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ANALYZING THE AMBIGUITY IN RNA STRUCTURE
USING PROBABILISTIC APPROACH
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ABSTRACT: RNA is the second major form of nucleic acid in human cells that play intermediary role between DNA and
functional protein. Several classes of RNA’s are found in cells, each with distinct function. Understanding of storage and
utilization of a cell’s genetic information is based on the structure of RNA. Many experimental results have shown that RNA
plays a greater role in the cells. RNA sequences contains signals at the structure level can be exploited to detect functional motifs
common to all or a portion of those sequence. Different types of analysis of a structure can provide functional information in
different degrees of detail. In this paper various types of RNA secondary structure representation has been discussed and in
which appropriate structure has been adopted for probabilistic approach that shows un-ambiguity.
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1. INTRODUCTION
RNA is a biological polymer consisting of monomers called
nucleotides. Each nucleotide consists of a (ribose) sugar, a
phosphate group and a base. There are mainly four types of
bases. Adenine (A), Cytosine (C), Guanine (G), and Uracile
(U). The base-paired structure formed by the Watson-Crick
base-pairs A-U and C-G and the wobbling base-pair G-U
can be divided into loops, also known as structure elements.
A loop is a formation of a base-pair that encloses a chain of
nucleotides or other base-pairs. RNA primary structure is
commonly represented by a string S over the alphabet
Σ = {A, G ,C, U}. RNA is mostly involved in the biological
machinery that expresses the genetic information from DNA
to RNA. Information is encoded in RNA by the linear
arrangement of the four different constituent nucleotides.
RNA molecules perform a no. of critical functions. Many of
these functions are related to protein synthesis. Some RNA
molecules bring genetic information from a cell’s
chromosomes to its ribosome’s where protein are assembled.

According to Noam Chomsky the Context free grammar
(CFG) has very much importance in Linguistic field,
Computer Sc. and Engineering and in Bioinformatics. It is
a more powerful class of formal grammars than the regular
grammar. CFGs are often used to define the syntax of
programming languages [1]. A CFG is also called Type 2
Grammar similar to a regular grammar but permits a greater
variety of production rules. One purpose of this paper is to
present an effective method for estimating a stochastic
context-free grammar to model a family of RNA sequences
[2]. Determining RNA shapes has gained considerable

importance in the last decade because knowing the shape
of the molecule is essential for researchers to understand its
role within a cell. The RNA plays a very important character
in bio cells. A lot of work has been done in structural analysis
of RNA in bioinformatics field but there exist a large number
of challenging problems. However structural analysis of
RNA is still a challenging problem in bioinformatics field
[3], [4]. The structure of an RNA molecule is closely related
to its function [5]. For this reason, predicting the secondary
structure of an RNA molecule based on its primary sequence
has been of interest to many researchers.

Since RNA structure is essentially governed by base
pairing of nucleotides. Many computational methods and
algorithms have been proposed for finding the “optimal
base pairing” of RNA in an efficient manner [6][8][9]. Such
Algorithm are typically called RNA folding algorithm.

2. STRUCTURAL ANALYSIS FOR RNA

The importance of grammars in compliers is known to
everyone. The grammars are useful tools to model character
sequences and in a certain way these tools are useful to
model molecular biological sequences [10]. Many
bioinformatics problems can be reformulated in terms of
formal languages, producing the corresponding grammar
from the available data. Among several utilities contributed
by grammars, the main contribution is the ability to test by
derivations if a sequence is syntactically correct, i.e., if it
belongs to a determined language. A derivation can be
represented as a tree-like structure known as derivation tree.
This tree reflects the syntactical structure of a sequence. It
is possible that for a given sequence there may be more
than on derivation tree. In this case, we say that the grammar
is ambiguous. In ambiguous grammar, complexity for the
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derivation rises given that the possible trees grow
exponentially with the length of the sequence to be derived.
Stochastic syntactic analysis algorithms for the class of
stochastic context free grammars (SCFG) have been
proposed and their application has been demonstrated in
pattern classification problems.

3. GRAMMAR FOR RNA

Type-2 grammars or CFGs are used to identify the secondary
structure of RNA molecules from the given nucleotide
sequence when we consider an RNA sequence as a string
(or a valid sentence) of a programming language. The
grammar is a major tool for a parser to build a parse tree to
check if the given string is a valid sentence. The whole
leaves of a parse tree constitute a sentence of the language
defined by the grammar. As the name, context-free grammar,
implies, the non terminals on the left-hand side of a
production rule does not consider the context in which it is
situated.

For example, one of the applications of productions in
Fig. 1 can generate the RNA sequence “AGCGUCAGUGACUU
GAUGCU” by the following derivation and the equivalent
derivation tree is shown in Fig. 7.
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Figure 1: Set of Production Rules P

  Fig.1 shows set of productions rules P that generates
RNA sequence for a certain restricted structure, in which
S

0
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1
……S

12
 are non terminals. A, G, C and U are terminals.
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0
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derivation steps is written as S
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signifies application of a production. Next, if the production
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U is selected, the derivation step is S

1
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2
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Continuing with the similar derivation steps and replacing
it with the right hand side of an appropriate production, we
obtain the following derivation terminating with the desired
sequence:
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4. DIFFERENT SECONDARY STRUCTURE
FOR RNA

RNA secondary structures can be displayed in different kinds
of representations. Depending on the use of the RNA
molecules, specific representations are more or less useful.
The bracket notation (Fig. 2) is a text-based representation.
The structure is re?ected in a string of dots and brackets.
Dots denote non-bonding bases and a pair of brackets
indicates a base-pair. A more convenient representation,
which expands in all directions in a plane and thus is closer
to a spatial representation, is the squiggle plot (Fig. 3). It is
the most prominent plot to easily describe the approximate
spatial structure of RNA. Base-pairs are given as two bases
connected through either a straight line (Watson-Crick
base-pairs) or a circle indicating the so-called wobbling
base-pair G-U. Considering RNAs in a more theoretical way,
the representations as trees or as arc-annotated sequences
are well-accepted. In recent years, tree-representations of
RNA secondary structures occurred in the literature, and
algorithmic applications on trees are performed successfully.
Arc- annotated sequences focus on representing sequences
as straight lines. Arcs indicate base-pairings. This kind of
representation is mainly used in this paper due to its
bene?cial representation of single base and base-pair
operations. A similar representation to the arc-annotated
sequence is the drawing of this sequence on a circle (Fig. 5)
Arcs are plotted as curved lines inside this circle. The
mountain plot (Fig. 6) is useful for large RNAs. Plateaus
represent unpaired regions,the heights of these mountains
are determined by the number of base-pairs in which the
partial sequences are embedded. Fig. 7 shows derivation
tree for a given sequence and Fig. 8 shows appropriate way
representation of sequence.
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4.1. Dot-Bracket Representation

Figure 2:

4.2. Squiggle Plot

Figure 3:

4.3. Arc-Annotated Sequence

Figure 4:

4.4. Circle Representation

Figure 5:

4.5. Mountain Plot Representation

Figure 6

4.6. Derivation Tree Representation

Figure 7:

4.6. Most Appropriate Way Representation

Figure 8:
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5. ASSIGNING  PROBABILITY OVER
GRAMMER

A SCFG extends the definition of context free grammars by
associating a probability to every production in the
grammar. Consequently every string that the grammar can
generate is assigned a probability which is equal to the
product of the probabilities of the productions used in the
string's derivation. The probability of a parse tree can be
calculated as a product of the probabilities of the production
instances in the tree. There are various methods used to
determine such probabilities. One such method of assigning
the probabilities is shown in Fig. 7.

To derive the trained grammar, we designed the initial
grammar by using some prior knowledge about the RNA
family.

Table1
Probabilities for the Type 2 Grammar, we Placed Uniform

Distribution over Each Set of Same Type Production

Category of Productions Productions
Probabilities ns

C#1 S0 → S1 1.000

C#2 S1→ AS2U 0.125

C#2 S2 → GS3C 0.125

C#2 S3 → CS4G 0.125

C#2 S4 → G S5U 0.125

C#2 S5 → US6A 0.125

C#2 S6 → CS7G 0.125

C#2 S7 → AS8 U 0.125

C#2 S8 → GS9U 0.125

C#3 S9 → US10 0.333

C#3 S10 → GS11 0.333

C#3 S11 → AS12 0.333

C#4 S12 → C 1.000

6. CONCLUSION
A detailed understanding of the functional and interactions
of RNA requires knowledge of their structures. For many
RNA molecules, the secondary structure is highly important
to the correct function of the RNA, often more than the
actual sequence . One of the problems with CFGs is that it
generally has an ambiguity in the grammar that results more
than one parse tree for a sequence, and alternative parse tree
reflect alternative secondary structure, a grammar often
gives several possible secondary structure for one RNA
sequence. The SCFG is used to overcome the problem of
ambiguity. One of the advantages of a SCFG is that it can

provide the most likely parse tree. If the grammar and their
probabilities are carefully designed ,the correct secondary
structure will appear as the most likely parse tree among the
alternatives. The grammar itself may be a valuable tool for
representing a RNA family or domain. For a (long-chain)
RNA there are exponentially many possible structures
which may be assigned to RNA, but assigning the correct
one can only be done on the basis of a probability
distribution However the most challenging future problem
is to model a family of longer RNA sequences and also for
the variations of RNAs like mRNA.
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