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Abstract. According to Ando’s theorem, the oriented bordism group
of fold maps of n-manifolds into n-space is isomorphic to the stable
n-stem. Among such fold maps we define two geometric operations cor-
responding to the composition and to the Toda bracket in the stable
stem through Ando’s isomorphism. By using the operations we explic-
itly construct several fold maps with favourable properties, including a
fold map which represents the generator of the stable 6-stem.

1. Introduction

A fold map, which is a smooth map between smooth manifolds with only

fold singularities, can be considered as a simple extension of an immersion

and also as a high-dimensional analogue of a Morse function. Many studies

on fold maps have indicated that they are closely related to the geometry

of manifolds (e.g. see [3, 4, 9, 16]). In this note we study equi-dimensional

fold maps, rather in the light of their relation to algebraic topology.

A smooth map f : Nn → Rn from an n-dimensional closed oriented man-

ifold Nn into the n-dimensional Euclidean space is said to be a fold map if

each of its singular points has the local form f(x1, . . . , xn) = (x1, . . . , xn−1,±x2
n)

with respect to suitable local coordinate systems in Nn and in Rn. For two

such fold maps fi : Ni → Rn (i = 0, 1), we say that they are oriented bordant

if there exists a fold map F to Rn × [0, 1] from an oriented cobordism (as a

manifold) W n+1 between N0 and N1, such that F |N0 × [0, ϵ) = f0 × Id[0,ϵ)

and that F |N1 × (1 − ϵ, 1] = f1 × Id(−ϵ,0] (with ϵ being a small positive

real number). This gives an equivalence relation among all fold maps from

closed oriented n-manifolds into Rn and the quotient space form an abelian

group called the oriented fold bordism group in a usual manner, which we

denote by SFold(n, 0). Note that for more general singular maps the notion

bordism group has been introduced [11, 18] and intensively studied in recent

years (e.g. [13, 17, 19]).
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The fold bordism groups have been studied by many authors (e.g. see

[3, 4, 5, 6, 7, 8, 14]). In particular, Ando [3, 5, 6] has proven that SFold(n, 0)

is isomorphic to the stable homotopy group πS
n of spheres. Under Ando’s

isomorphism, we introduce two geometric operations for (bordism classes

of) fold maps corresponding to the composition and to the Toda bracket

in the stable homotopy groups of spheres (in §3). In fact, Koschorke [10]

formulated the similar operations for the immersion bordism group SI(n, 1)

of immersions of n-manifolds into Rn+1, which is also isomorphic to πS
n

[22]. Therefore in practice, we first establish in a geometric manner an iso-

morphism between SFold(n, 0) and SI(n, 1) in §2, and then just interpret

Koschorke’s composition and Toda bracket through the isomorphism. This

attempt is natural and useful since for codimension one immersions a kind

of the Pontrjagin-Thom construction gives good understandings of geomet-

ric counterparts to many algebraic operations in the stable stems (see e. g.

[1, 2] for recent papers). We detail many low-dimensional examples. As an

application, we describe a construction of a fold map S3 × S3 → R6 which

represents the generator of the stable 6-stem πS
6 ≈ Z/2Z = Z2 in §4.

2. An isomorphism between fold and immersion bordism groups

Wells [22] studied the bordism groups of immersions and reduced the

problem to the study of embeddings with appropriate vector fields, by lifting

immersions into a higher dimensional space. In particular, since a codimen-

sion one immersion f : Nn # Rn+1 of an oriented n-manifold Nn naturally

has the homotopically unique normal framing, by suspending and slightly

perturbing it in a euclidian space of enough high dimension, we can obtain

a normally framed embedding. The isomorphism SI(n+1) ≈ πS
n is given by

applying the usual Pontrjagin-Thom construction for the resultant normally

framed embedding.

2.1. The isomorphism m. In this section, we construct a natural isomor-

phism between the oriented fold bordism group SFold(n, 0) and the oriented

immersion bordism group SI(n, 1), each of which we already know is isomor-

phic to the stable homotopy group πS
n of spheres.

Let f : Nn → Rn be a fold map from an oriented n-manifold Nn to Rn

(n ≥ 1). Then the fold set S (f) of f is an (n − 1)-dimensional orientable

submanifold of Nn and the restriction f |S (f) is an immersion in Rn with

trivial normal line bundle (e.g. see [15, Lemma 2.2]). For each component

Si of the fold set S (f), we can take a tubular neighbourhood Si × R ⊂ Nn

so that f immerses Si × [0,∞) orientation-preservingly into Rn and that
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f immerses Si × (−∞, 0] orientation-reversingly into Rn. This determines

the orientation of the normal bundle of Si ⊂ Nn, that further induces the

orientation of Si from the given orientation of Nn. Thus, S (f) becomes an

oriented (n − 1)-manifold.

Figure 1. Desingularisation of folds

Let j : Rn ↪→ Rn+1 be the inclusion and consider the composition j ◦
f : Nn → Rn+1. Then, j◦f is an immersion on Nn rS (f) and hence we can

take a normal vector field ν on N r S (f) with respect to the orientations

of Nn and of Rn+1. Then, the situation inside each fibre D2
p (at p ∈ S (f))

of the 2-dimensional normal disk bundle of (j ◦ f)(S (f)) in Rn+1, which is

the trivial bundle, is as the left figure in Figure 1 (the two curves in left

figure, depicted slightly away from each other, are in reality on Rn, and

the arrows attached to them indicate the normal vector field ν). Therefore,

we can “desingularise” j ◦ f by modifying it inside each D2
p as in Figure 1.

Since the normal bundle of (j ◦ f)(S (f)) in Rn+1 is trivial, this process can

be done globally on each component of (j ◦ f)(S (f)). Thus we obtain an

immersion of Nn in Rn+1, which we denote by f . Furthermore, this gives

rise to a homomorphism between the bordism groups,

m : SFold(n, 0) → SI(n, 1), [f ] 7→ [f ]

since we can perform the same operation for a fold bordism between two

bordant fold maps, so that we can obtain an immersion bordism between

the corresponding immersions.

Example 2.1. The fold map S1 → R1 shown in Figure 2 (which we call

the on-fold map) generates SFold(1, 0) ≈ πS
1 ≈ Z2. This is easily seen from

[6, Theorem 1.3] and Figure 3, which depicts a stable map from D2 to the

half plane R2
+ with one cusp point extending the fold map.

Then, Figure 4 describes the image of the on-fold map shown in Figure 2

under the homomorphism m : SFold(1, 0) → SI(1, 1). In fact, the immer-

sion with one crossing represents the generator of SI(1, 1), since for a self-

transverse immersion S1 # R2 the number modulo 2 of its double points

gives the isomorphism SI(1, 1) → Z2. Thus, we see that m : SFold(1, 0) →
SI(1, 1) is an isomorphism.
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Figure 2. The on-fold map generating SFold(1, 0)

Figure 3. An extension with a cusp of the on-fold map

Figure 4. The “figure 8” immersion generating SI(1, 1)

Theorem 2.2. The above homomorphism

m : SFold(n, 0) → SI(n, 1), [f ] 7→ [f ]

is an isomorphism for n ≥ 1.

Proof. It suffices to show that the homomorphism m is surjective, since the

groups on the both sides are known to be isomorphic to πS
n .
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Let F : Nn # Rn+1 be an immersion of an oriented n-manifold Nn in

Rn+1. Then, the regular homotopy class of F corresponds to the homo-

topy class of the induced stable framing of Nn. Therefore, due to Ando’s

h-principle [3, Corollary 2], we can deform F by regular homotopy into an im-

mersion such that it followed by the projection p : Rn+1 → Rn, (y1, . . . , yn+1) 7→
(y1, . . . , yn) becomes a fold map. Denote this resulting immersion by F ′.

At each point x of the fold set S (p ◦ F ′) of the fold map p ◦ F ′, we can

choose a normal vector n(x) of S (p ◦ F ′) ⊂ Nn so that dFx(n(x)) coincides

with (∂/∂yn+1)F ′(x). This defines a normal vector field n on each component

of S (p ◦ F ′) ⊂ Nn since the normal bundle of S (p ◦ F ′) ⊂ Nn is orientable

[15]. Thus we can choose the induced orientation σi of each component Si

of S (p ◦ F ′) such that (n, σi) agrees with the orientation of Nn.

Let ν be the normal vector field of F (Nn) ⊂ Rn+1. Then, (dp(ν), d(p ◦
F ′)(σi)) agrees with the orientation of Rn or with the opposite one, for

each component Si of S (p ◦ F ′). Denote by S− the set of components of

S (p ◦ F ′) on which (dp(ν), d(p ◦ F ′)(σi) accords with the orientation of Rn,

and put S+ := S (p ◦ F ′) r S−. The left and right pictures of Figure 5

describe the situations of the normal (2-dimensional) disk at fold points of

F ′(S+) ⊂ Rn+1 and of F ′(S−) ⊂ Rn+1, respectively.

Figure 5. S+ and S−

Now, we modify F ′ near S− by bordism. Inside the 2-dimensional normal

disk of S− ⊂ Rn+1 at a point x ∈ S−, the modification is described as

Figure 6. This process changes F ′ by bordism and consequently we have an

immersion of (S− × S1)♯Nn into Rn+1, bordant to F ′, which we denote by

F ′′. Clearly, the composition p ◦ F ′′ is a fold map into Rn and m(p ◦ F ′′)

agrees with F ′′ bordant to F .

�

Remark 2.3. In the above proof, in order to obtain the inverse operation

of m, we first deform F by regular homotopy into F ′ and then deform F ′
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Figure 6. A bordism around S− ⊂ Rn+1, in the 2-
dimensional normal disk

by bordism into F ′′ free from the S− part. The regular homotopy alone is

not enough here. This can be seen also from the following. If we regard the

S1 of the top of Figure 2 as an immersed (embedded) circle in R2, then the

immersion belongs to the trivial regular homotopy class, but its projection

represents the generator of SFold(1, 0) as a fold map. To obtain the correct

inverse of the generator of SFold(1, 0), we need to eliminate the S− part by

bordism as shown in Figure 6.

3. The compositions of fold maps

In the case of codimension one immersions of closed oriented manifolds

the isomorphism SI(n, 1) → πS
n is given through the Pontrjagin-Thom con-

struction (see §2), which enables us to understand various algebraic oper-

ations geometrically. In Koschorke [10], for such codimension one immer-

sions, the operations corresponding to the composition and to the Toda

bracket in πS
n are introduced. In this section, we interpret Koschorke’s

operations in terms of equi-dimensional fold maps via the isomorphism

m : SFold(n, 0) → SI(n, 1), explained in the previous section.

3.1. The composition. Let f : Nn # Rn+1 be an immersion of a closed

oriented manifold Nn. Then we can extend f to an immersion from the

total space of its normal line bundle, diffeomorphic to Nn ×R. Denote this

extension by f ′ : Nn×R # Rn+1. For the symbol “¯” used below, see §2.1.

Let α ∈ πS
a and β ∈ πS

b . Let i : Aa → Ra and j : Bb → Rb be the

corresponding fold maps, respectively. Suppose that b ≥ 1. Then, in view of
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Koschorke [10, §1] we see that the immersion corresponding to the compo-

sition α ◦ β ∈ πS
a+b is defined as

i ∗ j : Aa × Bb −−−→
(Id,j)

Aa × Rb = (Aa × R) × Rb−1 −−−−→
((i)′,Id)

Ra+1 × Rb−1 = Ra+b.

If b = 0, then β ∈ πS
0 = Z or j is represented by some integer s. Then we

consider the immersion i ∗ j to be the union of s copies of i (each shifted in

the last coordinate of Ra for convenience).

Remark 3.1. We easily see from the above construction that the fold set

S (i∗j) of the composition i∗j equals Aa×S (j) ⊂ Aa×Bb. Furthermore, we

see that the immersion (i∗j)|S (i∗j) equals i ∗̄ (j|S (j)) : Aa×S (j) # Ra+b,

where ∗̄ stands for Koschorke’s ∗-product [10] of codimension one immer-

sions that represents the composition of the corresponding stable homotopy

classes under the isomorphism SI(n, 1) → πS
n . Thus, we can see that i ∗ j

equals i ∗̄ j, from which we can easily deduce the associativity of the oper-

ation ∗ for fold maps.

Example 3.2. (1) The fold map T 2 → R2 in Figure 7, that is obtained

by putting the on-fold map S1 → R1 (Figure 2) in each fibre of the

normal line bundle of the “figure 8” immersion S1 # R2, represents

the generator πS
2 ≈ Z2 (cf. [12]), since η ◦ η generates πS

2 ≈ Z2 (cf.

[21, p.189]).

Figure 7. A fold map T 2 → R2 generating πS
2 ≈ Z2

(2) The fold map T 3 → R3 obtained by putting the on-fold map in each

fibre of the normal line bundle of the “8 by 8” immersion T 2 # R3

in Figure 8, represents η ◦ η ◦ η which is known to be equal to 4ν for

a generator ν of order 8 in πS
3 ≈ Z8 ⊕ Z3 [21, (5.5)].

(3) We can repeat the similar construction in higher dimensions. How-

ever, the fold map T 4 → R4 obtained by putting the on-fold map in

each fibre of the normal line bundle of the “8 by 8 by 8” immersion

T 3 # R4 is null bordant, since η ◦ η ◦ η ◦ η ∈ πS
4 = 0.

3.2. The Toda bracket. Let α ∈ πS
a , β ∈ πS

b and γ ∈ πS
c . Let i : Aa → Ra,

j : Bb → Rb and k : Cc → Rc be the corresponding fold maps, respectively.
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Figure 8. The “8 by 8” immersion T 2 # R3, that generates SI(2, 1)

Suppose α ◦β = 0 and β ◦ γ = 0. Then, again in view of Koschorke [10, §1],

the Toda bracket ⟨α, β, γ⟩ is understood in terms of the fold maps i, j and

k, as follows.

It follows from α ◦ β = 0 that i ∗ j : Aa × Bb → Ra+b is null-bordant.

Thus, we can take a null bordism, that is, a fold map from an (a + b + 1)-

dimensional manifold Xa+b+1 with ∂Xa+b+1 = Aa × Bb

ℓ+ : Xa+b+1 → Ra+b × [0,∞)

such that ℓ+ coincides with (i∗j)×Id on a collar ∂Xa+b+1× [0, ϵ) ⊂ Xa+b+1.

Similarly, by β ◦ γ = 0 we can take a null bordism

ℓ− : Y b+c+1 → Rb+c × (−∞, 0]

of j ∗ k. Thus, we have two null bordisms of i ∗ j ∗ k:

ℓ+ ∗ k : Xa+b+1 × Cc → Ra+b+c × [0,∞)

and

i ∗ ℓ− : Aa × Y b+c+1 → Ra+b+c × (−∞, 0].

By pasting them along the common boundaries, we have a fold map from

the closed manifold (Xa+b+1 × Cc)
∪

∂(A
a × Y b+c+1) to Ra+b+c+1. All fold

maps constructed in this way form the Toda bracket ⟨α, β, γ⟩ ⊂ πS
a+b+c+1.

Example 3.3. Choose a a generator ι ∈ πS
0 ≈ Z. Then, the corresponding

fold map is the map {one point} → R0. We can check that the above

construction for ⟨2ι, η, 2ι⟩ provides the immersion as in Figure 9, which is

same as the fold map (representing η ◦ η) in Figure 7. Thus, we can show

the relation ⟨2ι, η, 2ι⟩ = η ◦ η ∈ πS
2 [21, Corollary 3.7] by this example.

4. A fold map which generates the stable 6-stem

Here, by using the composition in §3, we construct a fold map S3×S3 →
R6 which represents the generator of the stable 6-stem isomorphic to Z2.

First we need the following observation.
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Figure 9. ⟨2ι, η, 2ι⟩ : T 2 → R2

Proposition 4.1. Let F : S3 # R6 be a self-transverse immersion with

odd number of double points. Note that F has trivial normal bundle. Then,

an immersion f : S3 # R4 obtained by compressing F into R4 represents

a generator of order 8 in SI(3, 1) ≈ πS
3 ≈ Z8 ⊕ Z3.

Proof. Assume that f represents an even element in SI(3, 1) ≈ Z24. Then, by

[20, Proposition 4.5], f is bordant to the compression of an embedding S3 ↪→
R6, which implies that F is bordant (as an immersion) to an embedding.

This, however, is impossible since the parity of the number of double points

of a self-transverse immersion S3 # R6 is invariant up to bordism. �

Let X be two copies of the 3-disk D3 in 6-space intersecting with each

other at exactly one point, whose “boundary” consists of the two copies

of the 2-sphere. Then, by connecting with X two barycentric standard

3-spheres in R6, (after suitably smoothing it) we obtain an immersion

F : S3 # R6 with one double point (see Figure 10).

R31

R32

Figure 10. The fold map F : S3 # R6 with one double point

By Proposition 4.1, the composition of F and the projection R6 → R3

in an appropriate direction (e. g. the projection R6 = R3
1 × R3

2 → R3
1 in
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Figure 10) becomes a fold map f : S3 → R3 which represents a generator

ν of order 8 in SFold(3, 0) ≈ Z8 ⊕ Z3 (this is very similar to Example 2.1,

see §2).

Thus, by mapping a copy of S3 via f into each normal disk of the (trivial)

normal bundle of the immersion F : S3 # R6, we obtain a fold map G : S3×
S3 → R6 which represents ν◦ν ∈ πS

6 (see §3.1). Since ν◦ν generates πS
6 ≈ Z2

by [21, p. 189], we see that G represents a generator of πS
6 .

Remark 4.2. Ando [6, §6] gives another explicit construction of a fold map

S3 × S3 → R6 which represents the generator of πS
6 .

Remark 4.3. Let F ′ : S3 # R4 be an immersion obtained by compressing

the above F into R4 (see Proposition 4.1) and j : R6 → R7 be the inclusion.

If we immerse a copy of S3 via F ′ into each normal 4-disk of the (trivial) nor-

mal bundle of the immersion j ◦F : S3 # R7, then we obtain an immersion

S3 × S3 # R7 which represents the generator under SI(6, 1) ≈ πS
6 ≈ Z2.
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[18] O. Szűcs: Cobordism of maps with simplest singularities, Lecture Notes

in Math. 788, 223–244, Springer-Verlag, 1980.
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