

𝑖
(𝑘) ∈ [𝜏

𝑖−1
, 𝜏
𝑖
], we can get the

inequality in this theorem.
This completes the proof of the theorem.

Remark 9. The stability analysis problem of a general class
of discrete-time neural networks with leakage delays is dealt
with in Theorem 8. The stability condition can be expressed
by a set of LMIs, which can be checked by resorting to
MATLAB LMI Toolbox.

Remark 10. A similar study to this paper has been investi-
gated in [21, 22, 33]. We note that our new stability criterion
for stochastic discrete system benefits from the idea of delay
partitioning. Based on the general assumption of time delay,
we represent 𝜏(𝑘) as 𝑙 parts, such that the condition is not
only delay dependent but also dependent on the partitioning
number.

Remark 11. From the proof of Theorem 8, it can be easily
found that we enlarged (𝜏

1
(𝑘)−𝜏

𝑚
), 𝜏
𝑖+1
(𝑘)−𝜏

𝑖
(𝑘), (𝜏

𝑙
−𝜏
𝑙
(𝑘))

into ℎ. We can get the next theorem in a different way to
handle (𝜏

1
(𝑘) − 𝜏

𝑚
), 𝜏
𝑖+1
(𝑘) − 𝜏

𝑖
(𝑘), (𝜏

𝑙
− 𝜏
𝑙
(𝑘)).

Corollary 12. Under Assumptions 1 and 4, the system (6)
with 𝜔(𝑘) = 0 is globally asymptotically stable, if there
exist positive matrices 𝑃, 𝑅

1
, 𝑅
2
, 𝑅
3
, 𝑄, 𝑆

𝑖
(𝑖 = 1, . . . , 𝑙),

𝑊 = diag[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑙
], U = diag[𝑢

1
, 𝑢
2
, . . . 𝑢
𝑙
], and free

matrix 𝑇
𝑖
, (𝑖 = 1, 2, . . . , 2𝑙), 𝑉

1
, 𝑉
2
, 𝑉
3
with any appropriate

dimensions, such that the following LMI holds:

Π
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

Γ
1,5

Γ
1,6

0 Γ
1,8

Γ
1,9

0 0 0

∗ Γ
2

0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ
3

0 0 Γ
3,6

0 0 0 0 0 0

∗ ∗ ∗ Γ
4

0 Γ
4,6

0 0 0 0 Γ
4,11

0

∗ ∗ ∗ ∗ Γ
5

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0 0 Γ
6,11

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ
8,9

0 Γ
8,11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
10

0 Γ
10,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
12

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≤ 0, (29)



Mathematical Problems in Engineering 9

Ξ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

Γ
1,5

Γ
1,6

0 Γ
1,8

Γ
1,9

0 0 0

∗ Γ
2

0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ
3

0 0 Γ
3,6

0 0 0 0 0 0

∗ ∗ ∗ Γ
4

0 Γ
4,6

0 0 0 0 Γ
4,11

0

∗ ∗ ∗ ∗ Γ
5

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0 0 Γ
6,11

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ
8,9

0 Γ
8,11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
10

0 Ω
10,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
12

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≤ 0 (30)

Γ
10
=

𝑙

∑

𝑗=1

𝑇
2𝑗−1

𝐼
𝑗
+

𝑙

∑

𝑗=1

𝐼
𝑇

𝑗
𝑇
𝑇

2𝑗−1
,

Γ
10,12

= diag [𝑇
1
, 𝑇
3
, . . . , 𝑇

2𝑙−1
] ,

Ω
10
=

𝑙

∑

𝑗 ̸=𝑖

𝑇
2𝑗−1

𝐼
𝑗
+

𝑙

∑

𝑗 ̸=𝑖

𝐼
𝑇

𝑗
𝑇
𝑇

2𝑗−1
+ 𝑇
2𝑖
𝐼
𝑖
+ 𝐼
𝑇

𝑖
𝑇
𝑇

2𝑖
,

Ω
10,12

= diag [𝑇
1
, 𝑇
3
, . . . , 𝑇

2𝑖−1
, 𝑇
2𝑖
, 𝑇
2𝑖+1

, . . . , 𝑇
2𝑙−1

] ,

Γ
12
= − diag [𝑅2

𝑑
1

,

𝑅
2

𝑑
2

, . . . ,

𝑅
2

𝑑
𝑙

] ,

(31)

and the definition of 𝐼
𝑖
is the same as the definition in

Theorem 8, and Γ
11
, Γ
4,11

, Γ
6,11

, Γ
8,11

in inequality (29) are Γ
10
,

Γ
4,10

, Γ
6,10

, Γ
8,10

in Theorem 8, respectively.

Proof. −∑−𝜏𝑚−1
𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘+𝑖)𝑅
2
𝜂(𝑘+𝑖) inΔ𝑉

3
(𝑘) is handled in the

following way:

−

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑅
2
𝜂 (𝑘 + 𝑖)

= −

𝑙

∑

𝑖=1

(

𝑘−𝜏𝑖−1−1

∑

𝑗=𝑘−𝜏𝑖(𝑘)

+

𝑘−𝜏𝑖(𝑘)−1

∑

𝑗=𝑘−𝜏𝑖

)𝜂
𝑇

(𝑖) 𝑅
2
𝜂 (𝑖)

≤

𝑙

∑

𝑖=1

[(𝜏
𝑖
− 𝜏
𝑖
(𝑘)) 𝛼

𝑇

3
(𝑘) 𝑇
2𝑖−1

𝑅
−1

2
𝑇
𝑇

2𝑖−1
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑖−1

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘)) − 𝑦 (𝑘 − 𝜏

𝑖
))

+ (𝜏
𝑖
(𝑘) − 𝜏

𝑖−1
) 𝛼
𝑇

3
(𝑘) 𝑇
2𝑖
𝑅
−1

2
𝑇
𝑇

2𝑖
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑖
(𝑦 (𝑘 − 𝜏

𝑖−1
) − 𝑦 (𝑘 − 𝜏

𝑖
(𝑘)))] ,

𝛼
𝑇

3
(𝑘) = (𝑦 (𝑘 − 𝜏

𝑚
) , 𝑦 (𝑘 − 𝜏

1
) , . . . , 𝑦 (𝑘 − 𝜏

𝑀
)) .

(32)

When 𝜏(𝑘) ∈ A
𝑖
, 𝜏
𝑖
(𝑘) = 𝜏(𝑘), 𝜏

𝑗
(𝑘) = 𝜏

𝑗−1
, (𝑗 ̸= 𝑖), the

last inequality is equivalent to

−

−𝜏𝑚−1

∑

𝑖=−𝜏𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑅
2
𝜂 (𝑘 + 𝑖)

≤ [(𝜏
𝑖
− 𝜏
𝑖
(𝑘)) 𝛼

𝑇

3
(𝑘) 𝑇
2𝑖−1

𝑅
−1

2
𝑇
𝑇

2𝑖−1
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑖−1

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘)) − 𝑦 (𝑘 − 𝜏

𝑖
))

+ (𝜏
𝑖
(𝑘) − 𝜏

𝑖−1
) 𝛼
𝑇

3
(𝑘) 𝑇
2𝑖
𝑅
−1

2
𝑇
𝑇

2𝑖
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑖
(𝑦 (𝑘 − 𝜏

𝑖−1
) − 𝑦 (𝑘 − 𝜏

𝑖
(𝑘)))]

+

𝑙

∑

𝑗 ̸=𝑖

(𝜏
𝑗
− 𝜏
𝑗−1
) 𝛼
𝑇

3
(𝑘) 𝑇
2𝑗−1

𝑅
−1

2
𝑇
𝑇

2𝑗−1
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑗−1

(𝑦 (𝑘 − 𝜏
𝑗−1
) − 𝑦 (𝑘 − 𝜏

𝑗
)) .

(33)

Then
E {Δ𝑉 (𝑦 (𝑘) , 𝑘)}

≤ 𝜃
𝑇

(𝑘) (Ξ + Φ
𝑇

Γ
11
Φ) 𝜃 (𝑘)

+ [(𝜏
𝑖
− 𝜏
𝑖
(𝑘)) 𝛼

𝑇

3
(𝑘) 𝑇
2𝑖−1

𝑅
−1

2
𝑇
𝑇

2𝑖−1
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑖−1

(𝑦 (𝑘 − 𝜏
𝑖
(𝑘)) − 𝑦 (𝑘 − 𝜏

𝑖
))

+ (𝜏
𝑖
(𝑘) − 𝜏

𝑖−1
) 𝛼
𝑇

3
(𝑘) 𝑇
2𝑖
𝑅
−1

2
𝑇
𝑇

2𝑖
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑖
(𝑦 (𝑘 − 𝜏

𝑖−1
) − 𝑦 (𝑘 − 𝜏

𝑖
(𝑘)))]

+

𝑙

∑

𝑗 ̸=𝑖

(𝜏
𝑗
− 𝜏
𝑗−1
) 𝛼
𝑇

3
(𝑘) 𝑇
2𝑗−1

𝑅
−1

2
𝑇
𝑇

2𝑗−1
𝛼
3
(𝑘)

+ 2𝛼
𝑇

3
(𝑘) 𝑇
2𝑗−1

(𝑦 (𝑘 − 𝜏
𝑗−1
) − 𝑦 (𝑘 − 𝜏

𝑗
)) .

(34)

By solving the convex LMI condition at boundary condi-
tions 𝜏

𝑖
(𝑘) ∈ [𝜏

𝑖−1
, 𝜏
𝑖
], we can get the LMIs in Corollary 12.

This completes the proof of Corollary 12.
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Remark 13. The difference between Theorem 8 and
Corollary 12 is obvious. The LMIs in Corollary 12 are
derived by property of 𝜏

𝑖
(𝑘), which is more simple than the

LMIs inTheorem 8.

The next theorem can be obtained if the stochastic term
𝜔(𝑘) is not removed in (6).

Corollary 14. Under Assumptions 1 and 4, the system (6) with
𝜔(𝑘) = 0 is globally asymptotically stable, if there exist positive

matrices 𝑃 = 𝑃
𝑇, 𝑅
1
, 𝑅
2
,𝑄
𝑖
(𝑖 = 1, . . . , 𝑙), 𝑆

𝑖
(𝑖 = 1, . . . , 𝑙),𝑊 =

diag(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑙
), U = diag[𝑢

1
, 𝑢
2
, . . . 𝑢
𝑙
], and free matrix

𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙
with any appropriate dimensions, such that the

following LMI holds:

𝑃 + 𝜏
𝑀
ℎ𝑅
1
+ (𝜏
𝑀
− 𝜏
𝑚
) 𝑅
2
< 𝜆𝐼, (35)

Π
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

Γ
1,5

Γ
1,6

0 Γ
1,8

Γ
1,9

0 0 0

∗ Γ
2

0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ
3

0 0 Γ
3,6

0 0 0 0 0 0

∗ ∗ ∗ Γ
4

0 Γ
4,6

0 0 0 0 Γ
4,11

0

∗ ∗ ∗ ∗ Γ
5

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0 0 Γ
6,11

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ
8,9

0 Γ
8,11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
10

0 Γ
10,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
12

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≤ 0,

Ξ
𝑖
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

Γ
1,5

Γ
1,6

0 Γ
1,8

Γ
1,9

0 0 0

∗ Γ
2

0 0 0 0 0 0 0 0 0 0

∗ ∗ Γ
3

0 0 Γ
3,6

0 0 0 0 0 0

∗ ∗ ∗ Γ
4

0 Γ
4,6

0 0 0 0 Γ
4,11

0

∗ ∗ ∗ ∗ Γ
5

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0 0 Γ
6,11

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ
8,9

0 Γ
8,11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
10

0 Ω
10,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
11

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
12

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

≤ 0,

(36)

Γ
10
=

𝑙

∑

𝑗=1

𝑇
2𝑗−1

𝐼
𝑗
+

𝑙

∑

𝑗=1

𝐼
𝑇

𝑗
𝑇
𝑇

2𝑗−1
,

Γ
10,12

= diag (𝑇
1
, 𝑇
3
, . . . , 𝑇

2𝑙−1
) ,

Ω
10
=

𝑙

∑

𝑗 ̸=𝑖

𝑇
2𝑗−1

𝐼
𝑗
+

𝑙

∑

𝑗 ̸=𝑖

𝐼
𝑇

𝑗
𝑇
𝑇

2𝑗−1
+ 𝑇
2𝑖
𝐼
𝑖
+ 𝐼
𝑇

𝑖
𝑇
𝑇

2𝑖
,

Ω
10,12

= diag (𝑇
1
, 𝑇
3
, . . . , 𝑇

2𝑖−1
, 𝑇
2𝑖
, 𝑇
2𝑖+1

, . . . , 𝑇
2𝑙−1

) ,

Γ
12
= − diag(𝑅2

𝑑
1

,

𝑅
2

𝑑
2

, . . . ,

𝑅
2

𝑑
𝑙

) ,

(37)

and the definition of 𝐼
𝑖
is the same as it in Theorem 8, and

Γ
11
, Γ
4,11

, Γ
6,11

, Γ
8,11

are Γ
10
, Γ
4,10

, Γ
6,10

, Γ
8,10

, respectively, in
Theorem 8.
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Proof. As 𝜔(𝑘) ̸= 0, Δ{𝑉
1
(𝑦
𝑘
, 𝑘)}, and Δ{𝑉

3
(𝑦
𝑘
, 𝑘)} are

different fromTheorem 8,

E {Δ𝑉
1
(𝑦
𝑘
, 𝑘)}

= E {E {𝑉
1
(𝑦
𝑘+1

, 𝑘 + 1) | 𝑦
𝑘
} − 𝑉
1
(𝑦
𝑘
, 𝑘)}

= E {𝜁
𝑇

(𝑘 + 1) 𝑃𝜁 (𝑘 + 1) − 𝜁
𝑇

(𝑘) 𝑃𝜁 (𝑘)}

= 𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐶𝑦 (𝑘) − 2𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

− 2

𝑙

∑

𝑖=1

𝜌
𝑖
𝑦
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐴𝑓 (𝑦 (𝑘))

+ 2

𝑙

∑

𝑖=1

𝜌
𝑖
𝑓
𝑇

(𝑦 (𝑘)) 𝐴
𝑇

𝑃𝐵𝑔 (𝑦 (𝑘 − 𝜏
𝑖
(𝑘)))

+ 𝛼
𝑇

2
(𝑘) Ψ
1
𝛼
2
(𝑘)

− 𝜁
𝑇

(𝑘) 𝑃𝜁 (𝑘) + 𝛿
𝑇

(𝑘, 𝑦 (𝑘)) 𝑃𝛿 (𝑘, 𝑦 (𝑘)) .

(38)

Derived from Assumption 3, we can get

𝛿
𝑇

(𝑘, 𝑦 (𝑘)) (𝑃 + 𝜏
𝑀
ℎ𝑅
1
+ (𝜏
𝑀
− 𝜏
𝑚
) 𝑅
2
) 𝛿 (𝑘, 𝑦 (𝑘))

≤ 𝜆max (𝑃 + 𝜏𝑀ℎ𝑅1 + (𝜏𝑀 − 𝜏𝑚) 𝑅2) 𝛿
𝑇

(𝑘, 𝑦 (𝑘)) 𝛿 (𝑘, 𝑦 (𝑘))

≤ 𝜆𝜉𝑦
𝑇

(𝑘) 𝑦 (𝑘) .

(39)

Based on Theorem 8, the desired condition can be obtained.
This is the end of proof.

4. Examples

In this section, a numerical example is given to illustrate the
effectiveness and benefits of the developed methods.

Example 1. We consider the delayed stochastic DNNs (6)
with the following parameters, which have been considered
in [33]:

𝐶 = [

1.5 0

0 1.3

] , 𝐴 = [

0.5 0.2

0.4 0.3

] , 𝐵 = [

0.4 −0.1

0.1 0.2

] .

(40)

And the activation functions satisfy Assumption 1 with

𝐹
1
= [

0 0

0 0

] , 𝐹
2
= [

0.5 0

0 0.5

] ; 𝐺
1
= [

0 0

0 0

] ,

𝐺
2
= [

0.5 0

0 0.5

] .

(41)

For the parameters listed above, we can obtain the following
feasible solution. Due to the limitation of the length of this
paper, we only provide a part of the feasible solution here:

𝑄
1
= [

0.7557 0.0283

0.0283 0.0014

] , 𝑄
2
= [

0.5832 0.0217

0.0217 0.0011

] ,

𝑆
1
= [

22.5229 1.5164

1.5164 0.1059

] , 𝑆
2
= [

0.5903 0.0055

0.0055 0.0010

] .

(42)

5. Conclusions

The stability analysis of stochastic discrete-time NNs with
leakage delay has been investigated in this paper via the Lya-
punov functional method. By employing delay partition and
introducing a new Lyapunov functional, a delay-dependent
stability condition is proposed. What is more, more general
LMIs conditions on the stability of the stochastic discrete-
time NNs are established by choosing a new novel Lyapunov-
Krasovskii functional. Finally, the feasibility and effectiveness
of the developed methods have been shown by the numerical
simulation example. The foregoing results have the potential
to be useful for the study of leakage delay. And the results can
be extended to complex networks with mixed time-varying
delays.
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