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Abstract1

The present study aimed to evaluate the short-term biomass accumulation of2

forest trees exposed to wet acidic depositions. A hierarchical Bayesian model of tree3

growth was developed based on the data of a short-term experiment in which two-4

year old Japanese red pine (Pinus densiflora Sieb. et Zucc.) seedlings were exposed5

to aqueous phase OH radicals generated by an iron-oxalate-H2O2 mist (a pseudo-6

polluted dew) over two growing periods. We conducted a statistical comparison7

of tree growth between the control and pollution treatment groups by using the8

growth model incorporated the random effects due to the unknown characteristics9

of each seedling. The variability among seedlings is expressed in this model by the10

posterior probabilistic distributions of unobserved dry weight of a stem cohort before11

exposure treatment. The analysis of the effects of pollution treatment on the stem12

growth revealed that this treatment decreases the biomass allocation in the current13

year stems. However, the effects on the relative growth rate of pre-existing stems14

were unclear. Based on these results is that, we can speculate that in a polluted15

environment, the short-term growth of the young stems in the seedlings inhibited16

by pollution treatment, thereby resulting in the slowdown of long-term biomass17

accumulation. This can explain the patterns observed in the declining Japanese18

red pine forests that are subjected to ·OH-generating dews in the polluted area of19

western Japan.20
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1 Introduction1

Modelling and statistical analysis using inherent uncertainty and incomplete data2

have been widely conducted in the field of environmental science, for example, the3

dynamic vegetation model (Lexer and Höenninger, 2004) and the estimation of phys-4

iological parameters in lake ecosystems (Malve et al., 2005). A recent trend is the5

use of Bayesian methods for the statistical modelling of such situation (Clark et al.,6

2003; Ellison, 2004; Clark, 2005) in which we introduce the prior probabilistic distri-7

butions of unknown factors, such as the characteristics of unobservable/unobserved8

experimental materials, transitional changes during experimental period and fluctu-9

ations in environmental factors.10

Controlling for unobserved factors is not completely solved in the modelling study11

of tree growth, whereas many detailed process-based and functional-structured mod-12

els have been developed (Roux et al., 2001). The detailed tree simulators become13

more diverse, for example, physiological process-based models such as TREGRO (We-14

instein and Yanai, 1994; Weinstein et al., 1998; Yun et al., 2001; Laurence et al.,15

2001); three-dimensional functional-structural tree models such as LIGNUM (Sievänen16

et al., 1997; Perttunen et al., 1998; Perttunen et al., 2001) and PipeTree (Kubo and17

Kohyama, 2005). These models that incorporate various physiological processes are18
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accepted because their usefulness and validity. Consequently, they share a common1

problem, i.e., model complexity, which can lead to failure, because these models re-2

quire large number of parameters including those that are difficult to estimate (e.g.3

Mäkelä et al., 2000; Radtke and Robinson, 2006).4

Bayesian inference provides two different approaches to deal with the problem5

of model complexity: tackling or avoiding. An example of the former approach, in6

the forest growth is the application of Bayesian modelling to generate the prior and7

posterior distributions of the parameters used for a complex process-based model8

on the basis of information from a reliable empirical growth model in lieu of field9

observations (Radtke and Robinson, 2006). In this case, Bayesian inference functions10

as a reliable generator of posterior distribution in a very high dimensional parameter11

space.12

The other Bayesian policy, i.e., avoiding complexity, may be utilized if neither13

sufficient data nor reliable empirical models are available. Clark et al. (2003) em-14

phasized the importance of modelling using the uncertainty/variability of parame-15

ters while maintaining the simplicity of the model process (in other words, not to16

increase the complexity of model by adding parameters) in situations where error17

structure is strongly affected by the differences in individual and site characteristics.18

Hierarchical Bayesian modelling can facilitate the detection of the manner in which19
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a focal factor changes the observed pattern in situations where insufficient informa-1

tion is available but considerable random effects exist in the data. This is because it2

expresses the uncertainty of unobserved measurements as the posterior distributions3

defined by the products of likelihood functions and hierarchical priors (Clark et al.,4

2003; Ellison, 2004; Clark, 2005).5

The objective of the experiment in which the target data for the current study on6

the growth of Japanese red pine (Pinus densiflora Sieb. et Zucc., an evergreen conif-7

erous tree) seedlings exposed to iron(Fe)-oxalate[(COOH)2]-H2O2 mist, a pseudo8

polluted dew (Kobayashi et al., 2002), are as follows. This experiment was carried9

out to detect whether the chemicals present in the wet deposition in and around ur-10

ban areas cause a decline of the pine forests in western Japan (refer to Kume et al.,11

2001; Chiwa et al., 2005). Hydrogen peroxide (H2O2) is well known as a reactive12

oxygen species that forms in plant cells and it affects biochemical processes such as13

photosynthetic pathways under environmental stresses, such as high light intensity14

and the presence of air pollutants (Asada, 1999; Halliwell and Gutteridge, 1999;15

Kondo, 2002). Although gaseous H2O2 had little effect on plant functions (Polle16

and Junkermann, 1994), Kume et al. (2001) and Kobayashi et al. (2002) showed17

that a mist containing iron-oxalate-H2O2 , which simulates polluted morning dew18

in the declining pine forests, changes some physiological traits, such as needle CO219
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assimilation rate of the Japanese red pine. Kume et al. (2005) suggested that these1

changes are induced by the system that generates the hydroxyl radical (·OH), the2

most aggressive oxidant, via a photochemical process in the polluted dew waters on3

the surface of pine needles.4

If a “polluted” environment reduces the needle photosynthetic rate and then the5

accumulation rate of biomas in some form, it is likely to result in either less biomass6

accumulation at the plant level in the future, i.e., a decline in the growth of tree.7

This is consistent with field observations at Mt. Gokurakuji, western Japan (Kume8

et al., 2000a; Kume et al., 2000b; Kume et al., 2006) wherein the photochemical9

formation of ·OH in morning dew on the needle surfaces was considerably greater10

in a declining pine stand facing an urban area than in a healthy pine stand on the11

opposite side of the mountain (Nakatani et al., 2001).12

In the present study, the objective of the statistical analysis is to quantify the13

effects of ·OH-generating dew on the growth of seedlings based on the data of a14

pseudo polluted dew exposure experiment (Kobayashi et al., 2002). For this purpose,15

we focused on the biomass accumulation of stems because long-term tree growth is16

a consequence of the accumulation of short-term growth of stems (branches and17

trunks). Since this data appeared to be insufficient to develop a parameter-rich18

model for tree growth, such as TREGRO, we constructed an ecological model with a1
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simple process to analyze the growth of pine seedlings under pollution treatment2

conditions by using a hierarchical Bayesian model based on the structural data of3

the experimental seedlings.4

2 Experimental methods5

This section briefly describes the method of the tree growth experiment under6

pollution treatment (Kobayashi et al., 2002) and the data structure. Three-year old7

Japanese red pine seedlings were grown in O3-reduced open-air system chambers8

placed at a sunny flat site on the Hiroshima University campus, western Japan from9

10 August 1999 to 21 September 2000. The details of the pollution treatment and10

the procedure of the experiment are described previously (Kobayashi et al., 2002).11

Four pine seedlings which were treated with iron-oxalate-H2O2 [1µM FeCl3, 5µM12

(COOH)2, and 100µM H2O2 ] and control mists were harvested the on 21 September13

2000 (Fig. 1A). These seedlings were treated with the mists for approximately 1414

months including two consecutive growing periods. From the first growing period,15

the needle CO2 assimilation rate of these seedlings were significantly reduced by ·OH-16

generating iron-oxalate-H2O2 mist (Kobayashi et al., 2002). Prior to the harvesting17

of a seedling, its natural height was recorded, and then the above-ground parts18

were separated into flowers, buds, needles, and stem. The needles and stems were1
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subdivided according to their age (current-, one-, two- and three-year old). Stems2

of the same age are referred to as a cohort. More details such as the branching3

architecture and the connecting structure between the stems of the seedlings were4

not recorded. The cohort of stems that developed in 1997 is referred to as “cohort5

1997” which was three years old in September 2000 (refer to Fig. 1A and B). The6

number of stems in each cohort was counted. The length and diameter of each stem7

were measured. All organs were dried at 70 ◦C and weighed.8

3 Modelling9

In order to detect the effects of the ·OH-generating mist exposure treatment10

(pollution treatment) on the growth of pine seedlings, we analyze the data of cohort11

1999 (parts existing before exposure) and cohort 2000 (newly developed parts) under12

the treatment. First, a simple ecological model for the growth of a stem cohort of13

pine is defined as the frame of subsequent statistical modelling. In the next step, a14

statistical model to estimate parameters is constructed using the measurements of15

cohort 1999 and cohort 2000. The conceptual schema and notations for the growth16

model are shown in Fig. 2.17

Our growth model of the stem cohort has the following two components: dry18

weight increment of cohort 1999 and biomass allocation between cohort 1999 and19

7



cohort 2000 with a fixed ratio. Let i be the index for individual seedlings where1

i ∈ {C#1, · · · , C#4} for seedlings in control group exposed to the mists containing2

few ·OH, and i ∈ {T#1, · · · , T#4} for the treatment group exposed to ·OH-generating3

mists (pollution treatment). For a given seedling i, the expectation of the dry weight4

of cohort 1999 in September 2000 (Fig. 1, after exposure) yi is proportional to its dry5

weight xi in September 1999 (before exposure). We introduce a formula to express6

this relationship, E(yi) = gixi, where gi is the relative growth rate (RGR) of stem7

cohort 1999. The RGR gi is affected by pollution treatment gi = exp(β0 + βT Ti),8

where β0 and βT are the coefficients of constant term and treatment status Ti,9

respectively. The value of treatment status Ti is set to zero if seedling i is from10

control group, or to one if it is from the pollution treatment group. Since the dry11

weight xi of cohort 1999 before the pollution treatment is not observed, we define12

xi as a random variable sampled from a probabilistic distribution. Based on the13

definition of gi, a negative βT indicates that the stem RGR is decreased by the14

pollution treatment.15

The expectation of the dry weight zi of cohort 2000 in September 2000 is pro-16

portional to the growth of cohort 1999. The relationship is expressed as E(zi) =17

ai(yi−xi), where ai is referred to as the allocation weight that also include a param-18

eter of pollution treatment, ai = exp(α0 +αT Ti), where α0 is the baseline parameter1
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and αT is the coefficient of pollution treatment. If ai is smaller than one, biomass2

allocation is smaller in cohort 2000 (newly developed stems) than in cohort 19993

which was developing before the pollution treatment.4

A hierarchical Bayesian statistical model is constructed based on the above eco-5

logical model of stem cohort growth. In Bayesian inference, all parameters (including6

missing data) are generated by prior distributions (e.g. Rivot et al., 2004; Agarwal7

et al., 2005; Clark, 2005). To obtain the values of parameters, Gibbs sampling meth-8

ods driven by the Markov Chain Monte Carlo (MCMC) calculation generate sample9

sets from the joint posterior distribution of all parameters (Qian et al., 2003). All10

variables and parameters are listed in Table 1 with the means and variances of11

(prior) probabilistic distributions.12

Since the Gamma distribution is a distribution of non-negative values, we assume13

that the weights of the stem cohorts (zi, yi, and xi) follow this distribution with a14

variance that is proportional to its mean. The distribution of zi, the total weight of15

cohort 2000 in September 2000, has a mean ai(yi − xi) and variance that is equal16

to the mean scaled by the rate parameter ρz, i.e., ai(yi − xi)/ρz. Here, we introduce17

a notation p(zi|yi, xi, ai, ρz) that represents the conditional probability density (or1

likelihood) of zi given by the Gamma distribution under {yi, xi, ai, ρz}. As in cohort2

2000, p(yi|xi, gi, ρy) represents the conditional probability density of the total weight3
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yi of cohort 1999 in September 2000, given by the Gamma distribution of mean gixi4

and variance gixi/ρy.5

In this growth model, the total weight xi of cohort 1999 in September 19996

(before exposure), is defined as a random variable following some appropriate prior7

distribution. The conditional probability density of xi, p(xi|wi, ρx), is given by the8

Gamma distribution as well as by the observed cohort weight yi and zi. The prior9

distribution of xi has mean wi and variance wi/ρx. The individual specific mean wi10

is defined as a combination of measurements and the parameters of pollution effects,11

that is,12

wi = (mean stem weight of cohort 2000 of i)

×(stem number of cohort 1999 of i)

× exp(−(αT + βT )Ti),

which includes the adjustment of the effects of pollution treatment by exp(−(αT +13

βT )Ti) term. This is because the mean stem weight for xi has to be revised when14

the current-year old stems in 2000 are smaller those in 1999 due to the effects of15

pollution treatment. This is the hierarchical structure in the Bayesian growth model,16

because the distribution of xi is defined as a prior distribution that requires a hyper17

parameter ρx and its hyper prior distribution.18

It should be noted that the uncertainty of xi given by its posterior distribution19
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also acts as the random effects of seedling i on the growth of yi and zi. Crawley (2005)1

defines random effects in statistical models as they do not influence on the mean but2

only on the variance of the response variables. Therefore, it should be considered3

that the posterior distribution of xi represents the mixed effects that influence both4

the mean and variance of the observed values yi and zi among the seedlings. This is5

important to detect the effects of pollution treatment under unknown heterogeneity6

among the experimental seedlings.7

Since we do not prior knowledge regarding the parameters to be estimated, the8

distribution for each parameter of fixed effects (α = {α0, αT} and β = {β0, βT}) is9

assumed as a non-informative prior distribution. We adopt all the functional forms as10

the Gaussian distribution of mean zero and variance one. Prior distribution for each11

variance parameter (ρ = {ρz, ρy, ρx}) is the non-informative Gamma distribution of12

mean one and variance 103.13

The (joint) posterior distribution of parameters is proportional to the total prod-14

ucts of likelihood functions, i.e., prior probabilistic densities,15

p({xi},α,β, ρ| {data})∝
∏

i

p(zi|yi, xi, ai, ρz) p(yi|xi, gi, ρy) p(xi|wi, ρx)

× p(α0) p(αT ) p(β0) p(βT ) p(ρz) p(ρy) p(ρx),

where {data} is defined as {data} ∈ {{yi}, {zi}}. The MCMC sampling from the16

Gibbs distribution defined earlier was performed to infer the posterior distribu-1
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tions of parameters. The sampling was carried out using the Gibbs sampling soft-2

ware, JAGS-0.90 (developed by M. Plummer, http://www-fis.iarc.fr/~martyn/3

software/jags/). The size of sampling was 1000 with a 10 step interval after 400004

burn-in steps. The JAGS files for the growth model including the model definition in5

BUGS code and the data of red pines are available at http://hosho.ees.hokudai.6

ac.jp/~kubo/forest/redpine/v2006/.7

4 Results and Discussion8

Measurements of all the eight pine seedlings in September 2000 are shown in9

Table 2. Considerable variabilities were observed among the seedlings even within10

each treatment group. The relationship between the age of stem cohort and its total11

dry weight shows that with the exception of one seedling, almost all cohorts 2000 in12

the seedlings of the pollution treatment group are smaller than cohorts 1999. On the13

other hand, the biomass allocation between cohort 1999 and cohort 2000 is almost14

equivalent in the control group (Fig. 3). Since the variabilities among the seedlings15

shown in Table 2 and Fig. 3 cannot be negligible, we will focus on the results from16

the Bayesian analysis of the parameters for the relative growth rate of stems by17

incorporating the individual characteristics as random effects.18

The means of posterior distributions of the stem dry weight xi of cohort 199919
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in September 1999 of seedling i is in range from approximately 2.66 to 6.61 dw g1

(Fig. 4 and Table 3). While the difference in the means of xi between the treatment2

groups is unclear, the variance of posterior distributions in the pollution treatment3

group is considerably greater than that in the control group. This is because they4

are affected by the fluctuation in the parameters of treatment effects αT and βT5

during MCMC sampling.6

The convergences of MCMC sampling are assessed by sampling transitions and7

the density plots of posterior distributions of parameters for the relative growth rate8

gi and relative allocation factor wi (Figs. 5 and 6). The 95% credible interval of βT ,9

the effects of pollution treatment on RGR, includes βT = 0 (Fig. 5D and Table10

3). The 95% credible interval of αT , the effects of pollution treatment on biomass11

allocation, does not include αT = 0 (Fig. 6D and Table 3).12

The most important result of the analysis of the experiment data of pine seedlings13

with and without ·OH-generating mist exposure (Kobayashi et al., 2002) is the14

detection of the negative effect of pollution treatment on the biomass allocation to15

the current year stems. This is shown by the posterior distribution of αT (Fig˙ 6D16

and Table 3) generated by the hierarchical Bayesian model with the random effects17

caused by unobserved factors in each seedling that are expressed by the estimated18

posterior distribution of xi (Fig. 4). In other words, the variability of xi represents19

13



all the uncertainty in the growth of seedling i.1

By accepting the statistical significance of αT , we can evaluate the geometric2

mean of biomass allocation weight by using the mean values listed in Table 3. The3

mean allocation weight of the seedlings in the pollution treatment group is ai =4

exp(0.27 − 0.48) ≈ 0.81, i.e., biomass allocation ratio between cohort 1999 and5

cohort 2000 is approximately 1 : 0.81, while that for controls is exp(0.27) ≈ 1.31 in6

which the allocation ratio is approximately 1 : 1.31. Thus, fraction of youngest stem7

is smaller in the seedlings exposed to the pollution treatment.8

On the other hand, we conclude that the analysis cannot detect any negative9

effects of pollution treatment on stem RGR of cohort 1999. This is because the10

95% credible interval of βT , the effects of pollution treatment on the RGR of two-11

year old stems before pollution treatment, includes αT = 0 (Fig. 5D and Table 3).12

A possible interpretation of the results is that ·OH-generating dews considerably13

reduce the growth rate of the youngest parts of pine seedlings that have developed14

after exposure than those of the stems existing before exposure. In agreement with15

this hypothesis, Kume et al. (2000a) reported that pine trees growing in the declining16

stands that are subjected to the ·OH-generating dew maintained radial growth of17

the trunk but had a smaller fraction of stem biomass in the current-year-old shoot18

than those in the non-declining stands.19
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If such the difference in the biomass allocation ratio of pine seedlings between1

the control and pollution treatment groups is due to the exposure treatment, it2

can be conjectured that that the ·OH-generating mist (aqueous-phase OH radicals)3

affects not only the short-term responses such as the decreasing in growth rate of the4

youngest parts at seedling phase but also the biomass accumulation over a longer5

period by less allocation of biomass to new stems in the life history of the pine6

tree. This may explain the patterns observed in the declining Japanese red pine7

forests (e.g. Kume et al., 2000a; Kume et al., 2000b). The wet acidic depositions8

that generate reactive oxygen species/free radicals from dissolved air pollutants are9

likely to suppress seedling growth weakly rather than do so rapidly and resulting in10

the radical death of seedlings. In support of this viewpoint, Yoon et al. (2006) also11

reported the negative effects of ·OH-generating mists on the leaf CO2 assimilation12

rate and the stem growth rate in the seedlings of Japanese apricot (Prunus mume),271

a deciduous broad-leaved species.272

In the present study, we also demonstrate a new application of Bayesian inference273

to estimate the tree growth rate from the static and structural data of seedlings274

(Fig. 3 and Table 2). Although the data set is characterized by missing measurements275

(the weight of stem cohort 1999 in September 1999) and variability due to unknown276

characteristics of each seedling, we can determine the effects of pollution treatment277
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on decreasing in biomass accumulation in the non-assimilation part of tree based on278

the observation with noise and uncertainty by using hierarchical Bayesian modelling279

that generates the posterior distribution of the unobserved size of the stem cohort.280

This could be an example of the concept described by Clark (2005), i.e., modern281

statistical computation facilitates the advancement of knowledge by using a basic282

structure that allows the application of simple models within a realistic context.283
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Table 1 Variables and parameters of the growth model based on the stem biomass

variable / parameter
distribution /

prior distribution
mean variance

xi total weight of cohort 1999
in September 1999

Gamma wi wi/ρx

yi total weight of cohort 1999
in September 2000

Gamma gixi gixi/ρy

zi total weight of cohort 2000
in September 2000

Gamma ai(yi − xi) ai(yi − xi)/ρz

α0 allocation parameter
(constant component)

Gaussian 0 1

αT allocation parameter
(treatment component)

Gaussian 0 1

β0 growth rate parameter
(constant component)

Gaussian 0 1

βT growth rate parameter
(treatment component)

Gaussian 0 1

ρx variance parameter of xi Gamma 1 103

ρy variance parameter of yi Gamma 1 103

ρz variance parameter of zi Gamma 1 103
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Table 2 Stem specifications of all the experimental Japanese red pine seedlings

measured at the end of the exposure experiment in September 2000.

Treated Control

T#1 T#2 T#3 T#4 C#1 C#2 C#3 C#4

height of seedling
(m)

1.08 0.94 1.30 1.27 1.12 1.16 1.11 (NA)†

Total weight of

stem
(dw g)

107.4 94.1 130.8 135.9 150.9 135.0 147.2 131.4

needle
(dw g)

135.1 157.7 107.8 135.5 127.2 110.6 113.2 136.2

flower & vegetative bud
(dw g)

1.9 2.4 1.7 1.4 2.6 2.9 3.6 0.7

root
(dw g)

135.1 169.6 191.5 108.1 93.6 211.2 168.1 137.1

Cohort 2000

number of stem 65 113 46 77 121 62 113 58
mean stem weight

(dw g)

0.27 0.15 0.35 0.32 0.20 0.37 0.22 0.53

mean stem length
(mm)

72 53 65 106 64 109 72 141

Cohort 1999

number of stem 8 16 8 17 15 14 15 11
mean stem weight

(dw g)

3.53 0.95 3.98 2.19 1.74 1.64 1.43 2.28

mean stem length
(mm)

177 100 188 142 120 116 92 121

Cohort 1998

number of stem 1 6 1 1 3 8 5 4
mean stem weight

(dw g)

30.54 4.92 44.10 37.60 15.60 4.78 7.62 7.58

mean stem length
(mm)

334 233 395 428 342 177 235 204

Cohort 1997

number of stem 1 1 1 1 1 1 1 1
stem weight

(dw g)

31.10 33.00 38.60 36.70 54.10 51.10 62.90 45.50

stem length
(mm)

254 289 243 272 342 397 408 343

† unmeasured.
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Table 3 Mean, 95% credible interval and standard deviation of the posterior

distributions of parameters.

parameter mean [2.5%, 97.5%] SD

α0 0.27 [0.05, 0.47] 0.11

αT -0.48 [-0.79, -0.15] 0.16

β0 1.71 [1.42, 1.99] 0.15

βT 0.23 [-0.98, 1.80] 0.66

ρx 4.35 [0.55, 22.49] 6.03

ρy 35.84 [0.24, 211.84] 56.69

ρz 1.06 [0.23, 2.58] 0.60

xT#1 4.54 [0.83, 11.78] 2.58

xT#2 2.66 [0.49, 6.44] 1.47

xT#3 5.27 [0.93, 13.53] 2.98

xT#4 6.61 [1.18, 16.31] 3.69

xC#1 4.44 [2.70, 6.27] 0.91

xC#2 4.34 [3.11, 6.02] 0.78

xC#3 3.75 [2.53, 5.15] 0.68

xC#4 4.75 [3.41, 6.55] 0.83
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Figure Legends

Fig. 1 (A) Schema of time course of the pseudo polluted mist exposure experiment.

The range of the “exposure experiment” indicates the duration of exposure of the

Japanese red pine were seedlings to ·OH-generating iron-oxalate-H2O2 and control

mists in open-air system chambers. Downward solid arrow on September 2000 in-

dicates the termination of treatment (seedlings were harvested). Seed germination

has occurred in spring, 1997. The buds in the shoot tip have sprouted in spring and

develop by the later part of each growing season. The elongation season of the stem

cohort of year j is indicated as the durations “cohort j” along with “age” (defined in

the text) in September 2000. (B) Schema of the relationship between shoot structure

and stem cohort in a pine seedling.

Fig. 2. Schema of the growth model of a pine stem in the ·OH-generating mist

exposure experiment. The shaded regions in cylinders indicate the growth in year

2000. In the growth process of seedling i, the observed total dry weight of cohort

1999 (yi) in September 2000 depends on that in September 1999 (xi) which is not

observed. Biomass allocation process sets the total dry weight of cohort 2000 in

September 2000 (zi) that depends on the growth of cohort 1999, yi − xi. The prior

distribution of xi is a function of the stem population of the current-year, i.e., cohort
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2000.

Fig. 3. Observed cohort structure of stem biomass in pine seedlings exposed to ·OH-

generating and control mists at the end point of the exposure experiment (September

2000). The horizontal axis indicates the year of emergence of the stem cohort (group

of stems of the same age), while the vertical axis indicates total dry weight of the

stem cohort.

Fig. 4. Posterior distributions of total dry weight of stem cohort 1999 in September

1999 xi. Since xi is unobserved, the posterior distribution is generated from the prior

distribution with an individual-specific mean and the variance parameter ρx shared

among all seedlings (refer to Table 1).

Fig. 5. MCMC step traces (A and C) and posterior distributions (B and D) of the

growth parameters, β0 and βT . The 95% credible interval of the treatment effects,

βT , includes βT = 0 (refer to Table 3).

Fig. 6. MCMC step traces (A and C) and posterior distributions (B and D) of

the biomass allocation parameters, α0 and αT . The 95% credible interval of the

treatment effects, αT , includes αT = 0 (refer to Table 3).
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Fig.6
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