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1. Introduction 

Nowadays stress is a normal part of everyday living and the physiological and behavioral 

consequences of exposure to stressful situations have been extensively studied for decades. 

The neuroendocrine stress response is a necessary mechanism but disrupts homeostatic 

process and it is subserved by a complex system located in both the central nervous system 

(CNS) and the periphery. Stressor-induced activation of the hypothalamus–pituitary–

adrenal (HPA) axis and the sympathetic nervous system (SNS) results in a series of neural 

and endocrine adaptations known as the "stress response" or "stress cascade." The stress 

cascade is responsible for allowing the body to make the necessary physiological and 

metabolic changes required to cope with the demands of a homeostatic challenge. In recent 

years, evidence has suggested that stress responses are not only under control of the CNS 

but are influenced by peripheral tissue, outside of the classical HPA axis. Corticotrophin-

releasing hormone (CRH) is a central component of the HPA axis and is an important 

coordinator of the systemic stress response with subsequent modulation of the 

inflammatory response. In peripheral sites, cutaneous CRH and CRH-receptor1 (CRH-R1) is 

believed to regulate various functions of the skin that are important for local homeostasis. 

Common inflammatory skin disorders such as atopic dermatitis and psoriasis exhibit 

decreased barrier function and recent studies suggest that the complex response of 

epidermal cells to barrier disruption may aggravate, maintain, or even initiate such 

conditions.   

2. Overview of the stress system 

2.1 Historical context  

The concept of stress is as old as medical history itself, dating back at least to the time of 
Hippocrates who referred both to the suffering associated with disease (pathos) and to the 
toil (ponos) — the fight of the body to restore itself to normalcy (Hippocrates, 1923) . In 
more recent history, both Walter Cannon (Cannon, 1939) and Claude Bernard (Bernard, 
1949) described the ability of all organisms to maintain a constancy of their internal milieu 
or homeostasis. 70 years ago Hans Selye, the pioneer of contemporary stress research, first 
described the General Adaptation Syndrome (GAS) as a chronological development of the 
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response to stressors when their action is prolonged (Selye, 1936). Therefore as pointed out 
for the first time by Hans Selye in Nature in 1936, stress or ‘noxious agents’ initiate a 
reaction in the body, which he called the ‘general adaptation syndrome’ (GAS). Selye 
distinguished three stages that the body passes when responding to stress in the GAS: 1) the 
first stage is an ‘alarm reaction’, in which the body prepares itself for ‘fight or flight’; 2) the 
second stage of adaptation (provided the organism survives the first stage), is one in which 
a resistance to the stress is built; and 3) finally, if the duration of the stress is sufficiently 
long, the body enters a stage of exhaustion, a sort of aging, due to ‘wear and tear’.  

2.2 Stress system & homeostasis 

Life exists by maintaining a complex dynamic equilibrium or homeostasis that is constantly 
challenged by intrinsic or extrinsic adverse forces, the stressors (Chrousos et al., 1992). Stress 
has been defined in many ways. To the physicist, the term refers to a force, strain or 
pressure applied to a system. However, when the stress response is excessive or in 
appropriate, it disrupts physiological homeostasis and body function and contributes to 
disease production (Burchfield, 1979). Although the stress response of the body is meant to 
maintain stability or homeostasis, long-term activation of the stress system can have a 
hazardous or even lethal effect on the body. For example it increases the risk of obesity, 
heart disease, depression, and a variety of other illnesses (Selye, 1998). According to Hans 
Sely, mental, psychologic or sociologic and metabolic stressors (Kvetnansky et al., 2009) tall 
the stable internal environment of the body, that may contribute directly to the production 
of disease or it can contribute to the development of certain behaviors that increases the risk 
of disease. The process that counteracts this disruption and maintains homeostasis is termed 
allostasis. Allostasis activates a wide range of both general and specific physiological 
systems and behavioral coping mechanisms. The amount of work carried out during 
allostasis is termed the allostatic load and represents the cost(s) to the animal of responding 
to the stimulus. Over the past decade, these terms have been introduced to human stress 
research to differentiate between adaptation, allostasis and the end result, homeostasis, with 
the aim of producing a measurement of allostatic load that can be used to compare the 
effects of a wide range of stimuli. Beyond the "flight-or-fight" response to acute stress, there 
are events in daily life that produce a type of chronic stress and lead over time to wear and 
tear on the body ("allostatic load"). Yet, hormones associated with stress protect the body in 
the short-run and promote adaptation ("allostasis").  

2.3 Stress system: Response & adaptation 

2.3.1 Transient adaptation: Allostasis 

Physiologic systems operate within a dynamic range of steady states and maintain internal 
balance, or homeostasis, in terms of blood pH and electrolyte concentration. When physical 
or psychologic stressors challenge the body, there is activation of sympathoadrenal and 
adrenocortical responses that promote adaptation and survival in the short term. This has 
been referred to as allostasis. For example, during exercise or emotional responses, there is 
transient activation of the hypothalamic-pituitary-adrenocortical (HPA) and 
sympathoadernomedulary (SAM) systems, resulting in the elevation of blood pressure, 
heart rate, and circulating catecholamines and glucocorticoids. The patterns of autonomic, 
neuroendocrine, and behavioral responses vary with the type of stress, the different 
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perceptions of stress by the subject, the extent of control on the stressful stimulus, and the 
active or passive coping mechanisms in response stress (Benarroch 2006). Stressor-induced 
activation of the HPA axis and the SAM results in a series of neural and endocrine 
adaptations known as the "stress response" or "stress cascade." The stress cascade is 
responsible for allowing the body to make the necessary physiological and metabolic 
changes required to cope with the demands of a homeostatic challenge (Miller et al., 2002). 
The strongest stressors produce specific and nonspecific responses. The specific stress 
responses alter an individual to the presence of the stressors, which involve neuroendocrine 
responses such as increased autonomic nervous system activity (Tsigos et al., 2005) (Gold et 
al., 1998). When faced with excessive stress, whether physical or emotional, a subject's 
adaptive responses attain a relatively stereotypic nonspecific nature, referred to by Selye as 
“the general adaptation syndrome.” We now know that the adaptive responses have some 
specificity toward the stressor that generates them, which, however, is progressively lost as 
the severity of the stressor increases. The adaptive response of an individual to stress is 
determined by a multiplicity of genetic, environmental and developmental factors 
(Chrousos et al., 1992) and prenatal life, infancy, childhood and adolescence are critical 
periods characterized by increased vulnerability to stressors (Charmandari et al., 2005).  

2.3.2 Regulation of the stress response  

The orchestrated interplay of several neurotransmitter systems in the brain underlies the 
characteristic phenomenology of behavioral, endocrine, autonomic and immune responses 
to stress (Chrousos, 1998). Stress mediators such as adrenocorticotropic hormone, adrenaline 
and noradrenaline are subsequently released in specific patterns, reflecting the degree of  
HPA, adrenomedullary, and sympathetic nervous system activation (Goldstein et al., 2008). 
All stress responses are centrally integrated in the paraventricular nucleus (PVN) of the 
hypothalamus (Herman et al., 1997 and 2008) and the adrenal glands are their major 
peripheral effectors (Goldstein et al., 2008). Hypophysiotropic CRH neurons of the PVN are 
well known to serve as the origin of the final common pathway of glucocorticoid secretion. 
The powerful and far reaching action of these steroids (including effects upon metabolic, 
inflammatory, immune functions and on mood and behavior) has led to intensive 
investigation into regulatory mechanisms controlling glucocorticoid secretion (Cullinan et 
al., 2000). This hypothalamic neurohormone (CRH) plays a central role in the regulation of 
the HPA-axis, i.e., the final common pathway in the stress response. The activation of CRH 
neurons, increasing both adrenocorticotropic hormone (ACTH) biosynthesis and the best 
marker in  ACTH which reaches a maximum in the first hour, which cortisol is highest 
during the second hour of stress (Dobson et al., 2000). ACTH may play a crucial, perhaps 
direct, role in the regulation of catecholamine biosynthetic enzymes in sympathetic nervous 
system, especially during stress. CRH-R1 is the most abundant subtype found in the anterior 
pituitary and is also widely distributed in the brain (Wong et al., 1994).  Other possible 
factors that may regulate CRH1 receptor mRNA expression in the PVN of rats are 
catecholamine and glucocorticoids. Regarding catecholaminergic regulation, studies show 
that brainstem hemi section, which damaged the ascending noradrenergic bundle at least, 
attenuated the immobilization stress-induced increase in CRH1 receptor mRNA ipsilaterally 
in the PVN. This previous finding may reflect up-regulation of CRH1 receptor mRNA in the 
PVN by noradrenergic input from brainstem nuclei, such as the locus coerulus (LC), during 
stress (Fig.1)(Makino et al., 2002).  
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Fig. 1. Multiple feedback loops activating CRH systems during chronic stress. Stress initially 

activates the hypothalamic CRH system (i.e., CRH in the PVN), resulting in the hyper 

secretion of glucocorticoids from the adrenal gland. In addition, the psychological 

component of the stressor stimulates the amygdaloid CRH system (i.e., CRH in the central 

nucleus of the amygdala). Glucocorticoids exert GR-mediated negative feedback effects on 

the biosynthesis and release of CRH in the PVN and ACTH in the anterior pituitary (AP) 

directly or indirectly through the brainstem catecholaminergic nuclei such as the LC, 

resulting in the termination of stress-induced HPA axis activation. In the chronic phase of 

stress, down-regulation of GR in the PVN and other brain structures such as the LC fails to 

restrain hyper function of the HPA axis. Increased CRH in the PVN also induces a putative 

ultra short positive feedback effects on its own biosynthesis through up-regulation of PVN 

CRHr-1. The persistent activation of the HPA axis further up-regulates the amygdaloid CRH 

system involved in the expression of fear and anxiety, and the amygdala may have 

stimulatory effects on the HPA axis. Thus, the hypothalamic and the amygdaloid CRH 

systems cooperatively constitute stress-responsive, anxiety-producing neurocircuitry during 

chronic stress (Makino et al., 2002).  

3. Overview of the HPA axis 

3.1 Historical context of HPAC 

In 1936, Hans Selye reported a historic series of studies on severe stress in rats. Exposure to 

bacterial infection, toxic chemicals, and other life threatening insults consistently caused 
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adrenal gland enlargement with high levels of corticosterone secretion, atrophy of the 

immune organs, and gastric ulcers. All three components of this nonspecific stress response 

are caused by prolonged activation of corticosteroids in the hypothalamic-pituitary-adrenal 

axis (HPAC), resulting in secretion of stress levels of ACTH and glucocorticoids. In spite of 

these harmful effects, glucocorticoids in normal levels are necessary for sustaining life 

(Munck et al., 1984). Here we discuss the key elements of the HPA axis and the 

neuroendocrine response to systemic and local stress.   

3.2 HPA axis-CRH (homeostatic balance) 

CRH, synthesized in the PVN of the hypothalamus, represents the main driving force 

controlling HPA axis activation, the major hormone system responsible to maintain 

homeostatic balance in response to stressful stimuli (Tsigos et al., 1994).  

3.2.1 HPA axis & CRH: Response to systemic stress 

The HPA axis originates from the CRH neurons in the parvocellular subdivision of the PVN 

of hypothalamus, while the sympathetic nervous system is under the regulation of 

brainstem locus coeruleus (LC), clustered with noradrenaline neurons. Morphological and 

immunocytochemical studies have demonstrated that reciprocal projections exist between 

PVN–CRH neurons and LC–NE neurons, forming a CRH–NE–CRH loop, which plays an 

important role in the stressful responses (Maier, 2003) (Pacak et al., 1998) (Pacak et al., 1995). 

Central CRH, via glucocorticoids and catecholamines, inhibits the inflammatory reaction, 

while directly secreted by peripheral nerves CRH stimulates local inflammation (immune 

CRH) (Tsigos et al., 2002). The gene for CRH is expressed, not only in the brain, but also in 

extracranial tissues, (Orth, 1992) (Owens et al., 1991) including normal mammalian skin 

(Slominski et al., 1995) (aSlominski et al., 1993) (bSlominski et al., 1993) (Ermak et al., 1997) 

(Slominski et al., 1998). It has been proposed that an equivalent to the hypothalamic-

pituitary-adrenal axis functions in mammalian skin, in response to local stress (aSlominski 

et al., 1996).  

3.2.2 HPA axis & CRH: Response to local stress  

It has been known for several years that the CRH/ POMC skin system fulfils analogous 

(pro-opiomelanocortin) functions to the HPA stress axis. CRH is the central trigger of HPA 

axis, and together with related peptides urocortin I–III that are the most important elements 

of the body response to stress. These elements regulate behavioral, autonomic, endocrine, 

reproductive, cardiovascular, gastro-intestinal, metabolic and immune systemic functions 

(Aguilera et al., 2001) (Grammatopoulos et al., 2002). Other actions of CRH include local 

immunomodulatory (predominantly proinflammatory) effects (Karalis et al., 1991) 

(Slominski et al., 2003), differing from a central immunosuppressive activity (through the 

HPA axis) (Chrousos 1995). Moreover, expression of CRH and regulated activity of CRH 

receptor type 1 (CRH1) can also play an important role in regulation of local stress response 

in peripheral tissues including skin, gastrointestinal tract or reproductive system. In 

humans, expression of at least eight variants of CRH1 mRNA (ǂ, ǃ, c, d, e, f, g and h) was 

detected and alternative splicing was found to be regulated by diverse physiological and 
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pathological factors including: growth conditions, onset of labor during pregnancy or 

exposure to ultraviolet irradiation (Michal et al., 2010). Of note, locally produced CRH can 

directly regulate steroid hormone production by adrenals and gonads. Furthermore, CRH in 

the immune cells can induce production and release of POMC derived ACTH and beta-

endorphin peptides. In vertebrates these peptides interact with membrane-bound CRH-R1 

and CRH-R2 (Grammatopoulos et al., 2002) (Hillhouse et al., 2002). Both receptor types 

belong to the group II subfamily of G protein-coupled receptors (GPCRs).  In human skin, 

CRH-R1 is the major receptor, expressed in both epidermal, dermal and subcutis with CRH-

R1ǂ being the most prevalent isoform. The CRH-R2 gene was expressed solely in hair 

follicle keratinocytes and papilla fibroblasts, whereas CRH-R2 antigen was localized 

predominantly in hair follicles, sebaceous and eccrine glands, muscle and blood vessels 

(aSlominski et al., 2004). A hair follicle is a typical stress-responding mini organ with a 

peculiar immune system. The proximal epithelium of an anagen hair follicle is known to be 

an area of immune privilege within the hair follicle immune system, whose collapse may be 

crucial for the pathogenesis of alopecia areata (Christoph et al., 2000). 

3.3 HPA axis–immune system interactions 

It has been known for several decades that stress, whether inflammatory, traumatic or 

psychological, is associated with concurrent activation of the HPA axis. In the early 1990s, it 

also became apparent that cytokines and other humoral mediators of inflammation are 

potent activators of the central stress response, constituting the afferent limb of a feedback 

loop through which the immune/inflammatory system and the CNS communicate 

(Chrousos 1995). All three inflammatory cytokines, tumor necrosis factor-(TNF), interleukin-

1ǃ and interleukin-6 (IL-6) can cause stimulation of the HPA axis alone, or in synergy with 

each other (Chrousos, 1995) (Tsigos et al., 1997). There is evidence to suggest that IL-6, the 

main endocrine cytokine, plays the major role in the immune stimulation of the axis, 

especially in chronic inflammatory stress. Some of the activating effects of cytokines on the 

HPA axis may be exerted indirectly by stimulation of the central catecholaminergic 

pathways. Conversely, activation of the HPA axis has profound inhibitory effects on the 

inflammatory/immune response because virtually all the components of the immune 

response are inhibited by cortisol. Alterations of leukocyte traffic and function, decreases in 

production of cytokines and mediators of inflammation, and inhibition of the latter's effects 

on target tissues are among the main immunosuppressive effects of glucocorticoids 

(Chrousos, 1995) (Elenkov, 1999).  

3.4 HPA: The field of psychoneuroimmunology   

Studies on stress-associated immune dysregulation have interested scientists and clinicians 

in the field of psychoneuroimmunology (PNI). This field focuses on the interactions among 

the central nervous system (CNS), the endocrine system and the immune system, and the 

impact these interactions have on health. Modulation of the immune response by the CNS is 

mediated by a complex network of signals that function in bi-directional communication 

among the nervous, endocrine and immune systems. HPA and SAM axes are the two major 

pathways through which immune function can be altered. The efferent 

sympathetic/adrenomedullary system apparently participates in a major fashion in the 
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interactions of the HPA axis and the immune/inflammatory reaction by being reciprocally 

connected with the CRH system, by receiving and transmitting humoral and nervous 

immune signals from the periphery, by densely innervating both primary and secondary 

lymphoid organs, and by reaching all sites of inflammation via the postganglionic 

sympathetic neurons. When activated during stress, the autonomic system exerts its own 

direct effects on immune organs, which can be immunosuppressive, or both 

immunopotentiating and antiinflammatory. CRH secreted by postganglionic sympathetic 

neurons at inflammatory sites has proinflammatory properties (immune CRH); one of its 

key actions is to degranulate mast cells (Elenkov, 1999).   

4. Overview of skin 

4.1 Skin (epidermal barrier homeostasis) 

The epidermis and its array of appendages undergo ongoing renewal by a process called 

homeostasis. Stem cells in the epidermis have a crucial role in maintaining tissue 

homeostasis by providing new cells to replace those that are constantly lost during tissue 

turnover or following injury (Blanpain et al., 2009). A homeostatic process involved in the 

maintenance of an internal steady state within a defined tissue of an organism, including 

control of cellular proliferation and death(apoptosis) and control of metabolic function. 

Mammalian epidermis is a stratified epithelium that retains the ability to self renews 

under both homeostatic and injury conditions by maintaining a population of mitotically 

active cells in the hair follicles and innermost basal layer (Niemann et al., 2002) (Ito et al., 

2005). The basic mechanisms and signalling pathways that orchestrate epithelial 

morphogenesis in the skin have been designed for protective effect of this organ. The 

stratum corneum is the outermost of the 5 layers of the epidermis and is largely 

responsible for the vital barrier function of the skin. The physical barrier localized 

primarily in the stratum corneum and consists of protein-enriched cells (corneocytes with 

cornified envelope and cytoskeletal elements, as well as corneodesmosomes) and lipid-

enriched intercellular domains. The nucleated epidermis, with its tight, gap and adherens 

junctions, additional desmosomes and cytoskeletal elements, also contributes to the 

barrier. Lipids are synthesized in the keratinocytes during epidermal differentiation and 

are then extruded into the extracellular domains, where they form lipid-enriched 

extracellular layers (Jensen et al., 2009). Activation of HPA axis with release of stress 

neuropeptides is essential for biological homeostasis and responses to external and 

internal challenges (Lotti et al., 1999) (bSlominski et al., 1996).       

4.2 Skin – Neuroendocrine organ 

More than ten years ago a comprehensive model of the skin acting as neuroendocrine organ 
has been proposed (Milstone et al., 1988) (aSlominski et al., 2000). For example, the skin 
synthesizes vitamin D, which enters the circulation and, upon activation, exerts profound 
metabolic and endocrine effects (Kragballe et al., 1996). Although the concept is still 
evolving, it relies on the skin capacity to communicate with the central system and to 
regulate global homeostasis through local production and/or systemic release of classical 
hormones, neuropeptides, neurotransmitters and biological regulators (bSlominski et al., 
2000).  
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4.3 Skin – Local stress (neuroendocrine activity) 

Skin as a neuroendocrine organ, is a relatively new addition to the field of cutaneous 
biology; it combines concepts from immunology, endocrinology, and neurobiology to 
unravel the multidirectional communications between brain, the endocrine and immune 
systems, and peripheral organs (Blalock, 1989) (Pennisi, 1997) (Turnbull et al., 1999). In 
this regard, the skin has a unique role because of its location, size, and relative functional 
diversity. Moreover, cutaneous signals sent to neuroendocrine centers may play 
modulatory roles, although peripheral intraorgan or inter systemic communications are 
also necessary to maintain global and local homeostasis. Thus precise stress-response 
coordination is an additional cutaneous function that appears to be served by locally 
expressed neuroendocrine activities (aSlominski et al., 2000) (bSlominski et al., 2000) 
(Slominski et al., 2001).   

4.4 Skin – Stress neuropeptides 

CRH/CRH-R1 system: Is it a cutaneous HPA system? 

Slominski and colleagues have extensively documented the nature of peripheral CRH, its 
receptors and their distribution in human and murine skin. They confirmed that skin stress–
response system was coordinated by a local cutaneous HPA axis-like system. They 
demonstrated that CRH, its receptors, the related neuropeptide urocortin and pro-
opiomelanocortin-derived peptides are expressed locally in normal skin, normal cycling hair 
follicle epithelium, benign and malignant melanocytic lesions and non-melanoma skin 
cancer (bSlominski et al., 2004). Corresponding functional receptors (CRH-R) in the same 
cells confirm paracrine or autocrine modes of action. In human skin, CRH-R1 mediates most 
phenotypic effects of CRH (Slominski et al., 2001) while the main adnexal location of CRH-
R2 indicates a role for this receptor in hair cycling (Kauser et al., 2006). Then a localized 
circuit regulates the peripheral functions of cutaneous CRH/CRH-R1, and the aberrant 
expression of CRH/CRH-R1 in the skin disturbs the local homeostasis and leads to 
abnormal differentiation and proliferation in keratinocytes. Because of the aberrant terminal 
differentiation of keratinocytes, psoriatic plaques have scale on the surface, which breaks in 
the protective barrier (Bowcock et al., 2005). However, dysfunction of keratinocytes may 
decrease CRH/CRH-R1 expression because of disharmony in differentiation and 
proliferation of keratinocytes. Zhou et al., in 2009 found a significant detuning CRH/CRH-
R1 system in psoriatic lesions, which suggests that an aberrant cutaneous HPA system 
might take part in the pathogenesis of psoriasis, especially the formation of plaque. Thus, 
they hypothesize that a cutaneous CRH/CRH-R1 system might be aberrant in lesions of 
psoriasis. The detuning of CRH/CRH-R1 regulation might contribute to the formation of 
plaque in psoriasis (zhou et al., 2009) (Slominski et al., 2005) (Fig. 2). 

POMC is a prohormone that produces various bioactive peptides via a series of enzymatic 
steps in a tissue-specific manner, including ACTH, ǂ-melanocyte stimulating hormone (ǂ-
MSH), and ǃ-endorphin. POMC is expressed not only in the pituitary gland, but also in a 
variety of non-pituitary organs, including the skin (Millington 2006). The production of 
POMC peptides in keratinocytes and melanocytes was found to be under regulatory control 
(Schauer  et al., 1994) being stimulated by UVB, selected cytokines, and by disease 
processes(Slominski et al., 1996c, 1998, 1993a, 1993b)( Chakraborty et al., 1996) ( Winzen et 
al. 1996)( Wakamatsu et al., 1997).  
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Fig. 2. The skin SNS are mediated via production of CRH and POMC peptides, and 
modulated by the local skin immune system (SIS). Signals originating in the latter and 
represented by proinflammatory cytokines perhaps stimulate production of CRH and 
POMC peptides. In turn, the signals generated by the interaction of CRH, ACTH, MSH, and 
ǃ-endorphin, with their corresponding receptors, counteract the effect of local stress 
(Slominski et al., 2006).   

4.5 Skin – The field of psychoneuroimmunology 

Studies have shown that stress diminishes vaccine responses, exacerbates viral and bacterial 
pathogenesis, slows wound healing and alters autoimmune diseases (McCabe et al., 2000) 
(Padgett et al., 1998) (Teunis et al., 2002) (Dowdell et al., 1999). Because lymphocytes, 
monocytes or macrophages and granulocytes, exhibit receptors for many neuroendocrine 
products of the HPA and SAM axes, such as cortisol and catecholamines, which can cause 
changes in cellular trafficking, proliferation, cytokine secretion, antibody production and 
cytolytic activity .These studies have demonstrated that stress hormones inhibit the 
trafficking of neutrophils, macrophages, antigen-presenting cells, natural killer (NK) cells 
and T and B lymphocytes, suppress the production of proinflammatory cytokines and 
chemokines, downregulate the production of cytokines necessary for the generation of 

www.intechopen.com



 
Psoriasis 

 

196 

adaptive immune responses and impair effector functions of macrophages, NK cells and 
lymphocytes. For example, treatment of peripheral blood leukocytes (PBLs) with 
catecholamines in vitro results in the suppression of interleukin-12 (IL-12) synthesis and an 
increase in IL-10 production (Elenkove et al., 1996). Data from both human and animal 
studies show that the connections between the neuroendocrine system and immune system 
provide a finely tuned regulatory system required for health. However, the immune cells 
and cytokines influencing keratinocyte function play a major role in the development and 
pathogenesis of psoriasis.  

5. Overview of psoriasis 

5.1 Psoriasis – Genetic 

It is generally accepted that the genetic background for psoriasis susceptibility is pivotal for 
the appearance of the symptoms. Intensive family studies since the early 1950s and linkage 
analysis studies pointed out several genetic loci that play a role in psoriasis (Bhalerao et al., 
1998). In the last decade, a molecular biology approach emerged to identify abnormally 
expressed genes and proteins contributing to psoriasis (Jackson et al., 1999) (Chen et al., 
2000). Two major genes under investigation are IL12B on chromosome 5q, which expresses 
interleukin-12B; and IL23R on chromosome 1p, which expresses the interleukin-23 receptor, 
and is involved in T cell differentiation. T cells are involved in the inflammatory process that 
leads to psoriasis. These genes are on the pathway that ends up upregulating tumor necrosis 
factor-ǂ and nuclear factor κB, two genes that are involved in inflammation (Nestle et al., 
2009). Genome-wide association studies have also identified several new genomic loci, and 
compelling evidence has shown an interaction between the HLA-C and ERAP 1 loci, 
implicating pathways that integrate epidermal barrier dysfunction with innate and adaptive 
immune dysregulation in psoriasis (Strange et al., 2010).  

5.2 Psoriasis – Keratinocytes 

Psoriasis is a chronic inflammatory disease characterized by epidermal keratinocytic hyper 
proliferation and abnormal differentiation (Abdou et al., 2008). The upper most layer of 
skin, the epidermis, consists primarily of keratinocytes (>90% of all epidermal cells) (Sun et 
al., 1979). The keratin intermediate filament network is responsible for the extremely high 
keratinocyte stiffness and resilience. This could manifest into the rugged protective nature 
of the human epidermis (Lulevich et al., 2010). Therefore, keratinocytes form an effective 
barrier to the entry of protein antigens, chemical irritants, and infectious agents in to the 
body (Fuchs 1995), all while resisting environment stress, external pressure, and sheer force. 
The trigger of the keratinocyte response is thought to be activation of the cellular immune 
system, with T cells, dendritic cells and various immune-related cytokines and chemokines 
implicated in pathogenesis (Lowes et al., 2007).  

5.2.1 Keratinocytes – Dendritic & T cells  

Researchers have identified many of the immune cells involved in psoriasis, and the 
chemical signals they send to each other to coordinate inflammation. The immune system 
consists of an innate immune system, and an adaptive immune system. In the innate system, 
immune cells have receptors that have evolved to target specific proteins and other antigens 
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which are commonly found on pathogens. In the adaptive immune system, immune cells 
respond to proteins and other antigens that they may never have seen before, which are 
presented to them by other cells. The immune cells, such as dendritic cells (Dendritic cells 
are present in tissues in contact with the external environment, such as the skin: Once 
activated, they migrate to the lymph nodes where they interact with T cells and B cells to 
initiate and shape the adaptive immune response)  and T cells, move from the dermis to the 
epidermis, secreting chemical signals, such as tumor necrosis factor-ǂ, interleukin-1ǃ, and 
interleukin-6, which cause inflammation, and interleukin18, 22 which causes keratinocytes 
to proliferate (Banchereau et al., 1998) (Nestle et al., 2009). Recent studies indicate that 
various cytokines play an essential role in the induction and maintenance of psoriatic lesion.   

5.2.2 Keratinocytes – Cytokines   

Various inflammatory cytokines and growth factors have been shown to be strongly 

induced in keratinocytes in psoriatic lesion. Although it is thought that the induction of 

cytokine production is the consequence of the activation of infiltrating immune cells rather 

than a triggering factor for the inflammatory process (Lowes et al., 2007). Three types of 

cytokines elaborated by keratinocytes are of particular interest in this context: growth 

factors for keratinocytes, endothelial cells and neutrophil-attracting chemokines. Several 

growth factors are able to induce keratinocyte proliferation and have been found to be 

highly expressed in lesional psoriatic epidermis. Transforming growth factor α (Elder et al., 

1989) (Addison et al., 2010) and amphiregulin-epidermal growth factor (Cook et al., 1992) 

have been shown to induce epidermal proliferation and reproduce some aspects of the 

psoriatic phenotype when expressed in epidermal keratinocytes in transgenic animals (Cook 

et al., 1999) (Vassar et al., 1991). The epidermal growth factor (EGF) receptor ligand 

amphiregulin (AREG) has been implicated as an important autocrine growth factor in 

several epithelial malignancies and in psoriasis, a hyperproliferative skin disorder. In vitro, 

in vivo and clinical studies are well established the role of growth factors and neuropeptides 

in cutaneous innervation and there is substantial evidence that sensory neuropeptides 

contribute to the development of psoriasis (Saraceno et al., 2006).   

5.2.3 Keratinocytes & peripheral CRH/CRH-R1 

CRH is a central component of the local HPA axis, which has a functional equivalent in 
the skin. The ability of CRH to activate mast cells may explain its proinflammatory actions 
and the pathophysiology of certain skin conditions, which are precipitated or exacerbated 
by stress, such as atopic dermatitis, eczema, psoriasis, and urticaria (Theoharides et al., 
1998). Mast cells are derived from stem cells in the bone marrow and migrate into tissues 
where they are prominently located just below the dermal–epidermal junction; they 
mature, depending on the tissue, under the influence of stem cell factor (SCF), interleukin 
3 (IL-3), IL-4 and IL-9 (Wedemeyer et al., 2000). Mast cell infiltration and/or proliferation 
in the skin can be triggered by SCF released from fibroblasts and other immune cells, 
nerve growth factor (NGF) released from nerve endings, or RANTES (regulated on 
activation, normal T cells, expressed and secreted) (Conti et al., 1998) . Mast cells can also 
secrete SCF  (de Paulis et al., 1999) and NGF  (Xiang et al., 2000), thus affecting their own 
growth and activation (Gagari et al., 1997). The cytokines expressed by mast cells are 
primarily pro-inflammatory or are necessary for innate immunity [e.g. IL-1, IL-6, IL-8 and 
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tumor necrosis factor ǂ (TNF-ǂ) (Wedemeyer et al., 2000). Human mast cells were recently 
shown to be particularly rich in both CRH and the structurally related peptide urocortin 
(Ucn) ( Kempuraj et al., 2004) and express multiple CRH receptor isoforms which suggests 
autocrine actions of CRH(Cao et al., 2003).  

5.2.4 Keratinocytes – CRH & Mast cells 

Skin and hypothalamic mast cells appear to have important physiological functions as 

sensors of stressful events with bidirectional regulation of the HPA axis; a local increase of 

the levels of CRH or Ucn in extracranial tissues under stress could adversely affect different 

disease states (Theoharides et al., 1998). Hypothalamic mast cells are located close to nerve 

endings that contain CRH and can be activated by acute stress (Rozniecki et al., 1999). Acute 

stress can trigger mast cell degranulation (Singh et al., 1999) and increased the number of 

skin mast cells and also can worsened delayed hypersensitivity, effects blocked by 

pretreatment with a CRH receptor antagonist (Kaneko et al., 2003). Neuropeptides can also 

activate mast cells in a receptor-independent manner by activating G proteins directly. 

Regardless of the mechanism of activation, mast cell-derived vasoactive, pro-inflammatory 

and neurosensitizing molecules could act on keratinocytes, endothelial cells or nerve 

endings to liberate additional molecules and lead to chronic inflammation and neuropathic 

hypersensitivity or pain. The Kempuraj et al., findings indicate that mast cells are not only 

the target, but also a potential source of CRH and Ucn that could have both autocrine and 

paracrine functions, especially in allergic inflammatory disorders (Kempuraj et al., 2004), 

atopic dermatitis and  psoriasis exacerbated by stress (Theoharides  et al., 2004).  

5.2.5 Keratinocytes – CRH & Stress 

The study of Mitsuma et al., in 2001 showed that CRH induces the proliferation of 

keratinocytes via interaction with CRH receptors (Mitsuma et al, 2001) and it may indicate 

the possible correlation of the proliferation of keratinocytes and the degree of stress. 

Therefore, activation of the stress system, via the direct and indirect effects of CRH, might 

affect the susceptibility of an individual to certain autoimmune, allergic, infectious, 

inflammatory or neoplastic diseases (Arbiser et al, 1999). The biological effects of CRH have 

been shown to include the inhibition of keratinocyte proliferation and regulation of 

adhesion molecules and cytokines (cSlominski et al, 2000)(Pisarchik et al., 2001)(Quevedo et 

al, 2001)(Zbytek et al, 2002). Dysregulation of the HPA and SAM systems has been proposed 

as one possible underlying cause of stress-induced flares of psoriasis (Heller et al., 2011). 

5.3 Psoriasis & stress 

Generally, in normal individuals, stress elevates stress hormones (i.e., increases cortisol 
levels). However, according to available studies, exposure to stress in psoriatic patients 
has been associated with diminished HPA responses and upregulated sympathic 
adernomedullary (SAM) responses (Richards et al., 2005). Evers et al., found psoriasis 
patients had significantly lower cortisol levels at moments when daily stressors are at 
peak levels. The study also reported that psoriasis patients with overall high levels of 
daily stressors exhibited lower mean cortisol levels, as compared to psoriatics with overall 
low levels of daily stressors (Evers et al., 2010) (Zangeneh et al., 2008). These blunted HPA 
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axis and elevated SAM system responses to stress may be crucial in better understanding 
the inflammatory characteristics of psoriasis, particularly in stress-responders. For 
instance, decreased secretion of cortisol and increased levels of epinephrine (Zangeneh et 
al., 2008) and norepinephrine may stimulate the release of mast cells, affect skin barrier 
function, and upregulate proinflammatory cytokines, which could thereby maintain or 
exacerbate psoriasis severity (Evers et al., 2010).  Some authors have commented that this 
decreased cortisol response may be similar to how psoriasis flares with steroid 
withdrawal, as evidenced by the well known phenomena of steroid-induced psoriasis 
rebound (Richards et al., 2005).  

5.3.1 Psoriasis & steroidogenic capabilities of keratinocytes 

Glucocorticoids are essential for maintaining barrier competency, as exemplified in GR−/− 

mouse, where loss of GR function led to incomplete epidermal stratification, 

hyperproliferation and abnormal differentiation (Bayo et al., 2008). In addition, the cortisol 

analogue dexamethasone has been shown to acutely influence expression of genes 

regulating cell proliferation, differentiation, apoptosis and inflammation in primary human 

keratinocytes (PHK) (Elias 2005) (Stojadinovic et al., 2007). Accordingly, cortisol 

(hydrocortisone) is regarded as the most potent therapy for many inflammatory skin 

conditions including psoriasis and atopic dermatitis. Keratinocytes contain an abundance of 

cholesterol, the precursor to all steroids, as they are capable of synthesizing cholesterol de 

novo (Menon et al., 1985). Additionally, the cholesterol transporter, steroidogenic acute 

regulatory (StAR) protein has been identified in human epidermis by immunofluorescence 

histochemistry (bSlominski, et al., 2004) (Tuckey 2005). Evers's study in 2010 is the first 

longitudinal study of patients with psoriasis to show a relationship between cortisol levels 

and daily stressors, these results suggest that patients who continuously experience higher 

levels of daily stressors are characterized by persistently lower cortisol levels and might thus 

be more vulnerable to the effects of stress on their disease (Everse et al., 2010). Hannen et al., 

in 2011 demonstrated that primary human Keratinocytes (PHK) express all the elements 

required for cortisol steroidogenesis and metabolite pregnenolone through each 

intermediate steroid to cortisol. They showed that normal epidermis and cultured PHK 

express each of the enzymes (CYP11A1, CYP17A1, 3ǃHSD1, CYP21 and CYP11B1) that are 

required for cortisol synthesis. Collectively these data show that PHK are capable of extra-

adrenal cortisol synthesis, which could be a fundamental pathway in skin biology with 

implications in psoriasis and atopic dermatitis (Hannen et al., 2011). 

5.3.2 Psoriasis & stress axis 

HPA axis is a critical adaptive system that maximizes survival potential in the face of 
physical or psychological challenge. The principal end products of the HPA axis, 
glucocorticoid hormones, act on multiple organ systems, including the brain, to maintain 
homeostatic balance. The brain is a target of stress, and the hippocampus is the first brain 
region, besides the hypothalamus, to be recognized as a target of glucocorticoids (Zangeneh 
et al., 2009). There is increasing evidence that the experience of stressful events is associated 
with the course of chronic inflammatory skin diseases. Buske-Kirschbaum et al., reported 
attenuated responsiveness of the  HPA axis and further, an increased reactivity of the SAM 
system to stress in patients suffering from atopic dermatitis (AD) (Buske-Kirschbaum et al., 
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2006) and psoriasis (Buske-Kirschbaum et al., 2010). It has been indicated that the 
redistribution of leukocytes in response to acute stress is mediated by the SAM, since 
adrenalectomy or blockade of ǃ-adrenergic receptors has been found to mitigate this effect 
(Dhabhar et al., 1995) (Engler et al., 2004).  It is widely accepted that the SAM system 
represents a major immunoregulatory system that controls various aspects of immunity 
(Sanders et al., 2002).  

5.3.3 Psoriasis & SAM system: Aspect of psychoneuroimmunology 

It has been suggested that a dysfunctional sympathoadernomedulatory (SAM) system may 

increase the risk of an aberrant immune response, especially under stressful conditions 

when the system is activated. In fact, altered leukocyte distribution to acute stress, for 

example, increased numbers of NK cells, monocytes, CD4+ and CD8+ cells have been 

reported in psoriasis patients (Schmid-Ott et al., 2001). Under non-pathological conditions, 

this process may optimize immunoprotection in the case of wounding or infection. 

However, in the psoriatic patient, leukocyte trafficking to the (chronically inflamed) skin has 

been found to be a major step in the development of psoriatic eruption (Mehlis et al., 2003). 

Thus, the finding of a stress-induced increase of leukocyte trafficking with a potentially 

increased influx of leukocytes into the skin could be of clinical significance, and could at 

least partly explain the often observed stress-induced exacerbation of psoriatic lesions.  

However, there is growing evidence that T cell mediated autoimmune processes and action 

of proinflammatory cytokines cause hyperproliferation of keratinocytes and assume the 

psoriatic phenotype (Krueger et al., 2005). When exposed to psychosocial stress, psoriasis 

patients showed increased monocyte and (activated) T cell number when compared to 

healthy controls. Further, a shift towards a TH1-derived cytokine profile could be identified. 

These findings suggest that in psoriasis patient's stress may change immune functions 

towards a pathological relevant immune profile which could explain the often observed 

aggravation of psoriatic plaques in psoriasis patients under stressful conditions. Just as in 

many dermatologic conditions, psoriasis appears to worsen with stress in a significant 

segment of patients. For example, more than half of patients with psoriasis retrospectively 

report having experienced stressful life events before an exacerbation of the disease (Gupta 

et al., 1989) (Fortune et al., 1998). Studies report that the proportion of psoriasis patients who 

are “stress responders” ranges from 37% to 78% (Picardi et al., 2001).   

5.3.4 Psoriasis & “stress responders” 

Does stress cause or exacerbate psoriasis? 

The answer is both, because the stress response disrupts physiological homeostasis and 

body function and contributes to disease production (Burchfield, 1979). This disruption of 

physiological homeostasis in the skin barrier is the trigger and stressors may contribute 

directly to the production of psoriasis disease or it contributes to the development of stress 

behavior, which increases the risk of disease. Stress has been indicated as a trigger in many 

dermatologic conditions and with each of these conditions, one encounters both patients 

who experience a close chronologic association between stress and exacerbation of their skin 

disease, and patients for whom their emotional states seem to be unrelated to the natural 

course of their cutaneous disorder. These two groups are considered “stress responders” 
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and “non-stress responders,” respectively (Koo 1995).   Psoriasis itself can serve as a stressor 

for patients. Psoriasis can be a disfiguring skin disease causing social stigma. Accordingly, 

patients often suffer significant interpersonal and psychological distress. Patients commonly 

experience difficulties in social interactions, especially in meeting new individuals and 

forming romantic relationships. In general, most patients demonstrate adverse 

psychological consequences, including poor self-esteem, anxiety, depression, and for some, 

even develop suicidal ideation (Russo et al 2004). As psoriasis can cause considerable stress 

for patients and increased levels of stress are likely to exacerbate psoriasis, the disease 

process, thus, becomes a self-perpetuating, vicious cycle (Kimball et al., 2005). Therefore, 

treatment considerations for psoriasis stress responders should integrate methods of 

psychotherapy and pharmacotherapy that can decrease stress.   
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