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Summary. There are many examples where non-orthogonality of a basis for
Krylov subspace methods arises naturally. These methods usually require less
storage or computational effort per iteration than methods using an orthonor-
mal basis (optimal methods), but the convergence may be delayed. Truncated
Krylov subspace methods and other examples of non-optimal methods have
been shown to converge in many situations, often with small delay, but not
in others. We explore the question of what is the effect of having a non-
optimal basis. We prove certain identities for the relative residual gap, i.e.,
the relative difference between the residuals of the optimal and non-optimal
methods. These identities and related bounds provide insight into when the
delay is small and convergence is achieved. Further understanding is gained
by using a general theory of superlinear convergence recently developed. Our
analysis confirms the observed fact that in exact arithmetic the orthogonality
of the basis is not important, only the need to maintain linear independence
is. Numerical examples illustrate our theoretical results.

Mathematics Subject Classification (2000): 65F10, 65F15, 15A06, 15A18

1 Introduction

Krylov subspace methods for the solution of n×n nonsymmetric linear sys-
tems of equations of the form Ax = b are extensively used nowadays. Let
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r0 = b − Ax0 be the initial residual, with x0 an initial approximation to the
solution, and let Km(A, r0) = span{r0, Ar0, A

2r0, . . . , Am−1r0} be the Kry-
lov subspace of dimension m defined by A and r0. If {w1, . . . , wm} is a basis
of Km(A, r0), let Wm = [w1, . . . , wm]; then the new approximation xm to
the solution of the linear system is taken to be of the form

xm = x0 + Wmym(1.1)

for some ym ∈ R
m determined so that the associated residual rm = b − Axm

satisfies some constraint such as Galerkin or Petrov-Galerkin condition; see,
e.g., [2], [13], [27], [34]. Whenever Wm has orthonormal columns, we call the
corresponding schemes optimal methods. In order to save either storage or
computational effort, there are many methods where a non-orthogonal basis
of Km(A, r0) is used. We call them non-optimal methods; see section 2 for
examples. This can be carried out for instance by either relaxing the residual
constraint or by specifically choosing the auxiliary spaces within the Petrov-
Galerkin condition.

In this paper we analyze the convergence of non-optimal Krylov subspace
methods as compared to the optimal ones. While these non-optimal methods
are widely used, there is little analysis of them in the literature. Even though
we do not provide a complete picture of their behavior, we present several
equalities and some bounds which are a first attempt at their understanding.
We study the residual gap, i.e., the norm of the difference between the residu-
als of the optimal and non-optimal methods, and in sections 3 and 4 we obtain
new identities for this relative residual gap. In particular, our analysis con-
firms the fact that as long as the new element of the non-orthogonal basis has a
sufficiently large angle with the previous subspace, these methods will work
well in exact arithmetic; orthogonality is not necessary. We are motivated in
part by the observation that when a very good preconditioner is available,
or more generally, when fast convergence of the optimal Krylov subspace
method is observed, the non-optimal methods may be very competitive: the
savings in storage and computational effort more than compensate the delay
in convergence due to the use of a non-orthogonal basis. We remark that fast
convergence here does not necessarily mean just a few, say 10, iterations,
as illustrated with several examples throughout the paper; see in particular
Remark 4.1. Furthermore, we show that the general theory of superlinear
convergence of Krylov methods recently developed in [33] applies to these
non-optimal methods as well, providing us with further understanding of the
problem settings where we can expect these methods to behave efficiently
(section 5). Although our analysis assumes exact arithmetic, we present sev-
eral numerical examples illustrating the theoretical results.

We caution the reader that we do not advocate the use of the non-optimal
methods for all problems, and in fact they fail in many cases (see, e.g., Exam-
ple 5.4), but we do believe they have a role to play in the roster of methods for
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the solution of nonsymmetric problems. We hope that the new understanding
we provide here helps finding their proper role.

2 Notation, descriptions, and examples

Given a vector w1 satisfying w1 = αr0 for some nonzero scalar α, we consider
the following general recurrence

AWm = Wm+1Tm+1,m = WmTm + τm+1,mwm+1e
∗
m,(2.1)

whereWm is ann×m full column rank matrix, whose columns spanKm(A, r0).
Here and throughout the paper em indicates the mth column of the identity
matrix of appropriate order, depending on the context; when this order needs
to be specified we write Im for the identity in the m × m case. The sym-
bol e∗ denotes the transpose of e. We emphasize that here the matrix Wm+1

satisfying (2.1) is not required to have orthonormal columns but only to be
full column rank, i.e., that its columns span the subspace Km+1(A, r0). The
matrix Tm+1,m ∈ R

(m+1)×m here is upper Hessenberg, and in general we are
interested in the case in which Tm+1,m is also banded. The matrix Tm is the
m × m principal submatrix of Tm+1,m.

We concentrate in this paper on two classes of approximation methods.
In the first class the vector ym in (1.1) solves the linear system

Tmym = βe1,(2.2)

where β = ‖r0‖. The procedure above corresponds to the FOM method
whenever Wm has orthonormal columns, and it corresponds to the Lanc-
zos method when in addition A is symmetric. A second class of methods is
obtained by requiring that ym is the minimizer in

min
y

‖βe1 − Tm+1,my‖,(2.3)

i.e., ym = T +
m+1,mβe1, where T +

m+1,m = (T ∗
m+1,mTm+1,m)−1T ∗

m+1,m is the
pseudoinverse of Tm+1,m; see, e.g., [11]. When Wm has orthonormal columns,
this corresponds to the GMRES method (or MINRES in the symmetric case).

We formally call a non-optimal Krylov subspace method a method that
produces a non-optimal (or non-orthogonal) basis of a Krylov subspace as
in (2.1), where Tm+1,m is upper Hessenberg with a possibly banded struc-
ture. Several methods in the literature can be recast in terms of (2.1), such as
the nonsymmetric Lanczos process, truncated methods, restarted FOM and
restarted GMRES, and so on. For further details on these methods, see, e.g.,
[2], [13], [27], [34], and the discussion below.

Our aim is to relate these non-optimal approaches to the optimal methods
that explicitly generate an orthonormal basis. In this latter class fall the (full)
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FOM and GMRES methods, which will be used as reference optimal meth-
ods throughout the paper. We remark that strictly speaking, the nonsymmetric
Lanczos method is an “optimal” method in the sense that the generated vec-
tors satisfy a global Petrov-Galerkin variational property. Nonetheless, the
method does not construct an orthonormal basis, and thus for the definition
we have used of optimal, we will include it in the much wider class of schemes
satisfying (2.1).

Our first motivating example relates to a symmetric and positive definite
system Âx̂ = b̂ which is unsymmetrically preconditioned. General precon-
ditioning consists of replacing this system with an equivalent one, e.g., of
the form Ax = b with A = L−1ÂL−∗, b = L−1b̂, and x̂ = L−∗x, for some
easily invertible matrix L. We consider the case where the application prob-
lem is such that a nonsymmetric preconditioner is employed, either because of
inherent functional properties or because of the chosen preconditioning strat-
egy. In this case, let P be the nonsymmetric preconditioner and let P = LU

be its LU factorization. If P is not too far from being symmetric, one can
still think of applying the symmetric Lanczos process to the preconditioned
problem

Ax := L−1ÂU−1x = L−1b̂,(2.4)

as if the preconditioned matrix were symmetric; cf. [4]. By doing so, after
m steps we obtain the matrices Wm+1, Tm+1,m satisfying (2.1), where Tm is
m × m symmetric and tridiagonal, while the matrix Wm+1 = [Wm, wm+1] ∈
R

n×(m+1) has locally orthogonal columns, but in general, not all columns of
Wm+1 are orthogonal. Thus, to solve the system (2.4) one can consider two
alternatives. One can use an optimal method for this nonsymmetric system,
disregarding the original symmetry of the problem or, one could use, e.g.,
symmetric Lanczos, obtaining the non-orthogonal basis Wm of Km(A, r0) and
computing xm = x0 + Wmym, where Tmym = βe1; see [3] for an example of
such approach. One step further consists in relaxing the symmetry property
of Tm, and perhaps imposing more vectors to be locally orthogonal, [1], [24].
The overall process is a truncation of the corresponding optimal (globally
orthogonal) method, where the orthogonalization process is incomplete.

In this paper we aim to show that the preconditioner P does not have to be
close to symmetric for the non-optimal recurrence to successfully converge
at a convergence rate that is not too far from the optimal one. Moreover, our
considerations go far beyond the example above, and can be applied to a wide
class of methods, such as

• The nonsymmetric Lanczos method [19] and its variations, e.g., QMR
[10];

• Incomplete (truncated) methods [26], [27, §6.4.2 and §6.5.6], [29], and
restarted methods [27], [31];
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• Indefinite inner product methods for complex symmetric matrices [9],
[35].

In truncated methods, the orthogonalization of a new basis vector is per-
formed only with respect to a selected number of previous vectors of the
basis, say k vectors. We refer to the number k as the truncation parameter.
In this case, the upper Hessenberg matrix Tm+1,m in (2.1) is banded with k

nonzero superdiagonals; see, e.g., [26], [27, §6.4.2 and §6.5.6], [29].
We remark that for complex symmetric matrices, the methods proposed in

[9], [35], replace the complex inner product 〈x, y〉 = x̄∗y with the indefinite
inner product x∗y (transposition without complex conjugation), obtaining a
basis of the Krylov subspace which is orthogonal with respect to the latter
inner product, but not with respect to the underlying (complex) inner product.

In the examples just described, the lack of orthogonality of Wm is intrin-
sic to the methods used and is not related to the loss of orthogonality due
to round-off errors, cf. [13]. In fact, we assume throughout our analysis that
exact arithmetic is employed.

One could interpret the matrices Wm as the matrices of an optimal method
computed with floating point arithmetic, and thus having non-orthogonal col-
umns. In this case, our theoretical identities and bounds would relate to the
delay of convergence due to round-off errors, i.e., the delay in comparison
with an ideal exact arithmetic computation. We do not emphasize this situ-
ation, but mention that this is related to similar studies where this type of
delay is analyzed in detail e.g., in [15], [20], [21], [22], [25]. Moreover, our
study supports the common practice of using classical Gram-Schmidt and
Modified Gram-Schmidt in Krylov subspace methods using finite precision
arithmetic. This follows by considering the bases generated by these methods
as the non-optimal bases Wm. As already pointed out in the case of GMRES
[14], what matters for convergence and stability is the linear independence
of these bases; see also [20] and other references therein. Therefore, it is not
necessary for Wm to be close to being orthogonal. In fact ‖I − W ∗

mWm‖ can
be very large while the method may have good convergence properties; see,
e.g., Example 5.5.

We mention that in certain circumstances, our theory applies to implicitly
restarted augmented methods as well, since in those cases, the resulting space
is a Krylov subspace; see [23] and references therein.

As we already mentioned, the non-optimal methods mentioned in this sec-
tion do not always converge (due to stagnation or breakdown), and further-
more in many cases the convergence may be slow (large delay). Sometimes,
these problems are caused by the fact that Wm+1 = [Wm, wm+1] fails to be of
full rank, i.e., its columns fail to span Km+1(A, r0). We assume throughout
the paper though that the new vector of the basis, wm+1, is linearly indepen-
dent with respect to the previous ones. In fact, we provide theoretical and
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experimental evidence that Wm+1 may be severely ill-conditioned, while the
effect on the delay of convergence is minimal.

Other authors have specifically looked at comparisons of quasi-minimal
residual methods with optimal methods; see, e.g., [10], [18], [27] and the ref-
erences therein. Although our study does not concentrate on these methods,
our identities are still valid for them, and our bounds in some cases improve
the existing results. We also mention several papers where certain compari-
sons are made between methods for linear systems or eigenvalue problems
based on an Arnoldi relation (3.1) and those based on Lanczos biorthogonal-
izations (including QMR) [5], [6], [7], [8], [30].

We remark that our motivational problem may be addressed in a differ-
ent, although related, manner. More precisely, efforts have been devoted to
the analysis of the performance of symmetric Lanczos as a function of the
lack of symmetry in the (preconditioned) coefficient matrix [12], [24]. In this
case, what is measured is the distance from the optimal (symmetric) prob-
lem, keeping the method fixed. In our context, we assume that the problem
cannot (need not) be modified, while we wish to measure the distance from a
corresponding optimal, orthogonal, method for nonsymmetric problems; cf.
also Example 5.5.

By R(M) we denote the range of the matrix M , i.e., its column space, by
N (M) its null space, and by κ(M) its condition number, i.e., the ratio of its
(nonzero) smallest and largest singular values σmax(M)/σmin(M).

3 Relative gaps between optimal and non-optimal residuals

In this section we present identities and bounds for the relative distance
between the residuals of the optimal and non-optimal methods, that is, for
m > 0, we evaluate the ratio

‖ropt
m − r

nonopt
m ‖

‖ropt
m ‖ ,

in terms of the properties of the generated non-optimal (non-orthogonal)
basis. A ratio much larger than one means that the non-optimal method is
delayed. As already stated, we assume that Wm+1 is full rank, although it
may be highly ill-conditioned.

Let Vm = [v1, v2, . . . , vm] with v1 = βr0, β �= 0, and vi , i = 1, . . . , m,
being orthonormal vectors. If Vm is generated by the Arnoldi process, it sat-
isfies the following so-called Arnoldi relation

AVm = Vm+1Hm+1,m = VmHm + hm+1,mvm+1e
∗
m ,(3.1)

where Hm+1,m = (hij ) ∈ R
(m+1)×m is upper Hessenberg, Hm is its princi-

pal m × m submatrix. Clearly, (3.1) is equivalent to (2.1) whenever Wm has
orthonormal columns.
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Our first result relates the residual of the optimal and non-optimal methods
using (2.2).

Theorem 3.1 Assume that m iterations of a non-optimal Krylov subspace
method using (2.2) have been performed with the matrix A. Let PA =
AVm(V ∗

mAVm)−1V ∗
m be the projector1 onto AKm(A, r0) along the subspace

orthogonal to Km(A, r0). Let rm and rF
m , be the residuals of the non-optimal

method and of FOM, respectively. Then

‖rF
m − rm‖
‖rF

m‖ = ‖PAwm+1‖
‖(I − PA)wm+1‖(3.2)

≤ 1

‖(I − PA)wm+1‖ + 1 = ‖rm‖ + ‖rF
m‖

‖rF
m‖ .(3.3)

Proof. We have (I−PA)rm ∈ r0+AKm(A, r0) and (I−PA)rm ⊥ Km(A, r0).
Hence, (I−PA)rm is equal to the optimal residual rF

m , that is, rF
m = (I−PA)rm.

It can be easily verified that rm = ±‖rm‖wm+1, therefore we also obtain
‖rF

m‖ = ‖(I − PA)wm+1‖ ‖rm‖. Hence, rF
m − rm = −PArm from which

‖rF
m − rm‖ = ‖PArm‖ = ‖PAwm+1‖ ‖rm‖ = ‖PAwm+1‖

‖(I − PA)wm+1‖ ‖rF
m‖.

This proves the equality. The bound follows immediately. 	

We emphasize the fact that our result (3.2) is an equality, and in particular,

for Wm having orthonormal columns, we have that ‖rF
m −rm‖ = 0. Our result

indicates that as long as the new direction vector wm+1 provides significant
new information with respect to the subspace Km(A, r0) generated so far,
then, the two residuals will be very close to each other and the relative resid-
ual gap is small, i.e., the delay in the convergence is small. We observe that
for FOM, this result indicates that the orthogonality of the basis up to the
previous step is of no importance, only the angle between the new vector and
the subspace generated so far is.

In the following examples we illustrate the fact that the bound in (3.3)
may be very sharp. This fact can be appreciated by noticing that the inequality
in the bound is only due to the step from (3.2) to (3.3). In the figures, the
quantity ν stands for ‖(I − PA)wm+1‖ in (3.3).

Example 3.2 We consider the 100 × 100 matrix stemming from a centered
finite differences discretization of the operator L(u) = −�u + 100ux in
the unit square, with homogeneous boundary conditions. The right-hand side
is a nonzero vector of equal entries. In Figure 1, on the left, we report the
convergence history for FOM and for the truncated method with k = 10,
while on the right we show the relative gap in (3.2) and its bound (3.3). It can

1The same projector PA, can alternatively be defined as AWm(W ∗
mAWm)1W ∗

m.
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Fig. 1. Example 3.2: FOM and truncated FOM (k = 10). Left: Convergence history.
Right: Relative gap (3.2) and bound (3.3)

be appreciated that the non-optimal method has good convergence behavior,
and that the bound (3.3) can be very sharp.

We next show that the result of Theorem 3.1 applies to other examples,
as mentioned in section 2.

Example 3.3 We consider the same matrix as in Example 3.2, the right-hand
side b = e1, and we apply the nonsymmetric Lanczos algorithm. The non-
symmetric Lanczos method determines a basis Wm satisfying (2.1), that is
bi-orthogonal with respect to a basis spanning Km(A∗, p), where p is an
a-priori chosen vector; we selected p = b. It is well known that the method
is very sensitive to the choice of p, which influences the quality of the basis
Wm. An approximate solution is determined by means of (2.2). The corre-
sponding convergence curve, together with that of the optimal FOM method
is reported in the left plot of Figure 2. It can be appreciated that the non-
optimal method has a delay but converges in about 10–20% more iterations.
The residual norm for the Lanczos method significantly deviates from that
of FOM, and this gap is accurately bounded by the term (3.3) (see the right
plot of Figure 2), as predicted by Theorem 3.1.

Example 3.4 We next consider the performance of the restarted FOM method.
It was shown in [31] that this method can be globally represented as a trun-
cated method with a special truncation strategy. In particular, the whole pro-
cess can be represented by (2.1) with Tm+1,m block diagonal, with upper
Hessenberg blocks. We again consider the same matrix and right-hand side
as in Example 3.2 and we report in the left plot of Figure 3, the conver-
gence history of the optimal FOM method and the restarted FOM method
with maximum Krylov subspace dimension before restarting, equal to 10.
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Fig. 2. Example 3.3. Left: convergence history for FOM and nonsymmetric Lanczos.
Right: Relative gap (3.2) and bound (3.3)
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Fig. 3. Example 3.4. Left: convergence history for FOM and Restarted FOM with restart-
ing parameter equal to 10. Right: Relative gap (3.2) and bound (3.3)

We can see that convergence is similar, but not equal, to that of the regularly
truncated method. We can also see that in spite of the restarting procedure,
the method is capable of constructing a full Krylov subspace basis, so that
the gap between the optimal and non-optimal residuals remains moderate;
see the right plot of Figure 3. We refer to [31] for a more detailed analysis of
the restarted methods.

We proceed now to study the residual gap in the case of Petrov-Galerkin,
i.e., of methods such as GMRES [28]. To that end, consider the approximation
using the non-optimal basis, i.e., xm = x0+Wmym, where ym is the minimizer
of (2.3), and that obtained with the optimal basis, i.e., the GMRES approxima-
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tion xG
m = x0+VmyG

m , where yG
m minimizes ‖βe1−Hm+1,my‖ = ‖b−AVmy‖

over all y ∈ R
m. The corresponding residuals rm = b−Axm = r0 −AWmym

and rG
m = r0 − AVmyG

m both lie in the affine space r0 + AKm(A, r0) and are
related as in the following lemma.

Lemma 3.5 Let r ∈ r0 +AKm(A, r0), and rG
m = r0 −AxG

m , where xG
m is the

minimizer of minx∈Km(A,r0) ‖r0 − Ax‖. Then (r − rG
m )∗rG

m = 0 and thus

‖r − rG
m ‖2 + ‖rG

m ‖2 = ‖r‖2.(3.4)

Proof. Both r and rG
m lie in r0 + AKm(A, r0) and therefore their difference

r − rG
m ∈ AKm(A, r0). The GMRES residual minimizes the 2-norm over all

elements in r0 + AKm(A, r0), and therefore rG
m ⊥ AKm(A, r0), from which

(rG
m )∗(rm − rG

m ) = 0. The equality (3.4) follows using Pythagoras’ theorem.
	


In general, we can relate the two equations (3.1) and (2.1) as follows. Con-
sider a reduced QR factorization Wi = ViUi , i = m, m + 1, with Vi ∈ R

n×i

having orthonormal columns and Ui ∈ R
i×i upper triangular. Let

T̂m+1,m = Um+1Tm+1,m,(3.5)

which is an upper Hessenberg matrix when Tm+1,m is upper Hessenberg, and,
as before, we denote by T̂m its principal m × m submatrix.

Theorem 3.6 Assume that m iterations of a non-optimal Krylov subspace
method have been performed with the matrix A and that Um+1 = V ∗

m+1Wm+1

is nonsingular. Let rm = b − AWmT +
m+1,me1β and rG

m = b − AWmyG
m ≡

Vm+1g
G
m be the GMRES residual, with yG

m = T̂ +
m+1,me1β. Then

‖rm − rG
m ‖ = (

α2
m − 1

) 1
2 ‖rG

m ‖,(3.6)

where

αm = ‖rm‖
‖rG

m ‖ = ‖Um+1t‖
‖U∗

m+1d‖ ,(3.7)

with t ∈ N (T ∗
m+1,m), d ∈ N (T̂ ∗

m+1,m), both of unit length.

Proof. The identity (3.6) follows directly from Lemma 3.5. Let T = Tm+1,m

and T̂ = T̂m+1,m, for short. For d ∈ N (T̂ ∗), ‖d‖ = 1, we can write (by
choosing the appropriate direction of d)

gG
m = (I −T̂ T̂ +)e1β =dd∗e1β, so that ‖gG

m‖=‖rG
m ‖ = |d∗e1β|.(3.8)

To prove the second equality in (3.7), for t ∈ N (T ∗), ‖t‖ = 1, we write
‖rm‖ = ‖Wm+1t t

∗e1β‖ = ‖Wm+1t‖|t∗e1β| = ‖Um+1t‖|t∗e1β|. Using (3.5)
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we can write (by choosing the appropriate direction of t) t = U∗
m+1d/

‖U ∗
m+1d‖, from which, since Um+1e1 = e1, using (3.8) we obtain

‖rm‖ = ‖Um+1t‖|t∗e1β| = ‖Um+1t‖
‖U∗

m+1d‖|d∗Um+1e1β| = ‖Um+1t‖
‖U∗

m+1d‖‖rG
m ‖.

	

We emphasize that as in the case of Theorem 3.1, our result (3.6) with

(3.7) is an equality, but unlike that case, here its direct interpretation is less
clear. What we can say in general is that since Um+1 = V ∗

m+1Wm+1 and t is of
unit norm, we have that ‖Um+1t‖ ≤ √

m + 1, and thus its maximum growth
is well understood. The analysis of the key quantity ‖U∗

m+1d‖ is taken up in
the next section for the particular case of GMRES.

We end this section with a general bound for the relative residual gap.
By Lemma 3.5, we have that r∗

mrG
m = ‖rG

m ‖2, so that we can write cos θ =
r∗
mrG

m /(‖rm‖‖rG
m ‖) = 1/αm, and thus | tan θ | = √

α2
m − 1. Therefore, the rel-

ative gap only depends on the angle between the two residual vectors, and
not on the norm of rm. A well-known bound for αm is κ(Um+1), see, e.g., [13,
Theorem 5.3.1], so that | tan θ | < αm ≤ κ(Um+1). Here we present a slightly
better bound, whose proof is given in the Appendix.

Proposition 3.7 With the notation of Theorem 3.6,

‖rm − rG
m ‖

‖rG
m ‖ = | tan θ | ≤ 1

2
κ(Um+1)

(

1 − 1

κ(Um+1)

)

< κ(Um+1).(3.9)

The estimate of Proposition 3.7 is in line with earlier results for quasi-min-
imal residual type methods, see, e.g., [10], [27], which relate the loss of
optimality to the ill-conditioning of the non-orthogonal basis. Experimental
results indicate that this bound is very pessimistic, and that the relative gap
may be several orders of magnitude lower than κ(Um+1) in practice. In the
next section we analyze the quantity ‖U ∗

m+1d‖, resulting in an understanding
of the behavior of the relative residual gap in the particular case of GMRES.

4 Analysis of the residual gap for GMRES

In this section we analyze the vector U∗
m+1d, which determines the size of

the relative residual gap for GMRES in the bound

‖rm − rG
m ‖

‖rG
m ‖ ≤

√
m + 1

‖U∗
m+1d‖ ;(4.1)

see Theorem 3.6 and the comments following it. We want to see when we can
expect ‖U∗

m+1d‖ to remain sufficiently away from zero, so that the relative
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residual gap is not amplified as m grows. Thus, we can obtain a least quali-
tatively, a bound not as pessimistic as (3.9). The structure of the null vector
d plays a crucial role in this analysis.

Consider the QR factorization of T̂m+1,m = Qm+1R, and observe that d

is the (m + 1)st column of Qm+1 and that the orthogonal matrix Qm+1 is
the same as one would obtain in the QR factorization of Hm+1,m. Indeed,
Hm+1,m = Tm+1,mU−1

m = Qm+1RU−1
m := Qm+1R1. We recall that

Q∗
m+1 = 	m	m−1 · · · 	1, where 	i =







Ii−1

0 ci si 0
0 −si ci 0

I







is the appropriate Givens rotation; see, e.g., [27]. Explicit computation shows
that

d =Qm+1em+1 =












smsm−1 · · · s1

smsm−1 · · · s2c1

smsm−1 · · · s3c2
...

smcm−1

cm












=












smsm−1 · · · s1

smsm−1 · · · s1(c1/s1)

smsm−1 · · · s1(c2/(s1s2))
...

smsm−1 · · · s1(cm−1/(s1s2 · · · sm−1))

cm












.

We also recall that β|sksk−1 · · · s1| = ‖rG
k ‖ with β = ‖rG

0 ‖, so that

d =










‖rG
m ‖/‖rG

0 ‖
(‖rG

m ‖/‖rG
1 ‖)c1

...

(‖rG
m ‖/‖rG

m−1‖)cm−1

cm










.

Therefore, as ‖rG
j ‖ decreases with j , the components of |d| are expected to

have an increasing pattern. In particular, the ith component δi = e∗
i d is char-

acterized by the ratio ‖rG
m ‖/‖rG

i−1‖, which indicates how much the residual
has decreased in the last m − i iterations. In fact, if we let ρ be the smallest
positive number such that ‖rG

j ‖/‖rG
j−1‖ ≤ ρ, for all j ≤ m, we have

|δi | ≤ ρm−i+1 , i = 1, . . . , m + 1 .(4.2)

We call ρ the convergence rate of GMRES. Moreover, writing U∗
m+1d =

W ∗
m+1Vm+1d, we see that the gap between the optimal and non-optimal resid-

uals solely depends on how well the “residual” direction vector Vm+1d is
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represented in the non-optimal basis. A related important consideration is
that, apart from the sign, we can write

1

‖rG
m ‖rG

m = Vm+1d =
m+1∑

i=1

δivi .(4.3)

The linear combination in (4.3) and the bounds (4.2) lead to the following
remark which applies to the cases of interest described in the introduction,
i.e., fast convergence of the optimal method. In the following remark we
attempt to quantify what we mean by fast convergence, and illustrate this
with Example 4.2 below.

Remark 4.1 If GMRES converges with convergence rate ρ  1, then the
residual direction vector rG

m /‖rG
m ‖ lies very close to the subspace generated

by the last computed basis vectors. In other words, if the convergence is fast,
i.e., ρ  1, we may not need to orthogonalize with respect to older vectors,
since rG

m may have very small components in them, i.e., rG
m may be essen-

tially a linear combination of the last few vectors (but not necessarily only a
multiple of the last one).

Remark 4.1 has some insightful consequences. Firstly, if the rate ρ is
significantly less than one, then for ‖rm − rG

m ‖/‖rG
m ‖ to be bounded is suffi-

cient that the last columns in Wm+1 have a non-negligible projection onto the
corresponding portion of Vm+1. More precisely, for � ≥ 0, we write

d =
[

d1

d2

]

, d2 ∈ R
�+1, Um+1 =

[U1 U2

0 U3

]

, U3 ∈ R
(�+1)×(�+1) .

We have ‖d1‖2 ≤ ρ2m+ρ2m−2+· · ·+ρ2(�+1), so that ‖d1‖ ≤ √
m − � ρ�+1 ≡

ε. Then, for ε  1,

U ∗
m+1d =

[ U∗
1 d1

U∗
2 d1 + U∗

3 d2

]

, with
‖U∗

1 d1‖ ≈ ε

‖U∗
2 d1 + U∗

3 d2‖ ≈ ‖U∗
3 d2‖.

To maintain ‖U ∗
m+1d‖ sufficiently larger than zero, it appears that it is only

required that U3 = V ∗
m−k:m+1Wm−k:m+1 be not too ill-conditioned (and this

need is mitigated somehow by the fact that ‖d2‖ ≈ ρ, and no smaller). This
goal may be achieved if the subspace dimension is ensured to increase while
using the non-optimal basis Wm+1. In this respect, full orthogonality of the
basis seems to be an unnecessarily strict condition.

A second, though related, consequence of Remark 4.1 is that if ρ  1,
then loss of orthogonality with respect to older vectors in the basis Wm+1 may
be harmless. Indeed, ‖U∗

1 d1‖ ≈ ε even for U1 close to the identity matrix. The
first block of the vector U∗

m+1d does not contribute to the size of the vector,
as it may be ‖U∗

1 d1‖  ‖U∗
m+1d‖. Hence, enforcing orthogonality seems
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to be beneficial only as a means to enlarge the subspace dimension, i.e., to
maintain linear independence. We mention here again that orthogonality of
the basis is not needed for stability of GMRES, only linear independence is;
see, e.g., [14], [20].

The two considerations just discussed remain valid without the assump-
tion (4.2) if ‖rG

m ‖ is much smaller than ‖rG
0 ‖, ‖rG

1 ‖, . . . , yielding small first
components in d. This is the case for example when the GMRES residual
norm shows initial stagnation, followed by a substantial decrease. Our exper-
iments in the rest of the paper indeed show that the non-optimal methods are
not significantly affected by an initial stagnation of the optimal residual, as
long as they are able to capture the reduction in the residual norm, cf. [20],
[21], [22].

Finally, since Um+1e1 = e1, an obvious lower bound for ‖U∗
m+1d‖ can be

obtained by setting � = m − 1 in the relation of the paragraph after Remark
4.1, so that ‖U∗

m+1d‖ ≥ ‖U∗
1 δ1‖ = ‖rG

m ‖/‖r0‖, and thus

‖U ∗
m+1d‖ ≥ max

{

σmin(Um+1),
‖rG

m ‖
‖r0‖

}

.

This bound ensures that the non-optimal method does not significantly deviate
from the optimal iteration, when, for instance, GMRES convergence experi-
ences a slow initial phase.

A more optimistic estimate can be obtained when using truncated meth-
ods. Indeed, if k + 1 consecutive basis vectors are maintained orthogonal,
then the leading (k + 1) × (k + 1) block of Um+1 is the identity matrix, so
that

‖U ∗
m+1d‖ ≥ ‖[U∗

k+1, O]d‖ ≈ ρm−k+1.(4.4)

We illustrate our results and in particular this estimate with the following
example.

Example 4.2 The aim of this example is to show that in (4.1), the quantity
‖U ∗

m+1d‖ may be much larger than σmin(Um+1), and that (4.4) may provide
a computable quantity to estimate ‖U∗

m+1d‖ when using a truncated method.
We consider the same problem as in Example 3.2. In the left plot of Fig-

ure 4 we report the convergence history for GMRES and for the truncated
method, with k = 10. In the right plot we report the values of σmin(Um+1)

(dashed) and of ‖U ∗
m+1d‖ (solid), as the iteration proceeds. As anticipated,

the estimate using σmin(Um+1) would provide an extremely pessimistic pic-
ture. The dash-dotted line is the graph of ρm−k+1

k , where ρk = ‖rk‖/‖rk−1‖
is the residual decrease at the last step before truncation takes place, that is,
at the last iteration the optimal residual is available. If the optimal method
is converging fast, and ρk ≤ ρ, then we expect that ρm−k+1

k be a good mea-
sure of ‖U ∗

m+1d‖, which cannot be computed when running the non-optimal
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Fig. 4. Example 4.2:GMRES and truncated GMRES (k = 10). Left: Convergence history.
Right: Illustration of estimate (4.4)

method. This statement is confirmed by the curve in the right plot of Figure
4. It should be remarked, however, that this is a very rough measure, since it
strongly depends on the convergence rate at the kth iteration. A more reliable
measure should take into account all available information, while possibly
dynamically adapting the parameter as the iteration proceeds.

5 Delay and Invariant Subspaces

We return to the question on when one can expect larger or smaller delays,
depending on the matrix A and the method used. We begin by rewriting (2.1)
as

AWm = Wm+1Tm+1,m = Vm+1Tm+1,m + (Wm+1 − Vm+1)Tm+1,m(5.1)

=: Vm+1Tm+1,m + Em ,

implying the relation

(A + Em)Wm = Vm+1Tm+1,m,(5.2)

with Em = −EmU−1
m V ∗

m. We highlight the difference between this last rela-
tion and the identities (3.1) and (2.1). In these earlier relations we represented
the matrix A using optimal (orthogonal) or non-optimal bases of Km(A, r0),
via their representations Hm+1,m or Tm+1,m. In (5.2) we keep the non-opti-
mal representation Tm+1,m, which becomes “optimal" for a modified matrix
(A + Em), i.e., the result of a projection with an orthogonal matrix Vm+1.

In the context of this paper ‖Em‖ = ‖(Um+1 − I )Tm+1,m‖ tends to grow
with m (as the columns of Wm are less and less orthogonal); this fact and the
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relations (5.1) and (5.2) resemble those for inexact Krylov subspace methods
[32]. This similarity allows us to naturally generalize the theory developed
for those inexact methods in [33] to the non-optimal approaches studied here.

The general idea of this superlinear convergence theory is that the itera-
tive method changes convergence rate, i.e., the residual curve gets steeper, if
the Krylov subspace contains a good approximation to an invariant subspace
of A. For the unperturbed problem, i.e., for Em = 0, it is shown in [33] that
the norm of the (m + j )th GMRES residual is comparable to that of another
GMRES method whose initial vector is the mth GMRES residual stripped
of components on the appropriate invariant subspace of A; see Theorem 5.1
below and the comments following it. Furthermore, the perturbed problem
with A + Em behaves as the unperturbed one as long as the iterative method
is able to capture similar invariant subspace information. This is particularly
apparent when considering truncated methods: if one orthogonalizes with
respect to the previous k vectors, we have that Em = 0, m = 1, . . . , k, so
that the perturbed problem coincides with the unperturbed one, for m ≤ k.

The following result formalizes the application of our theory from [33].
We comment further on its implications later in this section. Let rm, as before,
be the residual at themth step of a non-optimal minimal residual method based
on (2.1), or equivalently on (5.2). Here ‖ · ‖ represents the norm induced by
the underlying inner product 〈x, y〉.
Theorem 5.1 Let PQ be a spectral projector onto a simple invariant sub-
space R(Q) of A + Em of dimension s, and �Y the orthogonal projector
onto an s-dimensional subspace R(Y ) ⊂ (A + Em)Km(A + Em, r0). Then,
the following bound holds for j = 1, . . . ,

‖rm+j‖ = min
d∈(A+Em+j )Km+j (A+Em+j ,r0)

‖r0 − d‖

≤
√

2 min
d∈(A+Em+j )Kj (A+Em+j ,rm)

∥
∥
∥
∥

[
I − PQ

γPQ

]

(rm − d)

∥
∥
∥
∥ ,(5.3)

where γ = ‖(I − �Y )PQ‖.

Proof. Observe first that R(AWm) = R(AVm) = AKm(A, r0), and simi-
larly

R((A + Em)Wm) = R((A + Em)Vm) = (A + Em)Km(A + Em, r0)

= R(Vm+1Tm+1,m).

Furthermore, using the form of the upper Hessenberg matrix Tm+j+1,m+j ,
whose (m + 1) × m submatrix is Tm+1,m and by considering Vm+j+1 =
[Vm+1, V̂j ] for some matrix V̂j , we have R(Vm+1Tm+1,m) ⊂ R(Vm+j+1

Tm+j+1,m+j ), for j = 1, . . . . The theorem follows now by applying [33,
Theo. 3.1]. 	
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The value of γ quantifies the proximity of two subspaces: the invariant
subspace, and a subspace R(Y ) of the same dimension in (A + Em)Km(A +
Em, r0). The better approximated the invariant subspace is in R(Y ), the
smaller γ is; see further [33]. When γ is small, Proposition 3.4 and Cor-
ollary 3.6 of [33] ensure that the solution of the least squares problem (5.3)
is very close to the solution of the minimization problem with initial vector
r̄m = (I − PQ)rm, namely, to the solution of

min
d∈(A+Em+j )Kj (A+Em+j ,r̄m)

‖r̄m − d‖ .

In summary, the spectral properties of matrix A and the initial residual r0

determine if the non-optimal iterative method has a superlinear convergence
behavior similar to that of the optimal method or if there is a convergence
delay. If A is such that an invariant subspace of A is well approximated
in Km(A, r0) and if similarly an invariant subspace of the perturbed matrix
A+Em is well approximated in Km(A+Em, r0), then the delay is small. This
will happen if, for example, the truncation parameter k is large enough.

In general, and not necessarily related to the superlinear convergence
described in Theorem 5.1, small delay occurs when the spectrum of A is
sufficiently clustered and not too sensitive to perturbations, so that the spec-
tral properties of A + Em do not significantly differ from those of A. In this
case, a small number of iterations is enough to capture the information for
the optimal and non-optimal methods to have fast convergence. This is the
case, for example, of optimally preconditioned problems.

In the rest of the section we report on some additional numerical exper-
iments which illustrate and support our theoretical analysis. Again, we re-
mind the reader that all our analysis assumes finite precision arithmetic,
whereas the experiments obviously do not. In the following two examples
we analyze the dependence of the non-optimal method on the clustering of
the spectrum.

Example 5.2 Consider the 100 × 100 matrix A = XJ1X
−1, where X is a

random matrix with normally distributed entries (Matlab function randn with
initial random generator state), with condition number of about 500. Matrix
J1 is a block diagonal matrix with 2 × 2 blocks of the form

I2 + 1

2

[
cos θ − sin θ

sin θ cos θ

]

and θ uniformly distributed in [−π, π]. The eigenvalues are depicted in the
left plot of Figure 5. We compare the residual history for optimal GMRES
and for truncated GMRES, with truncation parameter k = 5, 10, and right-
hand side equal to a nonzero vector of equal entries. Due to this particular
eigenvalue distribution, the convergence of GMRES is linear, with conver-
gence rate depending on the disk radius [27]. Both truncated methods are
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Fig. 5. Example 5.2. Left: Spectrum of the matrix. Right: Convergence history of GMRES
and truncated GMRES (k = 5, 10)

able to correctly identify the perturbed cluster, maintaining the same rate of
convergence, even for the strict truncation parameter, k = 5.

Example 5.3 We next modify some of the eigenvalues of A in the previous
example, that is, we consider the 100×100 matrix A = XJ2X

−1, with X the
same as before, where J2 differs from J1 only in the first and last four eigen-
values. These are real, as reported in the left plot of Figure 6. The right-hand
side is as before. The performance is now significantly different for the trun-
cated methods, as can be deduced from the right plot of Figure 6. On the one
hand, GMRES is able to capture the invariant subspaces associated with the
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Fig. 6. Example 5.3. Left: Spectrum of the matrix. Right: Convergence history of GMRES
and truncated GMRES (k = 5, 10, 20)
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Fig. 7. Example 5.4. Convergence history of GMRES and truncated GMRES (k =
10, 20, 30)

outlying eigenvalues, showing superlinear convergence. On the other hand,
according to the setting of (5.2), the truncated procedures solve a perturbed
problem with eigenvalues in a larger region, with no outliers. Hence, su-
perlinearity does not occur. It is also remarkable that the convergence slope
does not change considerably when passing from 10 to 5 orthogonal vectors,
showing that similar information is carried on in the two cases.

Example 5.4 We again modify the matrix in Example 5.2. This time, we
maintain the same matrix J1, yielding the clustered spectrum as in the left plot
of Figure 5, whereas we consider an eigenvector matrix X1 whose condition
number is κ(X1) = 106, providing a matrix A = X1J1X

−1
1 with condition

number κ(A) ≈ 3 · 1010. The matrix X1 was generated by means of the the
Matlab function randsvd in the Higham’s TestMatrix Toolbox [17], by requir-
ing geometrically distributed singular values (a zero seed was used for the
random number generator before calling randsvd). The convergence curves
for the optimal GMRES method and for its truncated version (k = 10, 20, 30)
are reported in Figure 7. They show a dramatic difference in the performance,
as compared to Figure 5, due to the conditioning of X1.As discussed earlier in
this section, the non-optimal method can be viewed as an inexact method. It
was shown in [33] that the condition number of the eigenvector matrix plays
a fundamental role in the performance of inexact methods. Our numerical
results are thus in agreement with the arguments in [33]. Finally, we remark
that in this experiment, the Krylov basis in the non-optimal case looses rank
soon after truncation takes place.

Example 5.5 In this last example, we consider a 100×100 symmetric positive
definite matrix, corresponding to the finite differences discretization of the
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Fig. 8. Example 5.5: convergence history for GMRES and truncated GMRES, k = 2, 3

2D Laplacian on the unit square. The right-hand side is once again a constant
nonzero vector. We explore the typical situation that arises in practice when
the preconditioner is only known via a function that, given a vector v, returns
the action of the preconditioner as w = P(v), as is the case for instance in
multilevel preconditioning techniques. To simulate this situation, we consid-
ered an incomplete Cholesky preconditioner with threshold 10−1 (matrix L∗

obtained with the Matlab function cholinc), together with a perturbation,
that is, w = L−∗L−1v + εe, with ε = 10−5 and e a vector of all ones. Here
the situation is completely analogous to that described in [1] and [24].

The left plot of Figure 8 reports the convergence history of standard PCG
(vertical dashes), as implemented for instance in [11]. As expected, the final
attainable accuracy is reached at a level that depends on the nonsymmetry of
the preconditioner. In the plot, the convergence history of FOM and that of
the truncated version with k = 2, 3, are also reported. Right precondition-
ing is employed. The highly truncated versions are able to capture the fast
convergence of the full method. It is important to observe that this is not due
to a quasi-orthogonality of the basis, nor to an almost banded form of the
representation matrix Tm+1,m. Indeed, the right plot of Figure 8 shows that
for k = 2, the basis vectors in Wm+1 are far from being orthogonal for m > 3
(solid curve), and that ‖Em‖ = ‖T̂m+1,m − Tm+1,m‖ is highly non-negligi-
ble (dashed curve). Our results earlier in this section help explain the good
observed behavior of the truncated methods. The clustering of the precondi-
tioned problem is such that high perturbations in the operator can only mildly
alter the linear convergence rate.
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6 Conclusion

We have presented new results which help our understanding of the conver-
gence behavior of truncated and other non-optimal Krylov subspace methods.
In the non-optimal case, the matrix Wm whose columns span Km(A, r0) may
be very far from orthogonal, and we may still have good convergence. The
symmetry of A or of its restriction to Km(A, r0), Tm, does not enter into our
analysis, we only require that Tm be nonsingular or Tm+1,m be full rank, so
that the solutions in (2.2) and (2.3) respectively, are well defined. On the other
hand, certain properties of A do matter, for example its spectral properties.
Furthermore, if A is very sensitive to perturbations, then the non-optimal
method may have a considerable delay. In particular, our experiments show
that for the non-optimal methods to be competitive, the eigenvector matrix
should not be too ill-conditioned; this property should be taken into account
when designing effective preconditioning procedures.

Appendix

In this appendix we prove Proposition 3.7.

Proof of Proposition 3.7. Let T = Tm+1,m and T̂ = T̂m+1,m, for short, and let
d, t be two unit norm vectors spanning N (T̂ ∗) and N (T ∗), respectively.As in
the proof of Theorem 3.6, we have gm = t‖gm‖ with t = U∗

m+1d/‖U∗
m+1d‖,

and rG
m = ±Vm+1d‖rG

m ‖. Hence, letting σmin �= 0, σmax denote the smallest
and largest singular values of Um+1, we have

1

α
= | cos θ | = |r∗

mrG
m |

‖rm‖ ‖rG
m ‖ = |(Um+1gm)∗d|

‖Um+1gm‖ = (Um+1U
∗
m+1d)∗d

‖Um+1U
∗
m+1d‖

= d∗Um+1U
∗
m+1d

‖Um+1U
∗
m+1d‖ ≥ min

‖z‖=1

z∗Um+1U
∗
m+1z

‖Um+1U
∗
m+1z‖

= 2σmaxσmin

σ 2
min + σ 2

max

,

where the last equality follows from [16, Theorem 3.1-2]. The result follows
from using the bound above in | tan θ | = √

α2 − 1. 	
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25. Paige, C.C., Strakoš, Z.: Residual and Backward Error Bounds in Minimum Residual
Krylov Subspace Methods. SIAM J. Scientific Comput. 23, 1899–1924 (2002)



Convergence of non-optimal Krylov subspace methods

26. Saad, Y.: Practical use of some Krylov subspace methods for solving indefinite and
unsymmetric linear systems. SIAM J. Scientific Stat. Comput. 5, 203–228 (1984)

27. Saad,Y.: Iterative Methods for Sparse Linear Systems. The PWS Publishing Company,
Boston, 1996. Second Edition, SIAM, Philadelphia, 2003

28. Saad, Y., Schultz, M.H.: GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems. SIAM J. Scientific Stat. Comput. 7, 856–869
(1986)

29. Saad, Y., Wu, K.: DQGMRES: a direct quasi-minimal residual algorithm based on
incomplete orthogonalization. Numerical Linear Algebra Appl. 3, 329–343 (1996)

30. Simoncini, V.: A matrix analysis of Arnoldi and Lanczos methods. Numer. Math. 81,
125–141 (1998)

31. Simoncini, V.: On the convergence of restarted Krylov subspace methods. SIAM J.
Matrix Anal. Appl. 22, 430–452 (2000)

32. Simoncini, V., Szyld, D.B.: Theory of Inexact Krylov Subspace Methods and Appli-
cations to Scientific Computing. SIAM J. Scientific Comput. 25, 454–477 (2003)

33. Simoncini, V., Szyld, D.B.: On the Occurrence of Superlinear Convergence of Exact
and Inexact Krylov Subspace Methods. SIAM Review, 47, 247–272 (2005)

34. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge
University Press, Cambridge, 2003

35. van der Vorst, H.A., Melissen, J.B.M.: A Petrov-Galerkin type method for solving
Ax = b, where A is symmetric complex. IEEE Trans. Magnetics 26, 706–708 (1990)


