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ROCK FAILURE 

INFLUENCE OF THE BLOCK-HIERARCHICAL STRUCTURE OF ROCKS  
ON THE PECULIARITIES OF SEISMIC WAVE PROPAGATION 

E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko*,  
and A. G. Chernikov UDC 539.375 

The analysis is performed for the parameters of long pendulum-type waves in a one-dimensional periodic 
system with an arbitrary hierarchical structure. A case study is carried out into the wave propagation 
peculiarities in an impact-excited system of equal rigid blocks with parting layers differing in rigidity. The 
pendulum wave velocity in the automodel block-hierarchical system is determined. 

Impact, block medium, pendulum-type waves, parting layers, elasticity 

Recently the geomechanics and geophysics researchers tend to describing deformation of a rock 
mass as a block structure with a complex hierarchy. Under this conception, a rock mass is a structure of 
nested blocks different in scales [1]. By analyzing dimensions of blocks, starting from scales of crystals 
to fractions of rock mass and geoblocks of the earth’s crust, it has been found that a ratio of sizes of 
blocks at neighboring scale levels, NN lla /1+= , exhibits a certain stability, viz, 4.1≈a  [2]. One more 
critical, obtained experimentally statistic invariant of a block structure is equation ratio of the parting 
width between blocks of the same scale to the typical size of a block, µ . It was determined that 

210)25.0( −⋅−≈µ  for rocks at Norilsk mines [2]. Seismic approach to studying the deformation 
properties of partings between blocks with different dimensions showed that rigidity of the parties 
changes inversely to the dimensions of blocks [3]. The block-to-block partings are often composed of 
weak jointy rocks. Owing to the presence of these soft partings, a block rock mass deformation takes 
place, both in statics and in dynamics, due to the deformation of the partings.  

The theoretical and experimental studies into the waveguide properties of one-dimensional block 
models in the form of a chain of elastic blocks with soft partings showed that wave propagation in such 
media is well-described by an approximation that block displace as non-deformable bodies [4 – 9]. At 
that, rather accurate description is obtained for low-frequency pendulum-type waves induced by an 
impact action. The experiments exhibited that high-frequency waves that are characteristic for the 
eigenmodes of blocks, attenuate fairly quickly. The authors devoted this study to the influence exerted by 
internal structure of blocks on propagation regularities of non-stationary waves in periodic block-
hierarchical systems.  
BLOCK HIERARCHICAL MODELS OF WAVEGUIDES 

Let a periodic system have a block-hierarchical structure consisting of equal structural blocks each 
containing a nested system of sub-blocks as is in Fig. 1. 
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Fig. 1. A schematic segment of a period of the 16th order one-dimensional block-hierarchical model of 
masses (light color rectangles) and partings (dark color rectangles) 

We denote the system as a nth order system if its generator has n degrees of freedom. Figure 1 
depicts the 16th order system after 4 steps of nesting.  

Consider systems of discrete elements — masses and inertialess linkages — springs. The simples 
periodic system presented by a chain of spring-connected masses (CMS) studied earlier [7 – 12] is the 
first-order system for which:  

— stationary propagation of waves is only possible in the frequency band of Ω<< ω0 , where 
mk /2=Ω ; k is the rigidity of springs; m is the mass; 

— phase velocity of long low-frequency waves ( 0→= сqω , 0→q ) is described by an 
asymptotics: 
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with integral parameters:  
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where L  is the distance between masses. 
An impact-excited wave propagates along CMS and its asymptotic description at large times 

involves the following formulae for displacements ),( txu , strains ),( txxε , mass velocities ),( txv  and 
accelerations ),( txa : 
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Here, I is an impulse of an external force )(tf ; Ai is the Airy function.  
The outcome has the following physical sense. The velocity *С  is a movement velocity of a 

quasifront tСx *=  with a cluster of low-frequency oscillations in its vicinity. Behind the front, with a 
decreasing velocity, higher-frequency modes move. Wave propagating from the area of influence are 
oscillating and diffuse with time (distance from the source of effect) as 3/1t )( 3/1x . The displacements 
oscillate relative to an average *IСU = , the oscillation amplitude and period are maximal near the 
quasifront, and such are the velocities and strains there, but the latters, unlike the displacements, 
decrease with time as 3/1t . The accelerations go down with time as 3/2t  and have the maximal 
amplitudes at a certain distance (increasing as 3/1t ) from the quasifront.  

We think our goal is to describe collateral wave effects in high-level waveguides. The so-called Born 
chain exemplifies the second-order system with a cell of the length L, that is a chain of four elements 
represented by two masses and two linkages (Fig. 2).  
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Fig. 2. Born chain 

This system motion equations: 

 0)–()–( 2111 =++ + nnnnn ukukum vvDD ,   0)()( 2112 =−+−+ − nnnnn ukukm vvvDD   

define two oscillation modes by the number of the degrees of freedom the generator has, namely, the 
acoustic I and optic II modes (Fig. 3).  

The system has three resonant frequencies, that are 1Ω  and 2 Ω  at a point π=q  for short-wave 
oscillations, and 3 Ω  at the point q = 0 for long-wave oscillations. With no restrictions imposed on 
generality, we introduce the expressions for the frequencies for the case when mmm == 21 : 
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The bands 21 Ω≤≤Ω ω  and 3Ω≥ω  correspond to blocking bands as propagation of harmonic waves 
with such frequencies is impossible.  

The phase velocity of the long low-frequency waves is described by asymptotics (1) with integral 
parameters: 
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An asymptotic analysis of the long-wave longitudinal excitations near the quasifront, tСnL I
*= , 

shows that they are described by asymptotic (3) with parameters (5).  

 
Fig. 3. Branches of the modes I and II of dispersion characteristics for the frequencies ω  and group 
velocities gc , calculated for 121 == mm , 1=L , 34.01 =k , 12 =k  
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Figure 4 presents the acceleration oscillograms for the 40th and 80th masses in the Born chain 
under the impact action by a half-sine pulse with a duration 02765.0=T , obtained by the finite 
difference method. As against the system CMS, in the Born chain, the local impulse-generated 
excitations that propagate to the periphery have a pronounced two-wave structure. The low-frequency 
pendulum wave running with the velocity IC*  is the same in nature as in CMS. But in the case 
discussed, this wave is followed by the high-frequency constituent with an envelope velocity that 
equals the second mode group velocity maximum )(max ** qсcС II

g
II
g

II ==  and the frequency 

)( *4 qω=Ω  (Fig. 3). The vertical dashed lines in Fig. 4 indicate the time moments II CnLt ** /=  and 
IIII CnLt ** /=  of the quasifronts of the long-wave and short-wave excitations, respectively. 

GENERAL CASE OF THE PERIODIC BLOCK-STRUCTURED MODEL 

Consider the general case of the periodic block-hierarchical system composed on equal blocks each 
having structures of different types (with the simplest cells of CMS, hierarchical systems as is in Fig. 1 and, 
for instance, three-dimensional finite-size bodies). Joint movement of the system is directed long-wise.  

Structure of blocks is arbitrary, that means inertialess linkages discrete structure with many degrees 
of freedom, or continual elements, the only requirement is to have possibility of associating 
“displacement” )(tU n  ) 2, 1, ,0( �±±=n  of a block with a displacement of any material point of it.  

So, we assume having a system of dynamic equations for the elements of a block and a required set 
of boundary conditions. We solve the non-stationary problem using the Laplace transform of time with 
the transform parameter p (denoted by L). Unloading the linear equations for the Laplace images from 
the displacements of internal elements of the block yields equation that connect L

nU , L
nU 1+ , L

nU 1−  as 
they occur in the boundary conditions for the motion equation of the nth block. 

 
Fig. 4. Wave propagation in the Born chain under impulse load. The acceleration oscillograms for  
the 40th and 80th masses are calculated for 121 == mm , 1=L , 34.01 =k , 12 =k  
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Now, the problem is reduced to solving an infinite system of equations: 
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where Ф is a linear function of L
nU , L

nU 1+ , L
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nQ  is the Laplace image of external force. After 
that, the discrete Fourier transform is used, with the parameter q (denoted by dF ). The formal solution 
has the form:  
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where A is an operator fitting the type of linkages between the elements of the blocks; K is all 
parameters (constants) of the problem; D is the dispersion operator of the system:  

 ),()2/(sin),,( 2 KpqLKqpD β−= ; (7) 

here, generally, β  is a transcendental function.  
A formal solution to the non-stationary problem is:  
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Unfortunately, an exact converse of (8) is only possible in some simplest case studies. To this end, 
we use a technique described in [11] for the asymptotic inversion of a double Laplace and Fourie image 
as 0→p  and 0→q , which corresponds to the long-wave excitations in the origin space at an 
infinite large time from the loading start ( ∞→t ). 

Let us analyze the dispersion equation derived after replacement of ωiiqcp ==  in the dispersion 
equation: 

 0),()2/(sin),,( 2 =−= KiqLKqiD ωβω . 

We can show that the low-frequency approximation of the dispersion equation is:  
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and its long-wave asymptotics:  

 ))(1( 42
* qOqCc +−= α  

exactly matches the structure of CMS asymptotics (1) but with its own constants, which are the long-
waves velocity *C  and the dispersion parameter α  being integral representatives of properties of a 
particular structure:  
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Following the method [1] for the double transform near a ray tСx *= , assume that the subintegral 
expression )( * cCiqsp ′++=  includes ε≤q  (ε  is small), where 0→s , 0→′c . We obtain 
asymptotic expansion of the dispersion operator:  

 )(2),( 3
** qCiciqsiqCqsD α+′+≈ . 
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By doing so for the numerator )1(),,( * OAKqiqCsA U ≈=+ , we arrive at the asymptotics for the 
subintegral expression: 
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Let in the section 0=x , a concentrated half-sine load is applied with *ω : 
)()()sin()( 000 tHtHtQtQ ∗∗ −= ωπω , where 0H  is the Heaviside functions, whence:  
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The result of converse on the ray is the low-frequency asymptotics of the long-wave excitations at 
∞→t : 
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This solution structure matches with (3) for CMS. So, response of any long discrete-periodic 
structure to a non-stationary action is described by the asymptotic solution (3), and differing are only 
the coefficients α  and *С . Having calculated them, we can find an equivalent CMS for a complex 
block-hierarchical structure.  

For the block-hierarchical system as is in Fig. 1, the long wave propagation velocity *C  in 
asymptotics (3) is possible to be calculated as a sound speed in an equivalent continual elastic medium 
with an averaged deformation modulus 0E . For the simplicity, we analyze the case with rigid blocks 
and soft parting layers. Let the main period of a one-dimensional block system have a length L, cross 
section s, mass m and its boundary partings rigidity k. Should the period has no inner parting layers, 
than the averaged modulus is skLE /0 =  and the wave propagation velocity is mkLEV //00 == ρ  
that complies with the value of *C  in CMS. 

Divide the main block into two equal sub-blocks and introduce in-between a parting layer 1k . 
According to the experimental data on the ratio of properties of parting layers between blocks between 
different scale levels [2, 3], we assume that kk 21 = . Then, averaging yields 01 )3/2( EE =  and 

3/201 VV = , and the latter expression coincides with the value of *C  for the Born chain with 
mmm == 21 , kkk 22 12 == . 

If nesting has j steps, then we have:  
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Wherefrom, in the analyzed hierarchical system of the nth order, the long-waves propagate with the 
velocity:  
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This formula implies that when the hierarchical system order n grows, the velocity of long 
pendulum waves decreases rather slow.  

In a similar way, when calculating E, we can take into account compressibility of blocks, other 
division into sub-blocks, other law of the rigidity variation for parting layers.  
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CONCLUSIONS  

We have studied the 2nd order block-hierarchical model (Born chain), calculated non-steady wave 
processes, found occurrence of low-frequency pendulum-type waves and high-frequency waves, and 
determined their propagation velocities.  

Analysis of the long waves in a 1D periodic system with an arbitrary hierarchy has shown that the 
pendulum wave structure (length, velocity, acceleration) are determined by an asymptotically 
equivalent model of a chain of spring-separated masses with two integral parameters depending on 
properties of a particular system.  

We have found the velocity of a pendulum wave in the automodel block-hierarchical system with 
the set nesting.  

The study was conducted with financial support from the Russian Foundation for Basic Research, 
Project No. 06-05-64738, and from the Siberian Branch of the Russian Academy of Sciences, 
Integration Project No. 93.  
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