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Abstract

Ornstein-Uhlenbeck models are continuous-time processes which have broad applications in

finance as, e.g., volatility processes in stochastic volatility models or spread models in spread

options and pairs trading. The paper presents a least squares estimator for the model parameter

in a multivariate Ornstein-Uhlenbeck model driven by a multivariate regularly varying Lévy

process with infinite variance. We show that the estimator is consistent. Moreover, we derive

its asymptotic behavior and test statistics. The results are compared to the finite variance case.

For the proof we require some new results on multivariate regular variation of products of

random vectors and central limit theorems. Furthermore, we embed this model in the setup of

a co-integrated model in continuous time.
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1 Introduction

In this paper we investigate the asymptotic properties of the least squares estimator for the model

parameter in a multivariate Ornstein-Uhlenbeck model. Ornstein-Uhlenbeck processes are natural

extensions of autoregressive processes of order one in discrete time to continuous time. Hence, they

belong to the class of continuous-time autoregressive moving average (CARMA) processes. Not only

that the Ornstein-Uhlenbeck process itself is a CARMA process but also the state space represen-

tation of a CARMA process leads to a multivariate Ornstein-Uhlenbeck process. Applications of

CARMA processes include econometrics (see Bergstrom (1990), Phillips (1974)), high-frequency

financial econometrics (see Todorov (2009)), and financial mathematics (see Benth et al. (2010)).

However, CARMA processes clearly have potential applications in all areas involving time series

data, e.g. social sciences, medicine, biology or physics.

Typical stylized facts of high frequency financial time series as asset returns and exchange rates

are jumps and a heavy tailed distribution which is peaked around zero. These characteristics were

already noticed in the 60’s by the influential works of Mandelbrot (1963) and Fama (1965). Thus,

α-stable distributions as generalization of a Gaussian distribution have often been discussed as

more realistic models for asset returns than the usual normal distribution; see Rachev et al. (1999).

More applications of heavy tailed distributions in economics and finance can be found in Adler et al.

(1998), Rachev and Mittnik (2000) and Rachev (2003). Processes exhibiting infinite second variance

have not only been appeared in finance but also, e.g., in insurance, signal processing and teletraffic

data. For an overview on the topic of heavy tailed distributions and their applications we refer

to the excellent monograph of Resnick (2007). It is well known that for heavy tailed distributions

standard statistical techniques do not apply in the usual way.

Further common features of high frequency financial times series are non-stationarity and time-

varying volatility. A famous stochastic volatility model is the Ornstein-Uhlenbeck model propagated

by Barndorff-Nielsen and Shephard (2001). They start from the classical Black-Scholes model for

the log asset price

dX(t) =
(
µ− σ2δ

)
dt+ σ dB(t), (1.1)

where µ, δ ∈ R are the instantaneous drift and the premium parameter, σ > 0 is the constant

volatility and (B(t))t≥0 is a Brownian motion, and plug in (1.1) the stochastic Ornstein-Uhlenbeck

process (σ2(t))t≥0 as volatility process instead of the constant volatility σ2. This leads to

dX(t) =
(
µ− σ2(t)δ

)
dt+ σ(t) dB(t), (1.2)

where (σ(t))t≥0 has the representation

σ2(t) = e−λtσ2(0) + e−λt

∫ t

0
eλsL(ds) for t ≥ 0, (1.3)

with λ > 0 and (L(t))t≥0 a positive Lévy process also known as subordinator. This model is capable

to show most of the stylized facts, e.g. volatility jumps, clustering and heavy tails (cf. Fasen et al.

2



(2006)). It was used and studied in detail in finance, see e.g., Barndorff-Nielsen et al. (2002), Griffin

and Steel (2006), Roberts et al. (2004) and extended to the multivariate case with a multivariate

Ornstein-Uhlenbeck type process by Pigorsch and Stelzer (2009).

Let (L(t))t≥0 be a p-dimensional Lévy process and Σ ∈ Rd×p, Λ ∈ Rd×d, d, p ∈ N, where the

eigenvalues of Λ have strictly positive real parts. Then a multivariate Ornstein-Uhlenbeck process

(Z(t))t≥0 in Rd is defined as

Z(t) = e−Λt
Z(0) +

∫ t

0
e−Λ(t−s)ΣL(ds) for t ≥ 0. (1.4)

Under our assumptions on L, which will follow below, we can choose a stationary version of (Z(t))t≥0

since the eigenvalues of Λ have strictly positive real parts (see Sato and Yamazato (1984), Theo-

rem 4.1). For given observations

Z′
n = (Z(1), . . . ,Z(n)) ∈ Rd×n, where we write Z′

i,j = (Z(i), . . . ,Z(j)) ∈ Rd×(j−i+1),

at a discrete-time grid, we study the properties of the least squares estimator for e−Λ, since the

estimation of Λ itself is not identifiable (cf. Lemma 3.1 below). An Ornstein-Uhlenbeck process

observed at discrete time points is a multivariate AR(1) process with representation

Z(k) = e−Λ
Z(k − 1) + ξk where ξk =

∫ k

k−1
e−Λ(k−s)ΣL(ds) for k ∈ N. (1.5)

The usual least squares estimator is then

ê−Λn = Z
′

2,nZ1,n−1(Z
′

1,n−1Z1,n−1)
−1. (1.6)

If the second moment of ‖L(1)‖ exists, then it is well known from the statistical inference of multi-

variate ARMA models that the estimator (1.6) is asymptotically normal and unbiased (see Hannan

(1970), Chapter 6, or Proposition 3.2 below). In the finite variance case the least squares estima-

tor is inefficient. More efficient estimators for the mean reversion parameter in one-dimensional

Ornstein-Uhlenbeck models with finite variance are presented in Jongbloed et al. (2005), Brockwell

et al. (2007), Taufer and Leonenko (2009) and Spiliopoulos (2010).

The main focus of this paper is to derive the asymptotic distribution of the least squares esti-

mator (1.6), if ‖L(1)‖ has infinite variance. To be precise we study in detail the case where L(1) is

multivariate regularly varying of an index less than 2, derive test statistics and compare our results

to the case with finite second moments. The least squares estimator has the advantage that it is

easy to implement and it performs much better in the heavy tailed model than in the finite variance

case. In the limit the least squares estimator converges to a heavy tailed distribution which is a

functional of stable random variables. However, one can not calculate the distribution analytically

and it still depends on the unknown tail index of the underlying process. This makes it difficult to

develop asymptotic approximations for the purpose of statistical inference.

Our result extends those of Davis and Resnick (1986) for the estimation of the autocorrelation

function of a discrete-time AR(1) process from the one-dimensional case to the multivariate case.
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To the best of our knowledge statistical inference for multivariate linear processes with infinite

variance has not been well explored in the literature yet, apart from the work of Davis et al.

(1985) and Meerschaert and Scheffler (2000, 2001) regarding only the convergence in probability of

the normalized autocovariance function and the cross-correlation. The estimation of heavy tailed

continuous-time AR(1) models was only considered in Hu and Long (2007, 2009) paying attention

only at one-dimensional stable Ornstein-Uhlenbeck processes. In contrast to us, their observation

grid is getting finer if the time scale increases or they observe the process on a hole time interval.

It is worth noting that in the heavy tailed case of one-dimensional linear models in discrete time

M -estimators, in particular, the least absolute deviation estimator, can be more efficient than least

squares estimators because outliers do not dominant as in the case of least squares estimators (cf.

Calder and Davis (1998), Davis et al. (1992)). There the least squares estimators give too much

influence to outliers. Thus, the extension to M -estimators in the multivariate setup of continuous-

time linear models will be considered in some future work and compared to the least squares

estimator of this paper.

The second part of this paper is devoted to the application of Ornstein-Uhlenbeck processes and

its statistical inference in the context of co-integration. Co-integration is a well known phenomenon

in economic time series as e.g., interest rates on assets of different maturities, prices of commodities

in different parts of the world, income and expenditure by the local government, the value of

sales and production costs of an industry, and spot and future prices in commodity markets (see

Engle and Granger (1991), Engle and White (1999), Lütkepohl and Krätzig (2004)). This means

that even though time series are non-stationary there exist linear combinations of them that render

stationarity. Typical models for asset prices are exponential Lévy models (cf. Mandelbrot and Taylor

(1967) and Eberlein (2009)). Although, exponential Lévy models are not able to capture stochastic

volatility, they are the straightforward extension of the geometric Brownian motion in the Black-

Scholes model modeling jumps and going away from the Gaussian assumption. The analytic form of

the exponential Lévy model is simple, easier to handle and to fit to data than stochastic volatility

models. In spread options and pairs trading, which is a popular investment strategy among hedge

funds and investment banks, the concept is to find some pairs of assets which tend to move together

in the long-run, i.e., they are co-integrated. There the logarithmic asset prices of two assets are

modeled as

X(t) = AY (t) + Z(t) for t ≥ 0,

Y (t) = L(t) for t ≥ 0,
(1.7)

where (Z(t))t≥0 is a stationary Ornstein-Uhlenbeck process, (L(t))t≥0 is a Lévy process and A ∈ R

is a constant (see Benth and Benth (2006), Duan and Pliska (2004), Ekström et al. (2009), Elliott

et al. (2005)). Models of this type are also applied in electricity spot price dynamics (see Benth

et al. (2008)). In the long-term the first asset behaves like a multiple of the second asset only in

the short-term there are some deviations modeled by (Z(t))t≥0. The Ornstein-Uhlenbeck parameter

λ of (Z(t))t≥0 reflects the speed of mean reversion to the equilibrium and hence, this parameter

is important to know and to estimate for the optimal strategy in a pairs trade. It is also possible

to allow some short-term deviations of (Y (t))t≥0 from (L(t))t≥0 by adding a noise term (cf. Fasen
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(2010)). For the ease of notation we neglect this here. The linear regression model (1.7) is commonly

used and basic in econometrics. In a two-step procedure we will estimate A and e−λ. In this paper

we investigate a multiple version of (1.7) and its statistical inference where the noise is modeled by

a multivariate Ornstein-Uhlenbeck model.

The paper is structured in the following way. Section 2 starts with preliminaries on multivariate

regular variation of products and central limit results essential for the derivation of the asymptotic

distribution of the least squares estimator. The results on multivariate regular variation of products

are interesting in its own, however we use them to prove the central limit theorems. Section 3

contains the main results of the paper including the consistency and the asymptotic distribution

of the least squares estimator but also test statistics. After all we apply the results to a multiple

regression model in Section 4 and embed it into the context of co-integration. Finally, Section 5

contains the proofs.

We use the notation =⇒ for weak convergence,
P−→ for convergence in probability, and

ν
=⇒

for vague convergence. Let R = R ∪ {−∞,∞} be the compactification of R and let B(·) be the

Borel-σ-algebra. Further, we denote by eij ∈ Rd×d a matrix containing 1 at place (i, j) and 0

otherwise. Similarly, we define ei ∈ Rd as unit vector having 1 in row i and 0 otherwise. For a

vector x ∈ Rd we write x
′ for its transposed. The matrix 0m1×m2 is the zero matrix in Rm1×m2

and Im1×m1 is the identity matrix in Rm1×m1 , m1,m2 ∈ N0. The symbol ⊗ denotes the Kronecker

product and we use as norms the Euclidean norm ‖·‖ in Rd and the corresponding operator norm

‖·‖ for matrices. Then λ := ‖Λ‖ is the spectral norm of Λ. The operator vec transforms a matrix

A ∈ Rp×d into an Rpd-vector by stacking the columns of A. An Sα(1, β, 0)-stable distribution will

be an α-stable distribution with scale parameter 1, skewness parameter β and shift parameter 0 in

the sense of Samorodnitsky and Taqqu (1994). Finally, let [X,Y]t = ([Xi,Yj ]t)i=1,...,m1,j=1,...,m2 for

the semimartinagles X = ((X1(t), . . . ,Xm1(t))
′)t≥0 in Rm1 , Y = ((Y1(t), . . . ,Ym2(t))

′)t≥0 in Rm2 ,

m1,m2 ∈ N, denote the quadratic covariation of X and Y.

2 Preliminaries

2.1 Regular variation

In this paper we investigate the Ornstein-Uhlenbeck model (1.4) where L(1) is a multivariate reg-

ularly varying random vector. We recall the definition.

Definition 2.1

(a) A sequence (cn)n∈N of positive constants (a measurable function f : (0,∞) → (0,∞), respec-

tively) is called regularly varying of index −α, α ∈ R, if limn→∞ c⌊nu⌋/cn = u−α (limx→∞ f(xu)/f(x) =

u−α, respectively) for any u > 0, where ⌊nu⌋ = sup{k ∈ N : k ≤ nu}. In that case we also write

(cn)n∈N ∈ R−α (f ∈ R−α, respectively).

(b) A random matrix U ∈ Rp×d is multivariate regularly varying with index −α < 0 if and only if

there exists a non-zero Radon measure µ on R
p×d \{0p×d} with µ(R

p×d \Rp×d) = 0 and a sequence
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(an)n∈N of positive numbers increasing to ∞ such that

nP(a−1
n U ∈ ·) υ

=⇒ µ(·) as n → ∞ on B(Rp×d \ {0p×d}).

The limit measure µ is homogenous of order −α, i.e., µ(uB) = u−αµ(B) for u > 0, B ∈ B(Rp×d\{0p×d}).
We shortly write U ∈ R−α(an, µ).

The sequence (an)n∈N in (b) is in R1/α as well. If the representation of the limit measure µ or

the norming sequence (an)n∈N does not matter we also write R−α(an) and R−α, respectively. For

further information regarding multivariate regular variation of random vectors we refer to Resnick

(2007). However, we can transfer the results to random matrices in Rp×d by rewriting the random

matrix as a random vector in Rpd with the vec operator.

For the proofs of our central limit results in Section 2.2 we have to understand multivariate

regular variation of products of random vectors, where contrary to the common approaches both

factors are multivariate regularly varying of the same index. Since there is no dominant factor

in that model, the calculations are more involved. The one-dimensional version can be found in

Cline (1986), who applies in his proof that for a positive random variable X we have X ∈ R−α iff

limx→∞ P(X > ex−y)/P(X > ex) = eαy for any y ∈ R. Unfortunately this can not be used in the

multivariate setup.

Lemma 2.2

Let ζ(1) = (ζ
(1)
1 , . . . , ζ

(1)
p )′, ζ(2) = (ζ

(2)
1 , . . . , ζ

(2)
p )′ ∈ R−α(an, µ) be iid random vectors in Rp with

independent components such that

lim
x→∞

P(ζ
(1)
i > x)

P(‖ζ(1)‖ > x)
= pi < ∞ and lim

x→∞

P(−ζ
(1)
i > x)

P(‖ζ(1)‖ > x)
= qi < ∞, i = 1, . . . , p,

and E‖ζ(1)‖α = ∞. Let ãn > 0 be an increasing sequence of constants such that

0 < lim
n→∞

nP(‖ζ(1)‖‖ζ(2)‖ > ãn) = C < ∞.

Then ζ(1)ζ(2)
′ ∈ R−α(ãn, Cµ̃(·)), where

µ̃(·) =
p∑

i,j=1

(p̃ij + q̃ij)E (µα({x ∈ R+ : xRijeij ∈ ·})) ,

µα(dx) = αx−α−1
1(0,∞)(x) dx and (Rij)i,j=1,...,p is an independent sequence of Bernoulli random

variables with

P(Rij = 1) =
p̃ij

p̃ij + q̃ij
and P(Rij = −1) =

q̃ij
p̃ij + q̃ij

,

p̃ij = pipj + qiqj and q̃ij = piqj + qipj.

With the above notation we use either of the following assumptions to prove the consistency of

the least squares estimator (1.6).
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Assumption A

Let L(1) ∈ R−α(an, µ), and let (L(t))t≥0 = ((L1(t), . . . , Lp(t))
′)t≥0 have independent components,

where E‖L(1)‖α = ∞,

lim
x→∞

P(Li(1) > x)

P(‖L(1)‖ > x)
= pi < ∞ and lim

x→∞

P(−Li(1) > x)

P(‖L(1)‖ > x)
= qi < ∞, i = 1, . . . , p.

Finally, let an, ãn > 0 be increasing sequences of constants such that

lim
n→∞

nP(‖L(1)‖ > an) = 1 and lim
n→∞

nP(‖L(1)‖‖L(2) − L(1)‖ > ãn) = 1.

Note that by Cline (1986), Proposition II, (ãn)n∈N ∈ R1/α and by (3.5) in Davis and Resnick (1986),

limn→∞ ãn/an = ∞.

The next alternative and stronger Assumption B results in simpler limit results.

Assumption B

Let (L(t))t≥0 be a one-dimensional Lévy process. Suppose that the components

(L1(t))t≥0, . . . , (Lp(t))t≥0 of the p-dimensional Lévy process (L(t))t≥0 = ((L1(t), . . . , Lp(t))
′)t≥0

are independent Lévy processes with (Li(t))t≥0
d
= (L(t))t≥0 for i = 1, . . . , p. Furthermore, assume

that

lim
u→∞

P(L(1) > u)

P(|L(1)| > u)
= lim

u→∞

P(−L(1) > u)

P(|L(1)| > u)
=

1

2

and

P(|L(1)| > u) = b(log u)u−α,

where 0 < α < 2 and b ∈ Rγ with γ > −1. If 1 < α < 2 then E(L(1)) = 0. Let an, ãn > 0 be

increasing sequences of constants such that as n → ∞,

an ∼ (Kαb(log n)n)
1/α and ãn ∼ (αKαCγb

2(log n) log(n)n)1/α

with Kα = Γ(2−α)
α−1 | cos(πα2 )| and Cγ = Γ(1+γ)2/Γ(2+2γ). Finally, suppose that Λ = diag(λ1, . . . , λd)

and Σ = Id×d.

Under Assumption B the components of (Z(t))t≥0 driven by (L(t))t≥0 are independent one-dimen-

sional Ornstein-Uhlenbeck processes driven by the Lévy processes (Li(t))t≥0 and with Ornstein-

Uhlenbeck parameter λi > 0. Then the estimation can also be reduced to the estimation of λi in

the one-dimensional model instead of looking at the multivariate model. However, in particular in

the context of the co-integrated model in Section 4 it makes sense to investigate that special model

of Assumption B.

Example 2.3

Let (L(t))t≥0 be an α-stable Lévy motion. Then there exists a constant C > 0 such that

P(|L(1)| > u) ∼ Cu−α as u → ∞.

In Assumption B we can take (an)n∈N and (ãn)n∈N, respectively as

an = (KαCn)1/α and ãn = (αKαC
2 log(n)n)1/α for n ∈ N. �
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The next theorem extends Lemma 2.2 to the context of an Ornstein-Uhlenbeck model.

Theorem 2.4

Let (Z(t))t≥0 be given as in (1.4) and (ξk)k∈N as in (1.5). Furthermore, suppose that Assumption A

holds. Define

µξξ′(·) =
p∑

i,j=1

(p̃ij + q̃ij)E
(
µα({x ∈ R+ : xRije

−ΛU (1)
ΣeijΣ

′e−Λ
′U (2) ∈ ·})

)
, (2.1)

where µα(dx) = αx−α−1
1(0,∞)(x) dx and U (1), U (2) are iid uniformly distributed random variables

on (0, 1) independent of (Rij)i,j=1,...,p, an independent sequence of Bernoulli random variables with

P(Rij = 1) =
p̃ij

p̃ij + q̃ij
and P(Rij = −1) =

q̃ij
p̃ij + q̃ij

,

p̃ij = pipj + qiqj and q̃ij = piqj + qipj. Then

ξ1ξ
′
2 ∈ R−α(ãn, µξξ′), (2.2)

and

(ξm+1ξ
′
m, . . . , ξm+1ξ

′
1) ∈ R−α

(
ãn, µξξ′m

)
with µξξ′m

(·) =
m∑

k=1

µξξ′ ◦ pr(d,m)
k (E

(d,m)
k ∩ ·), (2.3)

where pr
(d,m)
k : Rd×dm → Rd×d is the projection A = (Al,s)l=1,...,d,s=1,...,dm 7→ (Au,(k−1)d+v)u,v=1,...,d

and E
(d,m)
k = {A ∈ Rd×dm : Al,s = 0 for (l, s) /∈ {(u, (k − 1)d+ v) : u, v = 1, . . . , d}}.

2.2 Central limit results

We use the following special case of Fasen (2010), Proposition 2.1 (cf. Davis et al. (1985)) for the

proof of the consistency of our estimator (1.6).

Proposition 2.5

Let (Z(t))t≥0 be given as in (1.4) and (ξk)k∈N as in (1.5). Furthermore, let 0 < α < 2. Suppose that

L(1) ∈ R−α(an, µ) and E(L(1)) = 0p if 1 < α < 2. Define for n ∈ N:

S1,n = a−1
n

n∑
k=1

ξk, S2,n = a−2
n

n∑
k=1

ξkξ
′
k,

S3,n = a−2
n

n∑
k=1

Z(k)Z(k)′, S4,n = a−2
n

n∑
k=1

Z(k + 1)Z(k)′.

Let (S1(t))t≥0 be an α-stable Lévy process in Rd with Lévy measure

µξ(B) = E
(
µ
({

x ∈ R
p\{0p} : e−ΛUΣx ∈ B

}))
for B ∈ B(Rd\{0d}), (2.4)

where U is a uniformly distributed random variable on (0, 1), and if 1 < α < 2 then E(S1(t)) = 0d.

Finally, define the random matrices

S1 := S1(1), S2 := [S1,S1]1, S3 :=

∞∑

i=0

e−Λi[S1,S1]1e
−Λ

′i, S4 := e−Λ
S3.
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Then as n → ∞,

(S1,n,S2,n,S3,n,S4,n) =⇒ (S1,S2,S3,S4) .

However, for the asymptotic behavior of our estimator we require a stronger result.

Theorem 2.6

Let (Z(t))t≥0 be given as in (1.4) and (ξk)k∈N as in (1.5). Furthermore, let 0 < α < 2. Suppose that

L(1) ∈ R−α(an, µ), where E(L(1)) = 0p if 1 < α < 2, and Assumption A holds. Define

S5,n := ã−1
n

∞∑

j=0

n−1∑

k=1

ξk+1ξ
′
k−je

−Λ
′j for n ∈ N, and S5 :=

∞∑

j=0

S
∗
je

−Λ
′j ,

where (S∗
j )j∈N0 are iid Rd×d-valued α-stable Lévy processes independent of (S1,S2,S3,S4) with

Lévy measure µξξ′ as given in (2.1) and E(S∗
1) = 0d×d if 1 < α < 2. Then as n → ∞,

(S1,n,S2,n,S3,n,S4,n,S5,n) =⇒ (S1,S2,S3,S4,S5) .

We conclude the Section with a corollary which gives under the stronger Assumption B simple

representations of Si for i = 1, . . . , 5.

Corollary 2.7

Suppose Assumption B holds. Then as n → ∞,

(S1,n,S2,n,S3,n,S4,n,S5,n) =⇒ (S1,S2,S3,S4,S5) ,

where

S1 = EΛ,αDΛ,αS
∗
1(1), S2 = E2

Λ,αD
2
Λ,α[S

∗
1,S

∗
1]1, S3 = E−2

Λ,2E
2
Λ,αD

2
Λ,α[S

∗
1,S

∗
1]1,

S4 = e−Λ
S3, S5 = EΛ,αDΛ,αS

∗
2(1)DΛ,α,

(S∗
1(t))t≥0 is a d-dimensional Lévy process independent of the (d × d)-dimensional Lévy process

(S∗
2(t))t≥0, and in both cases the components are iid Sα(1, 0, 0)-stable Lévy motions. Finally,

EΛ,α = diag((1 − e−αλ1)1/α, . . . , (1 − e−αλd)1/α) and DΛ,α = diag((αλ1)
−1/α, . . . , (αλd)

−1/α).

3 Least squares estimator

3.1 Statistical estimation

In this paper we estimate e−Λ instead of Λ, since classical results of algebra going back to Cluver

(1966) show that under general assumptions the estimation of Λ by the discrete-time model is not

identifiable.

Lemma 3.1

Let Λ ∈ Rd×d. Then the following are equivalent:

(a) x = Λ is the unique solution to exp(−x) = exp(−Λ) in Rd×d.
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(b) All eigenvalues of Λ are real and no elementary divisor (Jordan block) of Λ occurs more than

once.

For completeness we start with the estimation of e−Λ in the case where second moments exists,

which follows directly from Hannan (1970), Chapter 6 or Lütkepohl (2007), Section 3.3.

Proposition 3.2

Let E‖L(1)‖2 < ∞ and E(L(1)) = 0p. Define

ΣZ =

∫ ∞

0
e−ΛsΣE(L(1)L(1)′)Σ′e−Λ

′s ds and Σξ =

∫ 1

0
e−ΛsΣE(L(1)L(1)′)Σ′e−Λ

′s ds. (3.1)

Suppose ΣZ is invertible. Then as n → ∞,

√
n
(
vec(ê−Λn)− vec(e−Λ)

)
=⇒ N (0d2 ,Σ

−1
Z

⊗ Σξ).

In particular, ê−Λn
P−→ e−Λ as n → ∞.

Remark 3.3

Particularly, ΣZ is invertible if and only if Σξ is invertible. If ΣE(L(1)L(1)′)Σ′ is invertible then

also Σξ and ΣZ are invertible. A sufficient condition for both is that Σ has full rank and L has

uncorrelated components. �

Under very general assumptions we obtain also the consistency of the least squares estimator,

if the second moment does not exist.

Theorem 3.4

Let 0 < α < 2 and L(1) ∈ R−α(an, µ), where E(L(1)) = 0p if 1 < α < 2. Suppose P(det(S3) = 0) =

0. Then the estimator ê−Λn as given in (1.6) is consistent, i.e. ê−Λn
P−→ e−Λ as n → ∞.

This result can be obtained by a straightforward application of Davis et al. (1985), Theorem 3.1, in

the bivariate case and under slightly different assumptions by Meerschaert and Scheffler (2000) for

the multivariate case. However, it follows also directly from Proposition 2.5, since

ê−Λn = Z
′

2,nZ1,n−1(Z
′

1,n−1Z1,n−1)
−1 = S4,nS

−1
3,n =⇒ e−Λ

S3S
−1
3 = e−Λ as n → ∞.

Remark 3.5

The claim P(det(S3) = 0) = 0 holds if and only if P(det(S2) = 0) = 0. If Assumption A is satisfied,

a sufficient condition is pi + qi > 0 for i = 1, . . . , p and Σ has full rank. �

For the asymptotic behavior of the least square estimator we require the slightly stronger As-

sumption A.

Theorem 3.6

Let 0 < α < 2. Suppose that L(1) ∈ R−α(an, µ) and E(L(1)) = 0p if 1 < α < 2.

(a) Let Assumption A hold and suppose P(det(S3) = 0) = 0. Then as n → ∞,

a2n
ãn

(
ê−Λn − e−Λ

)
=⇒ S5S

−1
3 =: G.

10



(b) Let Assumption B hold. Then as n → ∞,

a2n
ãn

D−1
Λ,αE

−1
Λ,α

(
ê−Λn − e−Λ

)
DΛ,αE

2
Λ,αE

−2
Λ,2 =⇒ S

∗
2(1)([S

∗
1,S

∗
1]1)

−1 =: G∗.

The Theorem generalizes the limit results of Davis and Resnick (1986) to the multivariate case.

Note, that (b) is in particularly useful for the practical simulation of confidence intervals as we see

below.

Remark 3.7

(a) Since the limit distribution G depends on S3 and on S5 it depends in particular on Λ, which

is plugged in to the Lévy measures of S3 and S5 which we see nicely in (b).

(b) For statistical applications we keep in mind that the unknown parameter α is going into a2nã
−1
n ,

which is regularly varying sequence of index 1/α. Furthermore, the precise form of the slowly varying

function in an and in ãn, respectively is not known as well. The same problem arises in the t- and

the Wald-statistic below and makes the statistical inference for such models difficult. �

Next we compare the result in the finite variance and the infinite variance setting.

Remark 3.8

(a) Since (a2nã
−1
n )n∈N ∈ R1/α and 1/α > 1/2, the convergence rate a2n/ãn of ê−Λn in the heavy

tailed case (Theorem 3.6) is faster than the usual convergence rate n1/2 in the case where second

moments exists (Proposition 3.2).

(b) For α = 2 the random matrix S
∗
2(1)([S

∗
1,S

∗
1]1)

−1 has iid standard normal distributed com-

ponents. Hence, the finite variance case of Proposition 3.2 has for Λ = diag(λ1, . . . , λd) and

ΣE(L(1)L(1)′)Σ′ = Id×d the same representation as the infinite variance case of Theorem 3.6.

�

Finally, we comment what happens if we have a different observation grid.

Remark 3.9

Suppose we observe (Z(t))t≥0 in Theorem 3.6 (b) at the discrete time-grid kh for k = 1, . . . , n,

where h > 0 is fixed. Then we have the observations

Z′
h,n = (Z(h), . . . ,Z(nh)) ∈ Rd×n where we write Z′

h,i,j = (Z(ih), . . . ,Z(jh)) ∈ Rd×(j−i+1),

and define the least squares estimator

ê−Λh,n = Z
′

h,2,nZh,1,n−1(Z
′

h,1,n−1Zh,1,n−1)
−1.

We obtain as n → ∞,

a2n
ãn

D−1
hΛ,αE

−1
hΛ,α

(
ê−Λh,n − e−hΛ

)
DhΛ,αE

2
hΛ,αE

−2
hΛ,2 =⇒ G

∗,

which means for the one-dimensional case Λ = λ that as n → ∞,

a2n
ãn

(1− e−αhλ)1/α(1− e−2hλ)−1
(
ê−λh,n − e−hλ

)
=⇒ S∗

2

S∗
1

,

11



where S∗
2 is an Sα(1, 0, 0)-stable random variable independent of the positive Sα/2(1, 1, 0)-stable

random variable S∗
1 . On the other hand,

lim
h→0

(1− e−αhλ)1/α(1− e−2hλ)−1

(αhλ)1/α(2hλ)−1
= 1

suggests that for a observation scheme with grid distance hn, which is getting finer as n increases,

i.e., hn ↓ 0 and nhn −→ ∞ as n → ∞, we have as n → ∞,

a2n
ãn

(αλhn)
1
α (2λhn)

−1
(
ê−λhn,n − e−λhn

)
=⇒ S∗

2

S∗
1

.

If additionally limn→∞ h
α+1
α

n a2nã
−1
n = 0 then we will obtain as n → ∞,

h
1
α
n
a2n
ãn

(αλ)
1
α (2λ)−1

(
1− ê−λhn,n

hn
− λ

)
=⇒ S∗

2

S∗
1

.

This was shown in Hu and Long (2009) for the least squares estimator of an α-stable Ornstein-

Uhlenbeck model. In some future work we will show that this result holds for general regularly

varying Ornstein-Uhlenbeck models. �

One can use the above results to derive confidence intervals for the components of e−Λ. In

the definition of G
∗ in Theorem 3.6 the random matrix S

∗
2(1) has iid components and [S∗

1,S
∗
1]1

is a diagonal matrix whose diagonal consists of iid components. Thus, G
∗ is a random matrix

with identically distributed components which do not depend on d, i.e. every component has the

distribution of S∗
2/S

∗
1 of Remark 3.9. Furthermore, the distribution of S∗

2/S
∗
1 is heavy tailed and

becomes heavier for smaller α. Let xp(α) denote the 1− p
2 quantile of S∗

2/S
∗
1 . An 1− p-confidence

interval of (e−Λ)ik (the (i, k)-component of e−Λ) has then the representation

[
(ê−Λn)ik ± xp(α)

ãn
a2n

(
λk

λi

)1/α

(1− e−αλi)1/α(1− e−αλk)−2/α(1− e−2λk)

]
.

In practise the distribution of S∗
2/S

∗
1 can not be computed theoretically but can be derived by

simulation or numerical approximation, since there is no analytic representation of the density. In

Table 1 we have simulated the 1− p
2 -quantiles of S∗

2/S
∗
1 by 100,000 Monte Carlo simulations using

the toolbox STABLE of Robust Analysis Inc.

α = 1.2 α = 1.4 α = 1.5 α = 1.6 α = 1.8

p = 0.1 4.9 3.1 2.5 2.1 1.5

p = 0.05 9.0 4.9 3.8 3.0 2.0

p = 0.025 16.0 7.8 5.6 4.2 2.5

p = 0.01 33.2 14.3 9.6 6.9 3.5

Table 1: Simulated 1− p
2 -quantiles of a component of G∗ for any d ∈ N and different choices of α.
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3.2 Asymptotic tests

In this section we want to test the significance of subvectors and components of e−Λ. Usual tests on

the linear restriction R vec(e−Λ) = r for some R ∈ Rq×d2 , r ∈ Rq are the t- and the Wald-statistic.

The idea in both tests is that if the restriction is true then the difference R vec(ê−Λn)− r is close

to 0q.

A straightforward conclusion of Proposition 3.2 and Hannan (1970), Chapter 4, Theorem 6, is

the next proposition for the finite variance case, where in (a) we investigate the t- and in (b) the

Wald statistic.

Proposition 3.10

Let E‖L(1)‖2 < ∞ and E(L(1)) = 0p. Define

Ω̂n := n−1(Z′
2,n − ê−ΛnZ′

1,n−1)(Z
′
2,n − ê−ΛnZ′

1,n−1)
′. (3.2)

Suppose ΣZ as given in (3.1) is invertible.

(a) Then as n → ∞,

((Z′
1,n−1Z1,n−1)

1/2 ⊗ Ω̂
−1/2

n )
(
vec(ê−Λn)− vec(e−Λ)

)
=⇒ N (0d2 , Id2×d2).

Let R ∈ R1×d2 and r ∈ R. If the null hypothesis H0: R vec(e−Λ) = r is true, then as n → ∞,

(R((Z′
1,n−1Z1,n−1)⊗ Ω̂

−1

n )R′)1/2
(
Rvec(ê−Λn)− r

)
=⇒ N (0, 1).

(b) Let R ∈ Rq×d2 , r ∈ Rq and rank(R) = q. If the null hypothesis H0: R vec(e−Λ) = r is true,

then as n → ∞,

(R vec(ê−Λn)− r)′
(
R((Z′

1,n−1Z1,n−1)
−1 ⊗ Ω̂n)R

′
)−1

(R vec(ê−Λn)− r) =⇒ χ2
q.

In contrast to the asymptotic limit of the least squares estimator in Proposition 3.2, in the t- and

the Wald-statistic the limit distributions are independent of Λ.

The sequence of random matrices n(Z′
1,n−1Z1,n−1)

−1 ⊗ Ω̂n are estimators for the covariance

matrix of vec(ê−Λn). However, in the infinite variance case the covariance does not exist and hence,

the sequence does not converge.

Theorem 3.11

Let 0 < α < 2 and L(1) ∈ R−α(an, µ), where E(L(1)) = 0p if 1 < α < 2. Suppose Assumption A

holds and P(det(S3) = 0) = 0. Let Ω̂n be given as in (3.2).

(a) Then as n → ∞,

t
ê−Λn

:=
a2n
ãn

n−1/2
Ω̂

−1/2

n

(
ê−Λn − e−Λ

)
(Z′

1,n−1Z1,n−1)
1/2 =⇒ S

−1/2
2 S5S

−1/2
3 .

Let R ∈ R1×d2 and r ∈ R. If the null hypothesis H0: R vec(e−Λ) = r is true, then as n → ∞,

a2n
ãn

n−1/2(R((Z′
1,n−1Z1,n−1)⊗ Ω̂

−1

n )R′)1/2
(
Rvec(ê−Λn)− r

)
=⇒ (R(S3 ⊗ S

−1
2 )R′)1/2Rvec(S5S

−1
3 ).
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(b) Suppose the stronger Assumption B holds. Then as n → ∞,

t
ê−Λn

EΛ,αE
−1
Λ,2 =⇒ [S∗

1,S
∗
1]
−1/2
1 S

∗
2(1)[S

∗
1,S

∗
1]
−1/2
1 .

(c) Let R ∈ Rq×d2 , r ∈ Rq and rank(R) = q. If the null hypothesis H0: R vec(e−Λ) = r is true,

then as n → ∞,

a4n
ã2n

n−1(R vec(ê−Λn)− r)′
(
R((Z′

1,n−1Z1,n−1)
−1 ⊗ Ω̂n)R

′
)−1

(R vec(ê−Λn)− r)

=⇒ (R vec(S5S
−1
3 ))′

(
R
(
S
−1
3 ⊗ S2

)
R

′
)−1

(R vec(S5S
−1
3 )).

Remark 3.12

To understand the limit results better, we look at the one-dimensional case d = 1 with Λ = λ > 0.

Then for the t- and the Wald-statistic we obtain as n → ∞,

t
ê−λn

=⇒ (1− e−αλ)−1/α(1− e−2λ)1/2
S∗
2

S∗
1
,

t2
ê−λn

=⇒ (1− e−αλ)−2/α(1− e−2λ)
S∗2
2

S∗2
1
,

(3.3)

where S∗
2 is an Sα(1, 0, 0)-stable random variable independent of the positive Sα/2(1, 1, 0)-stable

random variable S∗
1 . On the one hand, we see that the t- and the Wald-statistic still depend on

λ. On the other hand, the limit distributions are again heavy tailed in contrast to the normal

and the χ2-distribution in the finite variance setting of Proposition 3.10, which are the usual limit

distributions of the t- and the Wald-statistic. Furthermore, we still get not rid of the norming

constants an and ãn which are in general not known. To conclude, this makes it difficult to use the

t- and the Wald statistic for the statistical analysis of heavy tailed models. However, we have again

in the case with infinite variance a faster convergence rate of the t- and the Wald-statistic than in

the finite variance setting of Proposition 3.10.

Again Proposition 3.10 can be interpreted as a special case of Theorem 3.11 by taking α = 2. If

α = 2 then S∗
2 ∼ N (0, 1), S∗

1 = 1 and (1− e−αλ)−1/α(1− e−2λ)1/2 = 1 in (3.3). �

4 Multiple time series regression with Ornstein-Uhlenbeck processes

In this section we investigate a multiple regression model used in co-integration. Therefore, let

((L1(t)
′,L2(t)

′)′)t≥0 be an h + d-dimensional Lévy process and A ∈ Rd×h. Then the regression

model is defined as

X(t) = AY(t) + Z(t) for t ≥ 0, in Rd,

Y(t) = L1(t) for t ≥ 0, in Rh,
(4.1)

where (Z(t))t≥0 is a stationary Ornstein-Uhlenbeck process in Rd with representation

Z(t) = e−Λt
Z(0) +

∫ t

0
e−Λ(t−s)

L2(ds) for t ≥ 0,
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as in (1.4). The system of simultaneous equations (4.1) is co-integrated and in particulary, X and

Y are non-stationary. Models of this kind can be found in any equilibrium relationship which are

common in financial and econometric time series; see Fasen (2010). The equidistant observations

are

X′
n = (X(1), . . . ,X(n)) ∈ Rd×n, X′

i,j = (X(i), . . . ,X(j)) ∈ Rd×(j−i+1),

Y′
n = (Y(1), . . . ,Y(n)) ∈ Rh×n, Y′

i,j = (Y(i), . . . ,Y(j)) ∈ Rh×(j−i+1).

Note that here we do not observe Z′
n. The matrices A and e−Λ are then estimated in a two-stage

procedure. First, we will estimate A and then we use this result to estimate e−Λ. As estimator for

A we take the least squares estimator

Ân = X′
nYn(Y

′
nYn)

−1. (4.2)

The asymptotic properties of Ân are studied in detail in Fasen (2010). However, the objective is

now to estimate e−Λ in a second stage. Thus, define

Ẑ
′

1,n−1 := X′
1,n−1 − ÂnY1,n−1 and Ẑ

′

2,n := X′
2,n − ÂnY

′
2,n

as estimators for the noise Z′
1,n−1 and Z′

2,n, respectively. Then we use as estimator for e−Λ the least

squares estimator (1.6) where we plug in the estimated noise resulting in

ẽ−Λn = Ẑ
′

2,nẐ1,n−1(Ẑ
′

1,n−1Ẑ1,n−1)
−1. (4.3)

In this section we will see that the estimator (4.3) has the same asymptotic properties as the

estimator (1.6) in Section 3 where the noise is known. However, we suppose the following assumption

on the Lévy process (L1(t))t≥0 in (4.1).

Assumption C

Suppose that (L1(t))t≥0 = ((L1,1(t), . . . , L1,h(t))
′)t≥0 satisfies either condition (a) or (b) below.

(a) Let 0 < α∗ < 2, L1(1) ∈ R−α∗(bn, µ1) and µ1({0i−1} ×R\{0} × {0h−i}) > 0 for i = 1, . . . , h.

If 1 < α∗ < 2 then E(L1(1)) = 0h.

(b) Let E‖L1(1)‖2 < ∞, ΣL1(1) be invertible and E(L1(1)) = 0h. Then define bn :=
√
n and

α∗ := 2.

4.1 Statistical estimation

Again we start with the case where second moments exists.

Theorem 4.1

Let (L1(t))t≥0 and (L2(t))t≥0 be independent Lévy processes, where (L1(t))t≥0 satisfies Assump-

tion C, E‖L2(1)‖r < ∞ for some r > 2 and E(L2(1)) = 0d. Define ΣZ,Σξ as in (3.1) with Σ = Id×d

and L = L2, and suppose ΣZ is invertible. Then as n → ∞,

√
n
(
vec(ẽ−Λn)− vec(e−Λ)

)
=⇒ N (0d2 ,Σ

−1
Z

⊗ Σξ).

In particular, ẽ−Λn
P−→ e−Λ as n → ∞.
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We conjecture that it is also sufficient to assume a finite second moment of ‖L2(1)‖. However, in

the proof we apply results of Fasen (2010) which are based on slightly higher moments.

In the infinite variance case we first present the result for the consistency and then the asymptotic

distribution. The consistency holds under more general assumptions than the asymptotic limit result.

Theorem 4.2

Let 0 < α < 2 and let (L(t))t≥0 be a p-dimensional Lévy process satisfying L(1) ∈ R−α(an, µ) with

E(L(1)) = 0p if 1 < α < 2. Suppose that (L2(t))t≥0 = (ΣL(t))t≥0 for Σ ∈ Rd×p, P(det(S3) = 0) = 0

and that either

(a) (L1(1),L2(1)) ∈ R−α(an, µ̃) and µ̃({0i−1} ×R\{0} × {0h+d−i}) > 0 for i = 1, . . . , h, or

(b) (L1(t))t≥0 and (L(t))t≥0 are independent and (L1(t))t≥0 satisfies Assumption C.

Then the estimator ẽ−Λn as given in (4.3) is consistent, i.e. ẽ−Λn
P−→ e−Λ as n → ∞.

The asymptotic behavior of the estimator requires inter alia the additional assumption α > 1, i.e.

we require a finite first moment. This reflects also the feature of most empirical data, where α is

larger than 1.5.

Theorem 4.3

Let the assumptions of Theorem 4.2 hold. Suppose additionally 1 < α < 2.

(a) Let further Assumption A hold. Then as n → ∞,

a2n
ãn

(
ẽ−Λn − e−Λ

)
=⇒ S5S

−1
3 .

(b) Let further Assumption B hold. Then as n → ∞,

a2n
ãn

D−1
Λ,αE

−1
Λ,α

(
ẽ−Λn − e−Λ

)
DΛ,αE

2
Λ,αE

−2
Λ,2 =⇒ S

∗
2(1)([S

∗
1,S

∗
1]1)

−1.

To conclude, both in the infinite variance and the finite variance case the classical least squares

estimator (1.6) based on the observed Ornstein-Uhlenbeck process and the estimator (4.3) based on

no observations of the Ornstein-Uhlenbeck process have the same properties.

4.2 Asymptotic tests

For the t- and the Wald statistic we obtain in the multiple regression model (4.1) the same results

as in Section 3.2.

Theorem 4.4

Let the assumptions of Theorem 4.1 hold, and define

Ω̃n := n−1(Ẑ′
2,n − ẽ−ΛnẐ′

1,n−1)(Ẑ
′
2,n − ẽ−ΛnẐ′

1,n−1)
′. (4.4)
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(a) Then as n → ∞,

((Ẑ′
1,n−1Ẑ1,n−1)

1/2 ⊗ Ω̃
−1/2

n )
(
vec(ẽ−Λn)− vec(e−Λ)

)
=⇒ N (0d2 , Id2×d2).

Let R ∈ R1×d2 and r ∈ R. If the null hypothesis H0: R vec(e−Λ) = r is true, then as n → ∞,

(R((Ẑ′
1,n−1Ẑ1,n−1)⊗ Ω̃

−1

n )R′)1/2
(
Rvec(ẽ−Λn)− r

)
=⇒ N (0, 1).

(b) Let R ∈ Rq×d2 , r ∈ Rq and rank(R) = q. If the null hypothesis H0: R vec(e−Λ) = r is true,

then as n → ∞,

(R vec(ẽ−Λn)− r)′
(
R((Ẑ′

1,n−1Ẑ1,n−1)
−1 ⊗ Ω̃n)R

′
)−1 (

R vec(ẽ−Λn)− r

)
=⇒ χ2

q.

Theorem 4.5

Let the assumptions of Theorem 4.2 and Assumption A hold, and define Ω̃n as in (4.4). Suppose

additionally 1 < α < 2.

(a) Then as n → ∞,

t
ẽ−Λn

:=
a2n
ãn

n−1/2
Ω̃

−1/2

n

(
ẽ−Λn − e−Λ

)
(Ẑ′

1,n−1Ẑ1,n−1)
1/2 =⇒ S

−1/2
2 S5S

−1/2
3 .

Let R ∈ R1×d2 and r ∈ R. If the null hypothesis H0: R vec(e−Λ) = r is true, then as n → ∞,

a2n
ãn

n−1/2(R((Ẑ′
1,n−1Ẑ1,n−1)⊗ Ω̃

−1

n )R′)1/2(Rvec(ẽ−Λn)− r) =⇒ (R(S3 ⊗ S
−1
2 )R′)1/2Rvec(S5S

−1
3 ).

(b) Suppose the stronger Assumption B holds. Then as n → ∞,

t
ẽ−Λn

EΛ,αE
−1
Λ,2 =⇒ [S∗

1,S
∗
1]
−1/2
1 S

∗
2(1)[S

∗
1,S

∗
1]
−1/2
1 .

(c) Let R ∈ Rq×d2 , r ∈ Rq and rank(R) = q. If the null hypothesis H0: R vec(e−Λ) = r is true,

then as n → ∞,

a4n
ã2n

n−1(R vec(ẽ−Λn)− r)′
(
R((Ẑ′

1,n−1Ẑ1,n−1)
−1 ⊗ Ω̃n)R

′
)−1

(R vec(ẽ−Λn)− r)

=⇒ (R vec(S5S
−1
3 ))′

(
R
(
S
−1
3 ⊗ S2

)
R

′
)−1

(R vec(S5S
−1
3 )).

5 Proofs

5.1 Proofs of Section 2

Proof of Lemma 2.2. Let us define

µj(dx) := pjαx
−α−1

1(0,∞)(x) dx+ qjα(−x)−α−1
1(−∞,0)(x) dx
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and K := limn→∞ nP(‖ζ(1)‖ > an) such that ζ
(1)
j ∈ R−α(an,Kµj(·)), j = 1, . . . , p. Then by the

independence of the components ζ
(1)
1 , . . . , ζ

(1)
p of ζ(1) we have for µ the representation

µ(·) = K

p∑

j=1

µj ◦ pr(p)j (E
(p)
j ∩ ·), (5.1)

where E
(p)
j = {yej : y ∈ R} ⊆ Rp and pr

(p)
j : Rp → R is the projection on the j-th coordinate.

Furthermore, we define

µij(dx) := p̃ijαx
−α−1

1(0,∞)(x) dx+ q̃ijα(−x)−α−1
1(−∞,0)(x) dx.

Then Cline (1986), Proposition II, results in ζ
(1)
i ζ

(2)
j ∈ R−α(ãn, Cµij(·)).

Let S be the collection of all sets B of the form B = {(xij)i,j=1,...,p ∈ Rp×p : xij ∈ (bij, cij ] , i, j =

1, . . . , p} ⊆ Rp×p, which are bounded away from 0p×p and bij < cij i, j = 1, . . . , p. It is clear that

S is a DC-semiring (cf. Lindskog (2004), Lemma 1.10). W.l.o.g. bij 6= 0, cij 6= 0 for i, j = 1, . . . , p.

Moreover, since B ∈ S is bounded away from 0p×p, either

B ∩ E
(p)
ij = ∅ for i, j = 1, . . . , p, (C1)

where E
(p)
ij = {yeij : y ∈ R} ⊆ Rp×p, or

B ∩E
(p)
ij = (bij, cij ] eij and B ∩ E

(p)
kl = ∅ for (k, l) 6= (i, j), k, l = 1, . . . , p. (C2)

That is, B has either empty intersection with all coordinate axes or intersects exactly one. Note

that in (C2),

bkl < 0 < ckl for k 6= i or l 6= j and 0 /∈ (bij, cij ] .

Case (C1): Then bij, cij > 0 or bij, cij < 0 for i, j = 1, . . . , p. Define x∗ := min(|b11|, |c11|) > 0

and y∗ := min(|bpp|, |cpp|) > 0. Thus,

nP(ã−1
n ζ(1)ζ(2)

′ ∈ B) ≤ nP(|ζ(1)1 ζ
(2)
1 | > ãnx

∗)P(|ζ(1)p ζ(2)p | > ãny
∗) −→ 0 as n → ∞.

Case (C2): W.l.o.g. B ∩ E
(p)
11 = (b11, c11] e11. Define x∗ := min(|b11|, |c11|) > 0 and

y∗ := min k,l=1,...,p
(k,l) 6=(1,1)

(|bkl|, |ckl|) > 0. Then

|nP(ã−1
n ζ(1)ζ(2)

′ ∈ B)− nP(b11ãn < ζ
(1)
1 ζ

(2)
1 < c11ãn)|

≤ 2n

p∑

k=2

P(|ζ(1)1 ζ
(2)
1 | > ãnx

∗, |ζ(1)1 ζ
(2)
k | > ãny

∗) + n

p∑

k,l=2

P(|ζ(1)1 ζ
(2)
1 | > ãnx

∗, |ζ(1)k ζ
(2)
l | > ãny

∗)

≤ 2npP(|ζ(1)1 ζ
(2)
1 | > ãnx

∗, |ζ(1)1 | max
k=2,...,p

|ζ(2)k | > ãny
∗)

+np2P(|ζ(1)1 ζ
(2)
1 | > ãnx

∗)P( max
k=2,...,p

|ζ(1)k | max
l=2,...,p

|ζ(2)l | > ãny
∗) −→ 0 as n → ∞,
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where the first term tends to 0, since ãna
−1
n → ∞ as n → ∞ and

nP(|ζ(1)1 ζ
(2)
1 | > ãnx

∗, |ζ(1)1 | max
k=2,...,p

|ζ(2)k | > ãny
∗)

≤ nP(|ζ(1)1 | > anM) + nP(|ζ(1)1 ζ
(2)
1 | > ãnx

∗)P( max
k=2,...,p

|ζ(2)k | > ãny
∗(anM)−1)

n→∞−→ (p1 + q1)M
−α M→∞−→ 0.

Thus, we obtain

lim
n→∞

nP(ã−1
n ζ(1)ζ(2)

′ ∈ B) = C

p∑

i,j=1

µij ◦ pr(p)ij (E
(p)
ij ∩B) = Cµ̃(B),

where pr
(p)
ij : Rp×p → R is the projection on the (i, j)-th coordinate. Finally, we can conclude

ζ(1)ζ(2)
′ ∈ R−α(an, Cµ̃(·)). �

Proof of Theorem 2.4. Let (b,C, ν) denote the characteristic triplet of (L(t))t≥0.

Step 1. First, we will assume that (L(t))t≥0 is a compound Poisson process such that

ξ1 =

N1(1)∑

j=1

e−ΛU
(1)
j Σζ

(1)
j and ξ2 =

N2(1)∑

k=1

e−ΛU
(2)
k Σζ

(2)
k ,

where ζ
(1)
1 , ζ

(2)
1 , ζ

(1)
2 , ζ

(2)
2 , . . . is an iid sequence with distribution ν(·)/ν(Rp) where the components of

any vector are independent and (N1(t))t≥0, (N2(t))t≥0 are iid Poisson processes with intensity ν(Rp).

Furthermore, U
(1)
1 , U

(2)
1 , U

(1)
2 , U

(2)
2 , . . . is a sequence of iid random variables uniformly distributed

on (0, 1). Finally, all random variables are independent. Then

ξ1ξ
′
2 =

N1(1)∑

j=1

N2(1)∑

k=1

e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k .

Now, let B = {(xij)i,j=1,...,d ∈ Rd×d : xij ∈ (bij , cij ] , i, j = 1, . . . , d} ⊆ Rd×d with bij < cij , bij 6= 0,

cij 6= 0, i, j = 1, . . . , d, be bounded away from 0d×d as in Lemma 2.2. We conclude that

lim
n→∞

nP(ã−1
n ξ1ξ

′
2 ∈ B) (5.2)

= lim
n→∞

∞∑

l=0

∞∑

m=0

nP


ã−1

n

l∑

j=1

m∑

k=1

e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k ∈ B


P(N1(1) = l)P(N2(1) = m).

Next, since ζ
(1)
1 has distribution ν(·)/ν(Rp), which is the normalized Lévy measure of

L(1) ∈ R−α(an, µ) with µ as given in (5.1), we have by Hult and Lindskog (2007), Lemma 2.1,

that ζ
(1)
1 ∈ R−α(an, µ(·)/ν(Rp)) and limn→∞ nP(‖ζ(1)1 ‖ > an) = ν(Rp)−1. Thus, by Cline (1986),

Proposition II,

lim
n→∞

nP(‖ζ(1)1 ‖‖ζ(2)1 ‖ > ãn) = ν(Rp)−2
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such that Lemma 2.2 results in ζ
(1)
1 ζ

(2)′

1 ∈ R−α(ãn, µ̃(·)/ν(Rp)2). Since E‖e−ΛU
(i)
1 ‖δ < ∞ for any

δ > 0, a multivariate version of Breiman’s result (cf. Basrak et al. (2002), Proposition A.1) gives

then

e−ΛU
(1)
1 Σζ

(1)
1 ζ

(2)′

1 Σ′e−Λ
′U

(2)
1 ∈ R−α

(
ãn, µξξ′(·)/ν(Rp)2

)
.

We interpret for a moment (e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k )j,k=1,...,m as (dm × dm) block matrix and

write it as

(e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k )j,k=1,...,m = diag(e−ΛU

(1)
1 Σ, . . . , e−ΛU

(1)
m Σ)vec(ζ

(1)
1 , . . . , ζ(1)

m )

vec(ζ
(2)
1 , . . . , ζ(2)

m )′diag(e−ΛU
(2)
1 Σ, . . . , e−ΛU

(2)
m Σ)′,

where diag is a block diagonal matrix in Rdm×pm and

vec(ζ
(1)
1 , . . . , ζ(1)m )vec(ζ

(2)
1 , . . . , ζ(2)

m )′ ∈ R−α


ãn,

m∑

j,k=1

µ̃ ◦ pr(p,m)
j,k (E

(p,m)
j,k ∩ ·)/ν(Rp)2




is a random matrix in Rpm×pm with independent components on an extremal level by Lemma 2.2,

where pr
(p,m)
j,k : Rpm×pm → Rp×p is the projection A = (Al,s)l,s=1,...,pm 7→ (A(j−1)p+u,(k−1)p+v)u,v=1,...,p

and E
(p,m)
j,k = {A ∈ Rpm×pm : Al,s = 0 for (l, s) /∈ {((j − 1)p + u, (k − 1)p + v) : u, v = 1, . . . , p}}.

Thus, again by Basrak et al. (2002), Proposition A.1,

(e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k )j,k=1,...,m ∈ R−α


ãn,

m∑

j,k=1

µξξ′ ◦ pr(d,m)
j,k (E

(d,m)
j,k ∩ ·)/ν(Rp)2


 ,

which means that the blocks of this random matrix are independent on an extremal level. A final

application of Basrak et al. (2002), Proposition A.1, gives

lim
n→∞

nP


ã−1

n

l∑

k=1

m∑

j=1

e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k ∈ B




= lim
n→∞

lmnP
(
ã−1
n e−ΛU

(1)
1 Σζ

(1)
1 ζ

(2)′

1 Σ′e−Λ
′U

(2)
1 ∈ B

)
= lm

µξξ′(B)

ν(Rp)2
. (5.3)

If we suppose that it is allowed to exchange the limit and the infinite sums in (5.2) then we obtain

with

lim
n→∞

nP(ã−1
n ξ1ξ

′
2 ∈ B) = E(N1(1))

2 lim
n→∞

nP
(
ã−1
n

(
e−ΛU (1)

Σζ
(1)
1 ζ

(2)′

1 Σ′e−Λ
′U (2)

)
∈ B

)
= µξξ′(B)

the result. Hence, it remains to show that the assumptions of Pratt’s Theorem (see Pratt (1960))

are satisfied which allows us to exchange the limit and the infinite sums in (5.2).

Therefore, we define x∗ = infx∈B ‖x‖, which is larger than 0 by the construction of B. Then

P


ã−1

n

l∑

k=1

m∑

j=1

e−ΛU
(1)
j Σζ

(1)
j ζ

(2)′

k Σ′e−Λ
′U

(2)
k∈ B


 ≤ P


ã−1

n

l∑

k=1

m∑

j=1

‖ζ(1)
j ‖‖ζ(2)

k ‖ > C1x
∗


. (5.4)
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If we define L̃(1) :=
∑N1(1)

k=1 ‖ζ(1)k ‖ and L̃(2) :=
∑N2(1)

k=1 ‖ζ(2)
k ‖ then L̃(i) ∈ R−α(an) with E|L̃(i)|α = ∞,

i = 1, 2. By Cline (1986), Proposition II, we know that L̃(1)L̃(2) ∈ R−α(ãn). Hence,

lim
n→∞

∞∑

l=0

∞∑

m=0

nP


ã−1

n

l∑

k=1

m∑

j=1

‖ζ(1)j ‖‖ζ(2)
k ‖ > C1x

∗


P(N1(1) = l)P(N2(1) = m)

= lim
n→∞

nP(ã−1
n L̃(1)L̃(2) > C1x

∗) = C2 < ∞,

such that the assumptions of Pratt’s Theorem are satisfied.

Step 2. Finally, let (L(t))t≥0 be a general Lévy process, and (L(1)(t))t≥0 and (L(2)(t))t≥0 denote

two independent Lévy processes with characteristic triplets (0p,0p×p, ν(·∩Ec)) and (b,C, ν(·∩E)),

respectively, where E = {x ∈ Rp\{0p} : ‖x‖ ≤ 1}, such that (L(t))t≥0 = (L(1)(t))t≥0 +(L(2)(t))t≥0.

Then

ξ1 =

∫ 1

0
e−Λ(1−s)ΣL

(1)(ds) +

∫ 1

0
e−Λ(1−s)ΣL

(2)(ds) =: ξ
(1)
1 + ξ

(2)
1 .

The Lévy measure of ξ
(2)
1 is by Masuda (2004), Proposition 2.1, given by

ν
ξ(2)

(B) =

∫ 1

0
ν({x ∈ E : e−ΛsΣx ∈ B}) ds for B ∈ B(Rd\{0d}),

which has a bounded support. Thus, a conclusion of Sato (2002), Corollary 25.8, is that all moments

of ‖ξ(2)1 ‖ exist. We have an analog decomposition of ξ2 as ξ
(1)
2 + ξ

(2)
2 . Then

ξ1ξ
′
2 = ξ

(1)
1 ξ

(1)
2

′
+ ξ

(1)
1 ξ

(2)′

2 + ξ
(2)
1 ξ

(1)′

2 + ξ
(2)
1 ξ

(2)′

2 . (5.5)

Since by Hult and Lindskog (2007), Lemma 2.1, L(1)(1) ∈ R−α(an, µ) and (L(1)(t))t≥0 is a compound

Poisson process, we have by Step 1 that the first summand ξ
(1)
1 ξ

(1)′

2 ∈ R−α(ãn, µξξ′). On the other

hand, ξ
(1)
1 , ξ

(1)
2 ∈ R−α(an) and E‖ξ(2)1 ‖α+1,E‖ξ(2)2 ‖α+1 < ∞ such that ξ

(1)
1 ξ

(2)′

2 , ξ
(2)
1 ξ

(1)′

2 ∈ R−α(an)

and E‖ξ(2)1 ξ
(2)′

2 ‖α+1 < ∞. Hence,

lim
x→∞

P(‖ξ(1)1 ξ
(2)′

2 + ξ
(2)
1 ξ

(1)′

2 + ξ
(2)
1 ξ

(2)′

2 ‖ > x)

P(‖ξ(1)1 ξ
(1)′

2 ‖ > x)
= 0.

The statement (2.2) follows then by (5.5) and Jessen and Mikosch (2006), Lemma 3.3.

Step 3. We define ξ̃m := vec(ξ1, . . . , ξm+1), L̃(t) = vec(L(t),L(t+1)−L(t), . . . ,L(t+m+1)−L(t+

m)) for t ∈ [0, 1], Λ̃ = diag(Λ, . . . ,Λ) ∈ Rd(m+1)×d(m+1) , Σ̃ = diag(Σ, . . . ,Σ) ∈ Rd(m+1)×p(m+1) such

that ξ̃m =
∫ 1
0 e−Λ̃(1−s)Σ̃ L̃(ds). Then the conclusion (2.3) can be derived as special case of (2.2) and

a continuous-mapping theorem. �

Proof of Theorem 2.6. As in Davis and Resnick (1986), Theorem 3.3 (see also Resnick (2007),

(9.91)), we have by (2.3) and the m+ 1-dependence of (vec(ξk+1ξ
′
k, . . . , ξk+1ξ

′
k−m))k∈N as n → ∞,

(
ã−1
n

n−1∑

k=1

ξk+1ξ
′
k, . . . , ã

−1
n

n−1∑

k=1

ξk+1ξ
′
k−m

)
=⇒ (S∗

0, . . . ,S
∗
m).
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Applying the continuous mapping theorem yields as n → ∞,

m∑

j=0

(
ã−1
n

n−1∑

k=1

ξk+1ξ
′
k−j

)
e−Λ

′j =⇒
m∑

j=0

S
∗
je

−Λ
′j .

Since
∑m

j=0 S
∗
je

−Λ
′j =⇒∑∞

j=0 S
∗
je

−Λ
′j as m → ∞ it remains to show that for any η > 0

lim
m→∞

lim
n→∞

P



∥∥∥∥∥∥

∑

j>m

(
ã−1
n

n−1∑

k=1

ξk+1ξ
′
k−j

)
e−Λ

′j

∥∥∥∥∥∥
> η


 = 0, (5.6)

because a conclusion of Billingsley (1968), Theorem 4.2, is then that as n → ∞,

∞∑

j=0

(
ã−1
n

n−1∑

k=1

ξk+1ξ
′
k−j

)
e−Λ

′j =⇒
∞∑

j=0

S
∗
je

−Λ
′j . (5.7)

For the proof of (5.6) let us define Kn := E(ξ1ξ
′
21{‖ξ1ξ

′
2‖≤ãn}) and

J1(m,n) :=
∑

j>m

ã−1
n

n−1∑

k=1

ξk+1ξ
′
k−j1{‖ξk+1ξ

′
k−j‖>ãn}e

−Λ
′j ,

J2(m,n) :=
∑

j>m

ã−1
n

n−1∑

k=1

(ξk+1ξ
′
k−j1{‖ξk+1ξ

′
k−j‖≤ãn} −Kn)e

−Λ
′j,

J3(m,n) := ã−1
n (n− 1)Kn

∑

j>m

e−Λ
′j.

Let 0 < α ≤ 1 and 0 < δ < α. Then

‖J1(m,n)‖δ ≤ C1ã
−δ
n

∑

j>m

n−1∑

k=1

‖ξk+1ξ
′
k−j‖δ1{‖ξk+1ξ

′
k−j‖>ãn}e

−λδj

such that by Markov’s inequality and Karamata’s Theorem

P(‖J1(m,n)‖ > η) ≤ C2a
−δ
n nE(‖ξ1ξ′2‖δ1{‖ξ1ξ

′
2‖>ãn})

∑

j>m

e−λδj n→∞−→ C3

∑

j>m

e−λδj m→∞−→ 0. (5.8)

Let 1 < α < 2. Then Markov’s inequality and Karmata’s Theorem give

P(‖J1(m,n)‖ > η) ≤ C4ã
−1
n nE(‖ξ1ξ′2‖1{‖ξ1ξ

′
2‖>ãn})

∑

j>m

e−λj n→∞−→ C5

∑

j>m

e−λj m→∞−→ 0. (5.9)

Similarly we have also

lim
m→∞

lim
n→∞

‖J3(m,n)‖ = 0. (5.10)

It remains to investigate J2(m,n). We assume now without loss of generality that J2(m,n) is one-

dimensional otherwise we have to investigate J2(m,n) coordinatenwise. Note that by the Cauchy-

Schwarz inequality

|E((ξ1ξ21{|ξ1ξ2|≤ãn} −Kn)(ξ1ξ31{|ξ1ξ3|≤ãn} −Kn))| ≤ E(ξ21ξ
2
21{|ξ1ξ2|≤ãn}) =: σ2

n.
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Defining

σn(k + 1, k − i, l + 1, l − j) := E((ξk+1ξk−i1{|ξk+1ξk−i|≤ãn} −Kn)(ξl+1ξl−j1{|ξl+1ξl−j |≤ãn} −Kn)),

we have by the independence of the sequence (ξk)k∈N that

Var(ãnJ2(m,n)) :=

n−1∑

k=1

n−1∑

l=1

∑

i>m

∑

j>m

σn(k + 1, k − i, l + 1, l − j)e−λie−λj

=

n−1∑

k=1

∑

i>m

∑

j>m

σn(k + 1, k − i, k + 1, k − j)e−λie−λj

+2

n−1∑

k=m+3

k−m−2∑

l=1

∑

j>m

σn(k + 1, l + 1, l + 1, l − j)e−λ(k−l−1)e−λj

+2

n−1∑

k=1

k−1∑

l=1

∑

i>m+k−l

σn(k + 1, k − i, l + 1, k − i)e−λie−λ(l−k+i)

≤ nσ2
n


∑

j>m

e−λj




2

+ 2σ2
n


∑

j>m

e−λj




n∑

k=1

k∑

l=1

e−λl + 2σ2
n

(
∑

i>m

e−λi

)
n∑

k=1

k−1∑

l=1

e−λl

≤ C6nσ
2
n



∑

j>m

e−λj


 .

Hence, Tschebyscheff’s inequality and Karamata’s Theorem result in

lim
m→∞

lim
n→∞

P(‖J2(m,n)‖ > η) ≤ lim
m→∞

lim
n→∞

C6ã
−2
n nσ2

n


∑

j>m

e−λj


 = 0. (5.11)

Finally, (5.8)-(5.11) give (5.6) and thus, (5.7) holds, i.e. S5,n =⇒ S5 as n → ∞.

On the other hand, by Proposition 2.5 we have (S1,n,S2,n,S3,n,S4,n) =⇒ (S1,S2,S3,S4) as

n → ∞. The joint convergence and the independence of (S1,S2,S3,S4) with (S∗
j )j∈N0 comes from

the fact that we can straightforward extend Davis and Resnick (1986), Proposition 3.2, to the

multivariate case

∞∑

k=1

ε(k/n,a−1
n ξk,ã

−1
n (ξk+1ξ

′
k ,...,ξk+1ξ

′
k+1−m)) =⇒

∞∑

k=1

[
ε
(tk ,j

(1)
k

,0d×d)
+ ε

(tk ,0d,j
(2)
k

)

]
as n → ∞,

where
∑∞

k=1 ε(tk ,j
(1)
k

,j
(2)
k

)
∼ PRM(Leb × µξ × µξξ′m

) with µξξ′m
given in (2.3) and µξ in (2.4), and

then follow the proof of Fasen (2010), Proposition 2.1, step by step. �

5.2 Proofs of Section 3

Proof of Theorem 3.6. Note that (Z(k))k∈N has the MA representation

Z(k) = e−Λ
Z(k − 1) + ξk =

k∑

i=−∞

e−Λ(k−i)ξi =

∞∑

j=0

e−Λjξk−j
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where

ξ−k =

∫ −k

−k+1
e−Λ(−k−s)ΣL(ds) for k ∈ N

with (L(−t))t≥0 an independent copy of (L(t))t≥0. Thus, we have

Z
′

2,nZ1,n−1 =
n−1∑

k=1

Z(k + 1)Z(k)′ = e−Λ

n−1∑

k=1

Z(k)Z(k)′ +
n−1∑

k=1

ξk+1Z(k)
′

= e−ΛZ
′

1,n−1Z1,n−1 +
∞∑

j=0

[
n−1∑

k=1

ξk+1ξ
′
k−j

]
e−Λ

′j .

Hence,

a2nã
−1
n (ê−Λn − e−Λ) =




∞∑

j=0

(
ã−1
n

n−1∑

k=1

ξk+1ξ
′
k−j

)
e−Λ

′j


 (a−2

n Z
′

1,n−1Z1,n−1)
−1.

An application of Theorem 2.6 and the continuous mapping theorem (accounting for P(det(S3) =

0) = 0) result in the proof. �

Proof of Theorem 3.11. We will show that as n → ∞,

na−2
n Ω̂n =⇒ S2. (5.12)

Then we obtain the statement again by an application of the continuous mapping theorem and

Theorem 3.6.

To prove (5.12) note that as n → ∞,

na−2
n

(
Ω̂n − n−1

n∑

k=1

ξkξ
′
k

)
= a−2

n (Z′
2,n − ê−ΛnZ′

1,n−1)(Z
′
2,n − ê−ΛnZ′

1,n−1)
′ (5.13)

−a−2
n (Z′

2,n − e−ΛZ′
1,n−1)(Z

′
2,n − e−ΛZ′

1,n−1)
′ =⇒ 0d×d

by an expansion of the product, Theorem 2.6 and Theorem 3.4. Then the conclusion (5.12) follows

from Proposition 2.5. �

5.3 Proofs of Section 4

We start with the proofs in the infinite variance case of L2 in Theorem 4.2, Theorem 4.3 and

Theorem 4.5, and afterwards we will present the proofs of Theorem 4.1 and Theorem 4.4 in the

finite variance case of L2.

Proof of Theorem 4.2.

We write

Ẑ
′

2,nẐ1,n−1 = ((A− Ân)Y
′
2,n + Z′

2,n)((A− Ân)Y
′
1,n−1 + Z′

1,n−1)
′ (5.14)

= (A− Ân)Y
′
2,nY1,n−1(A− Ân)

′ + Z′
2,nY1,n−1(A− Ân)

′

+(A− Ân)Y
′
2,nZ1,n−1 + Z′

2,nZ1,n−1

=: ε(1)n + Z′
2,nZ1,n−1.
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From Fasen (2010) we know that
(
a−1
n b−1

n Z′
nYn, n

−1b−2
n Y′

nYn, a
−2
n Z′

2,nZ1,n−1, nbna
−1
n (Ân −A)

)

=⇒
(
S̃2(1)S̃1(1)

′ −
∫ 1

0
S̃2(s) S̃1(ds)

′,

∫ 1

0
S̃1(s)S̃1(s)

′ds, e−Λ
S3,

S̃2(1)S̃1(1)
′ −
∫ 1

0
S̃2(s) S̃1(ds)

′

(∫ 1

0
S̃1(s)S̃1(s)

′ds

)−1
)
, (5.15)

where (S̃1(t))t≥0 is an h-dimensional α∗-stable Lévy process and (S̃2(t))t≥0 is an d-dimensional

α-stable Lévy process, respectively. Thus,

na−2
n ε(1)n =⇒ ε(1) as n → ∞, (5.16)

where ε(1) is some random matrix in Rd×d. On the other hand, by Proposition 2.5 we have as

n → ∞,

a−2
n Z′

2,nZ1,n−1 =⇒ e−Λ
S3 (5.17)

with P(det(e−Λ
S3) = 0) = 0 such that as n → ∞,

(Ẑ
′

2,nẐ1,n−1)(Z
′
2,nZ1,n−1)

−1 P−→ Id×d. (5.18)

The same arguments give as n → ∞,

(Ẑ
′

1,n−1Ẑ1,n−1)(Z
′
1,n−1Z1,n−1)

−1 P−→ Id×d. (5.19)

However, a conclusion of Proposition 2.5 is that as n → ∞,

Z
′

2,nZ1,n−1(Z
′

1,n−1Z1,n−1)
−1 =⇒ e−Λ

S3S
−1
3 = e−Λ (5.20)

which finishes with (5.18) and (5.19) the proof. �

Proof of Theorem 4.3.

We use the notation of the proof of Theorem 4.2 and write similarly Ẑ
′

1,n−1Ẑ1,n−1−Z′
1,n−1Z1,n−1 =:

ε
(2)
n . Hence, we obtain

ê−Λn − ẽ−Λn =(Z′
2,nZ1,n−1)(Z

′
1,n−1Z1,n−1)

−1ε(2)n (Z′
1,n−1Z1,n−1 + ε(2)n )−1

−ε(1)n (Z′
1,n−1Z1,n−1 + ε(2)n )−1 (5.21)

=(ê−Λn − e−Λ)ε(2)n (Z′
1,n−1Z1,n−1 + ε(2)n )−1 + (e−Λε(2)n − ε(1)n )(Z′

1,n−1Z1,n−1 + ε(2)n )−1.

On the one hand, na−2
n ε

(2)
n =⇒ ε(2) as n → ∞, (5.17) and Theorem 3.6 give as n → ∞,

a2nã
−1
n (ê−Λn − e−Λ)ε(2)n (Z′

1,n−1Z1,n−1 + ε(2)n )−1 =⇒ 0d×d . (5.22)

Finally, for 1 < α < 2 we have a2n(ãnn)
−1 −→ 0 and

a2n
ãn

(e−Λε(2)n − ε(1)n )(Z′
1,n−1Z1,n−1 + ε(2)n )−1 (5.23)

=
a2n
ãnn

(
na−2

n e−Λε(2)n − na−2
n ε(1)n

)(
a−2
n Z′

1,n−1Z1,n−1 + a−2
n ε(2)n

)−1
=⇒ 0d×d
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as n → ∞ which results with (5.21), (5.22) and Theorem 3.6 in the statement. �

Proof of Theorem 4.5.

Note, that as n → ∞,

na−2
n (Ω̃n − Ω̂n) = a−2

n (Ẑ′
2,n − ẽ−ΛnẐ′

1,n−1)(Ẑ
′
2,n − ẽ−ΛnẐ′

1,n−1)
′ (5.24)

−a−2
n (Z′

2,n − e−ΛZ′
1,n−1)(Z

′
2,n − e−ΛZ′

1,n−1)
′ =⇒ 0d×d

by an expansion of the product, Proposition 2.5, Theorem 3.4, (5.18) and (5.19). Thus, (5.12) and

(5.24) leads to

na−2
n Ω̃n =⇒ S2 as n → ∞.

Finally, the asymptotics of the t- and the Wald-statistic follow by Theorem 4.3 and the continuous

mapping theorem. �

Proof of Theorem 4.1 and Theorem 4.4.

The proof goes step by step as the proof of Theorem 4.3 using an = ãn =
√
n, (5.15), Proposition 3.2

and the conclusions of Brockwell and Davis (2006), Theorem 11.2.1 that 1
n

∑n
k=1 ξkξ

′
k

P−→ Σξ,

Ω̂n
P−→ Σξ,

1
nZ

′
1,n−1Z1,n−1

P−→ ΣZ and 1
nZ

′
2,nZ1,n−1

P−→ e−ΛΣZ as n → ∞. �
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