
Decentralized Task-Aware Scheduling for
Data Center Networks

Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron
Microsoft Research

{fdogar, thomkar, hiballan, antr}@microsoft.com

ABSTRACT
Many data center applications perform rich and complex
tasks (e.g., executing a search query or generating a user’s
news-feed). From a network perspective, these tasks typi-
cally comprise multiple flows, which traverse different parts
of the network at potentially different times. Most network
resource allocation schemes, however, treat all these flows in
isolation – rather than as part of a task – and therefore only
optimize flow-level metrics.

In this paper, we show that task-aware network schedul-
ing, which groups flows of a task and schedules them to-
gether, can reduce both the average as well as tail completion
time for typical data center applications. To achieve these
benefits in practice, we design and implement Baraat, a de-
centralized task-aware scheduling system. Baraat schedules
tasks in a FIFO order but avoids head-of-line blocking by dy-
namically changing the level of multiplexing in the network.
Through experiments with Memcached on a small testbed
and large-scale simulations, we show that Baraat outper-
forms state-of-the-art decentralized schemes (e.g., pFabric)
as well as centralized schedulers (e.g., Orchestra) for a wide
range of workloads (e.g., search, analytics, etc).

Categories and Subject Descriptors: C.2.5 [Computer-
Communication Networks]: Network Protocols
Keywords: datacenter; transport; scheduling; response time

1. INTRODUCTION
Today’s data center applications perform rich and com-

plex tasks, such as answering a search query or building a
user’s social news-feed. These tasks involve hundreds and
thousands of components, all of which need to finish before
a task is considered complete. This has motivated efforts to
allocate data center resources in a “task-aware” fashion. Ex-
amples include task-aware allocation of caches [6], network
bandwidth [11], and CPUs and network [7].

In recent work, Coflow [10] argues for tasks (or Coflows) as
a first-order abstraction for the network data plane. This al-
lows applications to expose their semantics to the network,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08...$15.00.

http://dx.doi.org/10.1145/2619239.2626322.

and the network to optimize for application-level metrics.
For example, allocating network bandwidth to tasks in a
FIFO fashion, such that they are scheduled over the network
one at a time, can improve the average task completion time
as compared to per-flow fair sharing (e.g., TCP) [11]. While
an exciting idea with important architectural ramifications,
we still lack a good understanding of the performance im-
plications of task-aware network scheduling in data centers–
(i). How should tasks be scheduled across the network?, (ii).
Can such scheduling only improve average performance?,
and (iii). Can we realize these gains for small (sub-second)
tasks common in data centers? In this paper, we answer
these questions and make the following three contributions.

First, we study policies regarding the order in which tasks
should be scheduled. We show that typical data center work-
loads include some fraction of heavy tasks (in terms of their
network footprint), so obvious scheduling candidates like
FIFO and size-based ordering perform poorly. We thus pro-
pose FIFO-LM or FIFO with limited multiplexing, a policy
that schedules tasks based on their arrival order, but dynam-
ically changes the level of multiplexing when heavy tasks are
encountered. This ensures small tasks are not blocked be-
hind heavy tasks that are, in turn, not starved.

Second, we show that task-aware policies like FIFO-LM
(and even FIFO) can reduce both the average and the tail
task completion times. They do so by smoothing bursty ar-
rivals and ensuring that a task’s completion is only impacted
by tasks that arrive before it. For example, data center ap-
plications typically have multiple stages where a subsequent
stage can only start when the previous stage finishes. In
such scenarios, FIFO scheduling can smooth out a burst of
tasks that arrive at the first stage. As a result, tasks ob-
serve less contention at the later stages, thereby improving
the tail completion times.

Third, we design Baraat, a decentralized task-aware schedul-
ing system for data centers. Baraat avoids the problems as-
sociated with centralized scheduling (i.e., scalability, fault-
tolerance, etc) while addressing the challenges of decentral-
ized scheduling i.e., making coordinated scheduling decisions
while incurring low coordination overhead. To achieve this,
Baraat uses a simple heuristic. Each task has a globally
unique priority – all flows within the task use this priority,
irrespective of when these flows start or which part of the
network they traverse. This leads to consistent treatment
for all flows of a task across time and space, and improves
the chances that all flows of a task make progress together.

By generating flow priorities in a task-aware fashion, Baraat
transforms the task-aware scheduling problem into the rel-

A

Client

Storage

Parallel flows

Front-End

Service 2

Sequential
Access

read()
Service 1

W

A

W W W W W W W W W W W

Worker(W)
Aggregator(A)

A A A

Figure 1: Common workflows.

atively well-understood flow prioritization problem. While
many flow prioritization mechanisms exist (e.g., priority queues,
PDQ [17], D3 [28], pFabric [5]), we show that they do not
meet all the requirements of supporting FIFO-LM. Thus,
Baraat introduces Smart Priority Class (SPC), which com-
bines the benefits of priority classes and explicit rate proto-
cols [17, 13, 28]. It also deals with on-the-fly identification
of heavy tasks and changes the level of multiplexing accord-
ingly. Finally, like traditional priority queues, SPC supports
work-conservation which ensures that Baraat does not ad-
versely impact the utilization of non-network resources in
the data center.

To demonstrate the feasibility and benefits of Baraat, we
evaluate it on three platforms: a small-scale testbed for val-
idating our proof-of-concept prototype; a flow based simu-
lator for conducting large-scale experiments based on work-
loads from Bing [18] and data-analytics applications [9]; the
ns-2 simulator for conducting micro-benchmarks. We have
also integrated the popular in-memory caching application,
Memcached [2], with Baraat. We compare Baraat against
the state-of-the-art decentralized network scheduling scheme
(i.e., pFabric [5]) as well as centralized schedulers which tar-
get MapReduce style workloads (e.g., Orchestra [11]). Our
results show that for the Bing-like workload, Baraat reduces
the 95th percentile task completion time by 70% compared
to pFabric and by 27% compared to Orchestra. For the
data-analytics workload, Baraat reduces the 95th percentile
task completion time by 43% and 93% compared to pFabric
and Orchestra, respectively.

2. A CASE FOR TASK-AWARENESS
Baraat’s design is based on scheduling network resources

at the unit of a task. To motivate the need for task-aware
scheduling policies, we start by studying typical application
workflows, which leads us to a formal definition of a task.
We then examine task characteristics of real applications
and show how flow-based scheduling policies fail to provide
performance gains given such task characteristics.

2.1 Task-Oriented Applications
The distributed nature and scale of data center applica-

tions results in rich and complex workflows. Typically, these
applications run on many servers that, in order to respond

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Task size (normalized)

C
D

F

10−15 10−10 10−5 1000

0.2

0.4

0.6

0.8

1

Task size (normalized)

C
D

F

Figure 2: Normalized distribution of task sizes for
search (left), data analytics (right) workflows. For
data analytics we use the input size of a MapReduce
job as a proxy for its size.

to a user request, process data and communicate across the
internal network. Despite the diversity of such applications,
the underlying workflows can be grouped into a few com-
mon categories which reflect their communication patterns
(see Figure 1).

All these workflows have a common theme. The “appli-
cation task” being performed can typically be linked to a
waiting user. Examples of such tasks include a read request
to a storage server, a search query, the building of the user’s
social news-feed or even a data analytics job. Thus, we de-
fine a task as the unit of work for an application that can be
linked to a waiting user. Further, completion time of tasks
is a critical application metric as it directly impacts user
satisfaction. In this paper, we aim to minimize task com-
pletion time focusing at both the average and the tail (95th

percentile and beyond).
As highlighted by the examples in Figure 1, a typical ap-

plication task has another important characteristic: it gen-
erates multiple flows across the network. A task’s flows may
traverse different parts of the network and not all of them
may be active at the same time. When all these flows finish,
the task finishes and the user gets a response or a notifica-
tion.

Task characterization. We use data from past studies
to characterize two features of application tasks in today’s
data centers: 1) the task size and 2) the number of flows per
task. Both are critical when considering task-aware schedul-
ing for the network; the first influences the scheduling policy,
while the latter governs when task-aware scheduling outper-
forms flow-based scheduling, as we will later discuss.

(1) A task’s size is its network footprint, i.e. the sum of
the sizes of network flows involved in the task. We exam-
ine two popular applications, namely web search and data
analytics. Figure 2 (left) presents the normalized distribu-
tion of task sizes for the query-response workflow at Bing.
For each query, the task size is the sum of flows sizes across
all workers involved in the query. The figure reflects the
analysis of roughly 47K queries based on datasets collected
in [18]. While most tasks have the same size, approximately
15% of the tasks are significantly heavier than others. This
is due to the variability in the number of the responses or
iterations [4]. By contrast, Figure 2 (right) presents the dis-
tribution of the input size across MapReduce jobs at Face-
book (based on the datasets used in [9]). This represents the
task size distribution for a typical data analytics workload.
The figure shows that the task sizes follow a heavy-tailed
distribution, which agrees with previous observations [9, 8,

Application Flows/task Notes
Web search [4] 88 (lower-

bound)
Each aggregator queries 43
workers. Number of flows per
search query is much larger.

MapReduce [6] 30 (lower-
bound)

Job contains 30 map-
pers/reducers at the median,
50000 at the maximum.

Cosmos [26] 55 70% of tasks involve 30-100
flows, 2% involve more than
150 flows

Table 1: Tasks in data centers comprise multiple
flows.

6]. Similar distributions have been observed for the other
phases of such jobs.

Overall, we find that the distribution of task sizes depends
on the application. For some applications, all tasks can be
similarly sized while others may have a heavy tailed distribu-
tion. In § 3.2, we show that heavy-tailed task distributions
rule out some obvious scheduling candidates. Hence, a gen-
eral task-aware scheduling policy needs to be amenable to a
wide-range of task size distributions, ranging from uniform
to heavy-tailed.

(2) For the number of flows per task, it is well accepted
that most data center applications result in a complex com-
munication pattern. Table 1 summarizes the number of flows
per task for three production data center applications. Flows
per task can range from a few tens to hundreds, and as dis-
cussed earlier, subsets of flows can be active at different
times and across different parts of the network.
Implications for the data center network. Some of
the above task characteristics (e.g., large number of concur-
rent flows) also contribute towards network congestion (and
losses), which in turn, results in increased response times for
the users. This has even been observed in production data
centers (e.g., Bing [4, 18], Cosmos [7], Facebook [22]) which
typically have modest average data center utilization. Thus,
the network, and its resource allocation policy, play an im-
portant role in providing good performance to data center
applications. In the following section, we show why today’s
flow-based resource allocation approaches are a misfit for
typical task-oriented workloads.

2.2 Limitations of Flow-based Policies
Traditionally, allocation of network bandwidth has tar-

geted per-flow fairness. Protocols like TCP and DCTCP [4]
achieve fair-sharing by apportioning an equal amount of
bandwidth to all the flows. This increases the completion
time of flows and thus, the task completion time too. Be-
cause latency is the primary goal for many data center ap-
plications, recent proposals give up on per-flow fairness, and
optimize flow-level metrics like meeting flow deadlines and
minimizing flow completion time [28, 5]. For example, PDQ [17]
and pFabric [5] can support a scheduling policy like shortest
flow first (SFF), which minimizes flow completion times by
assigning resources based on flow sizes. However, as we have
shown, typical data center application tasks can have many
flows, potentially of different sizes. SFF considers flows in
isolation, so it will schedule the shorter flows of every task
first, leaving longer flows to the end. This can hurt applica-
tion performance by delaying completion of tasks.

We validate this through a simple simulation that com-
pares fair sharing (e.g., TCP/DCTCP/RCP) with SFF in

 0

 20

 40

 60

 80

 100

1 10 50 100

B
en

ef
its

 c
om

pa
re

d
 to

 F
S

(%
)

Number of Flows Per Task

SFF
Task-aware

Figure 3: SFF fails to improve over fair sharing (in
terms of task completion time) for realistic number
of flows per task while a straw-man task-aware pol-
icy provides consistent benefits.

terms of task completion times, for a simple single stage
partition-aggregate workflow scenario with 40 tasks com-
prising flows uniformly chosen from the range [5, 40]KB.
Figure 3 shows SFF’s improvement over fair-sharing as a
function of the number of flows in a task. We also compare
it with the performance of a straw-man task-aware scheme,
where flows for the same task are grouped and scheduled to-
gether. If a task has just a single flow, SFF reduces the task
completion time by almost 50%. However, as we increase the
number of flows per task, the benefits reduce. Most tasks
in data centers involve tens and hundreds of flows. The fig-
ure shows that in such settings, SFF performs similar to
fair-sharing proposals. While this is a simple scenario, this
observation extends to complex workflows as shown in our
evaluation (§5). In contrast, the benefits are stable for the
task-aware scheme.

3. SCHEDULING POLICY
The scheduling policy determines the order in which tasks

are scheduled across the network. Determining an ordering
that minimizes task completion time is NP-hard; flow-shop
scheduling [14, 25], a well known NP-hard problem in pro-
duction systems, can be reduced to task-aware scheduling.
Flow-shop scheduling is considered as one of the hardest
NP-hard problems, with exact solutions not known for even
small instances of the problem [15]. Thus, we need to con-
sider heuristic scheduling policies.

The heuristic policy should meet two objectives. First, it
should help reduce both the average as well as tail task com-
pletion time. Most scheduling policies optimize for one of
these, but not both. Second, it should be amenable to decen-
tralized implementation, i.e., it should facilitate scheduling
decisions to be made locally (at the respective end-points
and switches) without requiring any centralized coordina-
tion. While decentralization may appear at odds with the
recent trend towards a centralized control plane [3], it is
crucial for supporting applications with small (sub-second)
tasks (e.g., search, social networking, etc) [23]. This class
of applications is the most challenging to handle because of
their flow dynamics, but also benefits the most from any im-
provement in task completion time due to their user-facing
nature.

3.1 Task Serialization
The space of heuristics to allocate bandwidth in a task-

aware fashion is large. Guided by flow-based policies that
schedule flows one at a time [17], we consider serving tasks

Figure 4: Distilling the Benefits of Task Serializa-
tion (TS) over Fair Sharing (FS) for single stage (a)
and multi-stage transfers. In case of multiple stages,
we assume that each stage has a different network
bottleneck.

one at a time. This can help finish tasks faster by reducing
the amount of contention in the network. Consequently, we
define task serialization as the set of policies where an entire
task is scheduled before moving to the next.

Through simple examples, we illustrate the benefits of
task serialization (TS) over fair sharing (FS). The first ex-
ample illustrates the most obvious benefit of TS (Fig 4a).
There are two tasks, A and B, which arrive at the same
time (t = 0) bottlenecked at the same resources. FS as-
signs equal bandwidth to both the tasks, increasing their
completion times. In contrast, TS allocates all resources to
A, finishes it, and then schedules B. Compared to FS, A’s
completion time is reduced by half, but B’s completion time
remains the same.

Orchestra [11] confirms the above benefits of task seri-
alization in improving the average task completion time for
batched workloads. However, the question that still remains
unanswered is: can task serialization also provide gains in
tail task completion time?

One scenario where task serialization can improve the tail
task completion time is shown in Fig 4b. There is an applica-
tion with two stages, as in the partition-aggregate workflow
of search. Each stage has a different network bottleneck,
which is the case for an application like search, where down-
link to the mid-level aggregator is the bottleneck in the first
stage and downlink to the top-level aggregator is the bottle-
neck in the second stage.

There are two tasks, A and B, which arrive in the system
at the same time (t = 0). With FS, both tasks get the same
amount of resources and thus make similar progress: they
finish the first stage at the same time, then move together
to the second stage, and finally finish at the same time. TS,
in contrast, enables efficient pipelining of these tasks. Task
A gets the full bandwidth in the first stage, finishes early,
and then moves to the second stage. In parallel, B makes
progress in the first stage. By the time B reaches the second
stage, A is already finished. This reduces the completion
times of both the tasks. In the next section, we show how
choosing the right ordering of tasks (scheduling policy), can
also result in improving the tail task completion time, even
for single stage workloads.

3.2 Task Serialization Policies
We begin with two obvious policies for task serialization:

FIFO which schedules tasks in their arrival order and STF

Figure 5: FIFO ordering can reduce tail completion
times compared to fair sharing (FS).

(shortest task first) that schedules tasks based on their size.
STF can provide good average performance but can lead to
high tail latency, or even starvation, for large sized tasks.
Moreover, it requires knowledge about task sizes up front,
which is impractical for many applications.

FIFO is attractive for many reasons. In addition to being
simple to implement, FIFO also limits the maximum time a
task has to wait, as a task’s waiting time depends only on
the tasks that arrive before it. This is illustrated in Figure 5
which compares a FIFO policy with fair sharing (FS). While
tasks A and B arrive at t = 0, task C arrives later (t =
4). With FS, C’s arrival reduces the bandwidth share of
existing tasks as all three tasks need to share the resources.
This increases the completion times of both A and B and
they both take 10 units of time to finish. In contrast, with
TS, C’s arrival does not affect existing tasks and none of
the tasks take more than 8 units of time to finish. This
example illustrates that in an online setting, even for single
stage workflows, a FIFO task serialization policy can reduce
both the average and tail task completion times compared to
FS.

In fact under simple settings, FIFO is proven to be optimal
for minimizing the tail completion time, if task sizes follow
a light tailed distribution. i.e., task sizes are fairly homo-
geneous and do not follow a heavy-tailed distribution [27].
However, if task sizes are heavy-tailed, FIFO may result
in blocking small tasks behind a heavy task. As discussed
earlier in §2.1, data center applications do have such heavy
tasks. For such applications, we need a policy that can sep-
arate out these “elephants” from the small tasks.

3.3 FIFO-LM
We propose to use FIFO-LM1, which processes tasks in a

FIFO order, but can dynamically vary the number of tasks
that are multiplexed at a given time. If the degree of multi-
plexing is one, it performs exactly the same as FIFO. If the
degree of multiplexing is ∞, it works similar to fair sharing.
This policy is attractive because it can perform like FIFO
for the majority of tasks (the small ones), but when a large
task arrives, we can increase the level of multiplexing and
allow small tasks to make progress as well.

An important question is how to determine that a task is
heavy i.e., how big is a heavy task. We assume that the data
center has knowledge about task size distribution based on
historically collected data. Based on this history, we need
to identify a threshold (in terms of task size) beyond which
we characterize a task as heavy. For applications with bi-
modal task size distribution or resembling the Bing workload
in Figure 2, identifying this threshold is relatively straight-
forward. As soon as the task size enters the second mode,
we classify it as heavy and increase the level of multiplexing.

1typically referred to as limited processor sharing in schedul-
ing theory [21].

For heavy-tailed distributions, our experimental evaluation
with a number of heavy-tailed distributions such as Pareto
or Lognormal with varying parameters (shape or mean re-
spectively), shows that a threshold in the range of 80th-90th

percentile provides the best results.

4. BARAAT
Baraat is a decentralized task-aware scheduling system for

data center networks. It aims to achieve FIFO-LM schedul-
ing in a decentralized fashion, without any explicit coordi-
nation between network switches.

In Baraat, each task is assigned a globally unique identi-
fier (task-id) based on its arrival (or start) time. Tasks with
lower ids have a higher priority over ones with a higher id.
Network flows carry the identifier of the task they belong
to and inherit its priority. Based on this identifier switches
can make consistent decisions without any coordination. If
two switches observe flows of two different tasks, both make
the same decision in terms of flow prioritization (consistency
over space). If a switch observes flows of two tasks at dif-
ferent times, it makes the same decision (consistency over
time). Such consistent resource allocation increases the like-
lihood that flows of a task get “similar” treatment across
the network and hence, tasks actually progress in a serial
fashion. Finally, switches locally decide when to increase
the level of multiplexing through on-the-fly identification of
heavy tasks.

In the next section, we discuss how the task priorities are
generated. We then discuss how switches act on these prior-
ities and why existing mechanisms are insufficient. Finally,
we present the Smart Priority Class mechanism, and discuss
how it meets our desired prioritization goals.

4.1 Generating Task Identifiers
Baraat uses monotonically increasing counter(s) to keep

track of incoming tasks. We only need a single counter
when all incoming tasks arrive through a common point.
Examples of such common points include the load balancer
(for user-facing applications like web search), the job sched-
uler (for data parallel and HPC applications), the meta-data
manager (for storage applications), and so on.

The counter is incremented on a task’s arrival and is used
as the task’s task-id. We use multiple counters when tasks
arrive through multiple load balancers. Each counter has a
unique starting value and an increment value, i, which repre-
sents the number of counters in the system. For example, if
there are two counters, they can use starting values of 1 and
2 respectively, with i = 2. As a result, one of them generates
odd task-ids (1, 3, 5,...) while the other generates even task-
ids (2, 4, 6...). We highlight such a setting, which approx-
imates a FIFO ordering in a distributed scenario, in one of
our testbed experiments in §5. These counters can be loosely
synchronized and any inconsistency between them could be
controlled and limited through existing techniques [29].

The generation of task identifiers should also account for
background services (e.g., index update) that are part of
most production data centers. Tasks of such services often
involve long flows which can negatively impact tasks of on-
line services, if not properly handled. In Baraat, we assign
strictly lower priority to such background tasks by assigning
them task-ids that do not overlap with the range of task-ids
reserved for the high priority online service. For example,
task-ids less than n could be reserved for the online service

Table 2: Desired properties and whether they are
supported in existing mechanisms.

while task-ids greater than n could be used for the back-
ground service.

Propagation of task identifiers. A flow needs to carry
the identifier for its parent task. Thus, all physical servers
involved in a task need to know its task-id. Applications can
propagate this identifier along the task workflow; for exam-
ple, for a web-search query, aggregators querying workers
inform them of the task-id which can then be used for the
response flows from the workers back to the aggregators.

4.2 Prioritization Mechanism - Requirements
Baraat’s task-aware assignment of flow priorities, in the

form of task-ids, opens up the opportunity to use existing
flow prioritization mechanisms (e.g., priority queues, pFab-
ric [5], PDQ [17], etc) at the switches and end-points. While
these mechanisms provide several attractive properties, they
do not meet all the requirements of supporting FIFO-LM.
Table 2 lists the desired properties and whether they are
supported in existing mechanisms.

The first three properties, strict priority, fair-sharing and
heavy task support, are the basic building blocks for FIFO-
LM: we should be able to strictly prioritize flows of one
task over another; likewise, if the need arises (e.g., heavy
task in the system), we should be able to do fair-sharing
of bandwidth amongst a set of flows. Finally, the system
should on-the-fly identify heavy tasks and then change the
level of multiplexing accordingly.

The last two properties, work-conservation and preemp-
tion, are important for system efficiency. Work conservation
ensures that a lower priority task is scheduled if the highest
priority task is unable to saturate the network – for example,
when the highest priority task is too small to saturate the
link or if it is bottlenecked at a subsequent link. Finally, pre-
emption allows a higher priority task to grab back resources
assigned to a lower priority task. Thus, preemption comple-
ments work conservation – the latter lets lower priority tasks
make progress when there is spare capacity, while the for-
mer allows higher priority tasks to grab back the resources if
they need to. These two properties also prove crucial in sup-
porting background services; such services can continue to
make progress whenever there are available resources while
high priority tasks can always preempt them.

Limitations of existing mechanisms. As the table
highlights, no existing mechanism supports all these five
properties. Support for handling heavy tasks is obviously
missing as none of these mechanisms targets a policy like
FIFO-LM. PDQ [17] does not support fair-sharing of band-
width, so two flows having the same priority are scheduled
in a serial fashion. Similarly, pFabric [5] and priority queues

do not support work-conservation in a multi-hop setting be-
cause end-hosts always send at the maximum rate, so flows
continue to send data even if they are bottlenecked at a
subsequent hop. In such scenarios, work-conservation would
mean that these flows back-off and let a lower priority flow,
which is not bottlenecked at a subsequent hop, send data.
Protocols like PDQ avoid this problem with the help of ex-
plicit feedback from the switches, but they have other limi-
tations, as we discussed earlier.

These limitations of existing mechanisms motivate Smart
Priority Class (SPC), which we describe next.

4.3 Smart Priority Class
We propose Smart Priority Class (SPC), which is logically

similar to priority queues used in switches: flows mapped
to a higher priority class get strict preference over those
mapped to a lower priority class, and flows mapped to the
same class share bandwidth according to max-min fairness.
However, compared to traditional priority queues, SPC has
two additional smarts:

• To provide work-conservation in multi-hop settings,
SPC supports explicit feedback from switches. We lever-
age prior work on explicit rate control protocols to
communicate this feedback between the switches and
the end-hosts [17, 13]. However, unlike prior work, we
only keep aggregate, per-task counters at the switches,
instead of per-flow state.

• SPC supports dynamic mapping of flows to priority
queues — this is required to support FIFO-LM as a
flow’s mapping may change during its lifetime, if a
heavy task is identified in the system. We implement
a light-weight classifier in each switch, which uses the
per-task counters to identify heavy tasks and maps
tasks to priority classes accordingly.

Figure 6a provides an overview of SPC functionality, which
comprises support at the switches and an end-host trans-
port.2 The figure shows the key steps in sending a block
of data from a sender to a receiver: i) Applications pass
the task-id and data to the SPC transport, which computes
the flow demand based on the size of data. ii) The task-id
and demand are passed to the next-hop switch in a packet
header. iii) Each switch adds its feedback to the packet
header. The feedback is calculated based on the flow’s pri-
ority class and aggregate task information stored locally at
each switch (such as the total demand of the task and the
number of flows in the task). iv) The receiver piggybacks
the consolidated feedback on the acknowledgment packets
that are sent back to the sender. v) Finally, each sender
uses this feedback to decide the rate at which it should send
data. The process is repeated once every round trip time,
until the sender has no more data to send. Other senders
who are part of the task also follow the same steps without
explicitly coordinating with each another.

While Baraat requires changes to both end-hosts and switches,
we believe that such changes are worthwhile given the per-
formance benefits of Baraat. Further, the changes required

2We assume that end-hosts and switches are protocol com-
pliant, a reasonable assumption for production data center
environments. Further, compared to FIFO or sized based
scheduling, FIFO-LM limits the impact of non-confirming
sources (if any) by increasing the level of multiplexing.

at the switches are practically feasible, as demonstrated by
prior proposals [28, 17] and our software-switch implementa-
tion. Specifically, in terms of switch state, PDQ [17] shows
that switches only need 10KB memory to keep per-flow state
(Baraat stores even less information i.e. per-task only). In
§6, we also discuss how recent work may further simplify
introducing Baraat-like functionality in future data centers.

We now elaborate on the most important parts of SPC—
the classifier and how explicit feedback is calculated. Finally,
we describe the rate control transport protocol that is used
between end-hosts and switches.

4.3.1 Classifier
As shown in Figure 6b, the classifier maps flows to ap-

propriate priority classes. It maintains a mapping between
task-id and priority classes, so flows are first mapped to
tasks (based on their task-id) and then to the relevant pri-
ority class. By default, the classifier maintains a one-to-one
mapping between tasks and priority classes. The highest
priority task maps to the highest priority class and so on.
This achieves the standard FIFO scheduling where tasks are
scheduled one by one based on their priority (task-id).
To support FIFO-LM, the classifier also does on-the-fly

identification of heavy tasks (hence tasks need not know
their size upfront). The classifier queries per-task counters
to check whether a task is heavy or not. We maintain a
counter that keeps track of the total bytes reserved by flows
of a task, which we use as proxy for the task’s size. If the
task size exceeds a pre-determined threshold, the task is
marked as heavy.3 Subsequently, the heavy task and the
task immediately next in priority to the heavy task share
the same class. For example, as shown in the figure, if task
1 is identified as heavy, it shares the top priority class with
task 2. This enables small tasks to make progress, so when
task 2 finishes, task 3 is moved to the top priority queue.

In addition to supporting FIFO-LM, our classifier design
provides two key advantages. First, it maps all flows of a
task to the same class, which ensures that flows of the same
task are active simultaneously, instead of being scheduled
one-by-one (e.g., as in [17]), thereby reducing the overhead of
flow switching. Second, it decouples classification from feed-
back computation and rate control protocol, which makes it
easier to support other scheduling policies in the system. By
just changing the way flows are mapped to classes, we can
support policies like fair sharing, flow level prioritization,
etc.

4.3.2 Explicit Feedback
After mapping a flow to its appropriate class, the next step

is to compute the feedback, which corresponds to the rate
that the switch can support for the given flow. As shown in
Figure 6b, feedback is computed based on the flow’s priority
class and aggregate task counters.

The feedback provided to each flow roughly corresponds
to the rate that the flow would get with standard priority
queues. Thus, the entire link capacity is allocated to the
highest priority class; any leftover is given to the next class,
and so on. Whether the highest priority class is able to
use the entire link capacity depends on its total demand,
which in turn depends on how many tasks are mapped to

3A heavy task on one switch may not be identified as heavy
in some other part of the network (where it will not be caus-
ing head-of-line blocking).

Switch Receiver

SPCApp

SPC
Transport

1. Data, TaskID

2. Request

a) SPC Overview b) SPC Switch Functionality

Flow

Classifier

Flow Count
Total Demand

Bytes Reserved

TaskID 1
TaskID 2

Feedback
Classes

TaskID 3

4. Feedback

5. Data

Sender

3. Request + Feedback

TaskID 4

4. Feedback

Per-Task Counters

Figure 6: Overview of SPC and its switch functionality.

this class, and the aggregate demand of each of these tasks
(stored in the per-task counters)4. If the total demand of the
highest priority class is more than the available capacity5,
we assign a max-min fair bandwidth allocation. To this end,
we maintain another per-task counter, which keeps track of
the number of flows in the task.

Algorithm 1 Explicit Feedback Calculation

Require: TaskID, Demand for flow, D, and the allocation
for the previous interval.

Output: AR, NR.
Link capacity is C; A reflects current allocations across
all flows; Dk is the sum of flow demands belonging to
class k; Fk is the number of flows belonging to class k.

1: Return Previous Allocation and Demand by subtracting
from relevant counters

2: k = Classifier(TaskID)

3: ClassAvlBW = max(0, C −
k−1∑

i=1

Di)

4: AvailShare = max(0, ClassAvlBW −Dk)
5: if AvailShare ≥ D then
6: NR← D
7: else
8: NR← ClassAvlBW/Fk

9: end if
10: AR← min(NR,C −A)
11: Update Packet with AR and NR
12: Update counters and A

Algorithm 1 lists all the steps followed in computing feed-
back for a flow. A key aspect of our design is that unlike
prior explicit feedback protocols that maintain per-flow state
(e.g., PDQ [17]), we only use aggregate, per-task counters to
compute feedback. Given the typical large number of flows
per task, this can provide an order of magnitude or more
reduction in the amount of state kept at the switches. How-
ever, without per-flow state, providing work-conservation
becomes challenging, as switches no longer keep track of the
bottleneck link of each flow.

We address this challenge by providing two rates to sources
through the switch feedback. An actual rate (AR) at which
senders should send data in the next RTT and a nominal
rate (NR), which is the maximum share of the flow based

4total demand corresponds to the current aggregate demand
of a task while bytes-reserved is the sum of all prior reser-
vations for the task.
5We adjust for over and under utilization of a link by us-
ing the notion of virtual capacity, which is increased or de-
creased depending on link utilization and queuing [13, 28].

on its priority. NR might differ from AR due to flow dynam-
ics — the switch might have already assigned bandwidth to
a lower priority flow which needs to be preempted before
NR is available. NR essentially allows senders to identify
their current nominal bottleneck share, which they use to
adjust their demand, thus allowing other switches along the
path to free up unused bandwidth and allocate it to lower-
priority flows (i.e., work conservation). In the next section,
we describe how end-host transport precisely calculates this
demand.

4.3.3 End-host Transport
As shown in Figure 6a, SPC end-host transport logic lever-

ages prior work on explicit rate based protocols [13, 17, 28].
The key difference is in the way senders calculate their de-
mand. In SPC, demand calculation is more accurate and
reflects not only how much data the sender can send (as is
the case in prior work), but also how much data the bottle-
neck link on the path can support. A more accurate demand
ensures that non-bottleneck switches only reserve what is
required by the flow, which leads to work conservation in
multi-hop settings, without requiring per-flow state at the
switches.

Algorithm 2 Sender – Calculating Demand

1: MinNR - minimum NR returned in the previous RTT
2: Demandt+1 ← min(NIC Rate,DataInBuffer/RTT)

//if flow already setup
3: if MinNR < Demandt then
4: Demandt+1 ← min(Demandt+1,MinNR+ δ)
5: end if

Algorithm 2 provide details on how senders calculate de-
mand. The initial demand is set to the sender’s NIC rate
(e.g., 1Gbps) or lower if the sender has only a small amount
of data to send (Step 2). Based on the earlier feedback
from switches (the NR and AR vectors), the sender identi-
fies the bottleneck rates: it transmits data at the minimum
of the rates specified in the AR vector as discussed earlier,
and uses the NR vector to determine how much it should
demand in the next RTT. If the flow is bottlenecked on a
network link (i.e., the minimum of the NR vector is less
than the previously requested demand), the sender lowers
its demand for the next RTT and sets it equal to NR + δ.
Lowering the demand allows other links to only allocate the
necessary bandwidth that will actually be used by the flow,
using the rest for lower priority flows (i.e., work conserva-
tion). Adding a small value (δ) ensures that whenever the

bottleneck link frees up, the sender recognizes this and is
able to again increase its demand to the maximum level.

In addition to rate control, the SPC transport also imple-
ments other transport functionality, such as reliability and
flow control. Note that due to the explicit nature of our
protocol, loss should be rare, but end-hosts still need to pro-
vide reliability. Our reliability mechanism is similar to TCP.
Each data packet has a sequence number, receivers send ac-
knowledgments, and senders keep timers and retransmit, if
they do not receive a timely acknowledgment.

4.4 Implementation
We have built a proof-of-concept switch and end-host im-

plementation and have deployed it on a 25 node testbed.
Both the switch and end-host are implemented on server-
grade machines. We have also integrated Baraat with Mem-
cached application. Both the end-host and switch imple-
mentations run in user-space and leverage zero-copy support
between the kernel and user-space to keep the overhead low.
At end-hosts, applications use an extended Sockets-like API
to convey task-id information to the transport protocol. This
information is passed when a new socket is created. The ap-
plication also ensures that all flows per task use the same
task-id. Our switch implementation is also efficient. On
a server-grade PC, we can saturate four links at full du-
plex line rate. To keep SPC header processing overhead low
in switches, we use integer arithmetic for rate calculations.
Overall, the average SPC processing time was indistinguish-
able from normal packet forwarding. Thus, we believe that it
will be feasible to implement Baraat’s functionality in com-
modity switches.

Header: The SPC header requires 26 bytes. Each task-id
is specified in 4 bytes. We encode rates as Bytes/μs. This
allows us to a use a single byte to specify a rate – for example,
1Gbps has a value of 128. We use a scale factor byte that can
be used to encode higher ranges. Most of the header space
is dedicated for feedback from the switches. Each switch’s
response takes 2 bytes (one for NR and one for AR). Based
on typical diameter of data center networks, the header al-
locates 12 bytes for the feedback, allowing a maximum of
6 switches to provide feedback. The sender returns its pre-
vious ARs assigned by each switch using 6 bytes. We also
need an additional byte to keep track of the switch index –
each switch increments it before forwarding the packet and
uses 2 bytes to specify the current and previous demands.

5. EVALUATION
We evaluate Baraat across three platforms: our small scale

testbed, an ns-2 implementation and a large-scale data cen-
ter simulator. Our data center simulator allows us to imple-
ment a range of schemes, including the state-of-the-art flow-
based protocol (i.e., pFabric), a prior task-aware central-
ized scheduler (i.e., Orchestra), idealized schemes (e.g., cen-
tralized scheduler with complete task size information), and
compare their performance with Baraat. We use the ns-2
simulator to verify the basic properties of Baraat (e.g., work
conservation, preemption, etc) and to quantify the over-
heads. Finally, our testbed allows us to evaluate Baraat with
a real application (Memcached) and to cross validate the re-
sults of our simulator platforms. Here, we only present the
key results from our testbed and large scale simulator exper-
iments. Detailed results, including ns-2 micro-benchmarks,
are available in the accompanying technical report [12].

Avg 95th perc. 99th perc.

RCP 40ms 72ms 120ms
Baraat 29ms 41ms 68ms
Improvement 27% 43% 43.3%

Table 3: Performance comparison of Baraat against
RCP in a Memcached usage scenario.

In our evaluation, we consider three varied workloads:
search, data analytics, and applications with homogeneous
network footprint. We also analyze Baraat’s performance
across three different workflows – partition-aggregate, stor-
age retrieval and data parallel. In all our experiments, the
primary metric for comparison is the task completion time.
We consider both the average as well as the tail (95th per-
centile and beyond) task completion time.

Below is a summary of our key results.

• Against decentralized schemes: Baraat reduces the 95th

percentile of the task completion time by 70%, 43%
and 66% compared to the best known decentralized
scheme (pFabric) for search, data-analytics and uni-
form workloads respectively.

• Against centralized schedulers: In a hypothetical sce-
nario where centralized schedulers like Orchestra are
made to handle search-like workloads, we show that
Baraat’s FIFO-LM policy reduces tail (95th percentile)
task completion time by 27% compared to Orchestra
and by 84% compared to a size-aware scheduler. For
data-analytics workloads, tail completion time reduces
by 93% and 37% over Orchestra and size-aware sched-
ulers respectively.

5.1 Testbed experiments
We evaluate Baraat on our testbed and demonstrate its

use with Memcached. Our testbed has five racks with four
nodes each. The racks are connected through a two level
tree topology: each rack has a top-of-rack (TOR) switch
and the TOR switches are connected through a root switch.
All end-hosts and switches are Dell Precision T3500 servers
with a quad core Intel Xeon 2.27GHz processor, 4GB RAM
and 1 Gbps interfaces.

In addition to Baraat, we have also implemented an opti-
mized version of RCP [13] on our testbed.6 For the testbed
experiments, we compare Baraat against RCP for a storage
retrieval scenario whereby a client reads data from multiple
storage servers in parallel. This represents a parallel work-
flow.

Online Data Retrieval with Memcached. Our Mem-
cached setup mimics a typical web-service scenario. We have
one rack dedicated to the front-end nodes (i.e., Memcached
clients) while the four other racks are used as the Mem-
cached caching back-end. The front-end comprises of four
clients; each client maintains a separate counter that is used
to assign a task-id to incoming requests. Each counter is

6We have introduced a number of optimizations to account
for data center environments, such as information about the
exact number of active flows at the router (RCP uses algo-
rithms to approximate this). With our RCP implementa-
tion sources know exactly the rate they should transmit at,
whereas probe-based protocols like TCP/DCTCP need to
discover it. Hence, our RCP implementation can be consid-
ered as an upper-bound for fair-share protocols.

Figure 7: Baraat’s performance against RCP for a
parallel workflow scenario across all experimental
platforms.

initialized to a unique value and is incremented by four for
every incoming request. This models a scenario where re-
quests arrive through multiple load-balancers (see §4.1).

For the experiment, we consider an online scenario where
each client independently receives requests based on a Pois-
son arrival process. Each request (or task) corresponds to
a multi-get that involves fetching data from three randomly
chosen memcached servers. Table 3 compares Baraat with
RCP for an experiment with 1000 requests, task size of
800KB, and an average client load of 50%. In this case,
Baraat reduces average task completion time by 27% com-
pared to RCP. We observe more gains at high percentiles
where Baraat provides around 43% improvement over RCP.

Batched Requests. We now evaluate the impact of
varying the number of concurrent tasks in the system and
also use this experiment to cross-validate our testbed results
(without Memcached) with the simulation platforms. This
experiment is inspired by similar workloads considered in
prior work to show incast in storage retrieval scenarios [24].
For this experiment, one node acts as a client while the other
three nodes in the rack act as storage servers. All data is
served from memory. For the request, the client retrieves
400 KB chunks from each of the three servers. The request
finishes when data is received from all servers.

Figure 7 compares the performance of Baraat against RCP
as we vary the number of concurrent tasks (i.e., read re-
quests) in the system. Our results ignore the overhead of
requesting the data which is the same for both Baraat and
RCP. The first bar in each set shows testbed results. For
a single task, Baraat and RCP perform the same. How-
ever, as the number of concurrent tasks increases, Baraat
starts to outperform RCP. For 8 concurrent tasks, Baraat
reduces the average task completion time by almost 40%.
The experiment also shows that our implementation is able
to saturate the network link — a single task takes approxi-
mately 12msec to complete, which is equal to the sum of the
task transmission time (1.2MB

1Gbps
) and the protocol overhead

(2 RTTs of 1msec in our testbed).
Cross-validation and comparison with optimal. We

repeated the same experiment in the ns-2 and large-scale
simulators. Figure 7 also shows that the results are similar
across the three platforms; absolute task completion times
across our testbed and simulation platforms differ at most
by 5%. This establishes the fidelity of our simulators which

we use for more detailed evaluation in the following sec-
tions. We also used simple brute-force approach for this ex-
periment and found that Baraat’s schedules are optimal. In
general, this is a strong NP-hard problem [15], so computing
optimal for even modest-sized experiments is infeasible.

5.2 Large-scale performance
To evaluate Baraat at large scale, we developed a simula-

tor that coarsely models a typical data center. The simula-
tor uses a three-level tree topology with no path diversity,
where racks of 40 machines with 1Gbps links are connected
to a Top-of-Rack (ToR) switch and then to an aggregation
switch. By varying the connectivity and the bandwidth of
the links between the switches, we vary the over-subscription
of the physical network. We model a data center with 36,000
physical servers organized in 30 pods, each comprising 30
racks.

Each simulated task involves workers and one or more
layers of aggregators. The simulator can thus model differ-
ent task workflows and task arrival patterns. We evaluate
Baraat’s performance under three different workloads. The
first two workloads are based on the Bing and Facebook
traces discussed earlier (§2) while the third one models a
more homogeneous application with flow sizes that are uni-
formly distributed across [2KB, 50KB] (as suggested in prior
work [4, 28, 17]). For single-stage workloads, the aggregator
queries all other nodes in the rack, so each task comprises
40 flows. For two-stage workloads, the top-level aggregator
queries 30 mid-level aggregators located in separate racks,
which in turn query 40 workers each, resulting in 1200 flows
per task. Top-level aggregators are located in a separate
rack, one per pod. We use network over-subscription of 2:1
at the ToR switch and a selectivity of 3% (data input-to-
output ratio for aggregator nodes), which is consistent with
observations of live systems for data aggregation tasks [9].
We examine other configurations towards the end of the sec-
tion.

Over the following sections, we first compare Baraat’s per-
formance against various decentralized and centralized solu-
tions. We then dive into Baraat’s performance for various
workflows and explore a series of parameters that affect per-
formance.

5.2.1 Comparison against Existing Solutions
We first compare Baraat against decentralized solutions –

such solutions can handle scenarios involving short flows but
are not task-aware. We then compare against centralized
solutions – while these solutions are task-aware, they are
not amenable to handling short flow scenarios.

Comparison against Decentralized Solutions. We
consider two flow-based schemes: i) pFabric [5], which is the
state-of-the-art transport protocol with the best reported
performance. Our simulator models the best-case perfor-
mance of pFabric because it implements the shortest flow
first scheduling policy with no protocol overhead; and ii)
RCP [13], which represents the best case performance of
any fair sharing scheme (i.e., TCP/DCTCP, etc). Fair shar-
ing schemes present a good baseline for comparison and can
also surprisingly do quite well under certain scenarios. Like
Baraat, both these schemes are decentralized, and hence
suitable for scenarios involving small tasks (e.g., search).

Figure 8 highlights the reduction in tail task completion
time (95th percentile) with Baraat relative to pFabric and

 0

 20

 40

 60

 80

 100

Bing Analytics Uniform

R
ed

uc
tio

n
in

 ta
sk

 c

om
pl

et
io

n
tim

e(
%

)

Workload

over pFabric
over RCP

Figure 8: Reduction in tail task completion time
with Baraat against decentralized schemes.

 0

 20

 40

 60

 80

 100

Bing Analytics Uniform

R
ed

uc
tio

n
in

 ta
sk

 c

om
pl

et
io

n
tim

e(
%

)

Workload

over Orchestra
over STF

Figure 9: Reduction in tail task completion time
with Baraat against centralized schemes.

RCP for the three workloads. The results reflect the execu-
tion of 10,000 tasks for 80% data center load, which captures
the average load of bottlenecked network links. We examine
how load and other parameters affect results in the follow-
ing section. For all workloads, Baraat significantly improves
task completion times compared to the other two decen-
tralized solutions: The 95th percentile task completion time
reduces by 70%, 43% and 66% over pFabric for Bing, data-
analytics and uniform workloads respectively (30%, 58% and
47% over RCP).

Comparison against Centralized Solutions. While
making centralized solutions work for short tasks is still
an open problem, we consider the hypothetical scenario in
which this is feasible and evaluate their performance. We
compare Baraat against two centralized, task-aware solu-
tions: Orchestra [11], which schedules tasks in a FIFO or-
der, and ii) Shortest Task First (STF), which determines the
ordering of tasks based on their sizes (assuming an idealized
scenario where the centralized scheduler has the whole task
size information upfront).

We use the previous experiment settings and again com-
pare performance at the 95th percentile task completion
time. Figure 9 shows that even though Baraat is decentral-
ized, it is able to outperform centralized schedulers – com-
pared to Orchestra, it provides 27% and 93% reduction in
task completion completion for the Bing and data-analytics
workloads, respectively. Similar gains of 84% and 37% are
achieved for the same workloads in comparison with STF.
For uniform workloads, all centralized solutions perform the
same, as they all schedule tasks in a task-aware fashion and
for this workload all tasks are similar in size.

Detailed Analysis. To understand the gains of Baraat
against both centralized and decentralized solutions, we now
examine the results in more detail. Table 4 reports the me-
dian, 95th percentile, and 99th percentile task completion
time reduction with Baraat compared to all other schemes.

 0

 20

 40

 60

 80

 100

40 60 80 100

B
en

ef
its

 c
om

pa
re

d
 to

 R
C

P
 (%

)

Data center load (%)

0.6 0.6
6 9

27

37

60 61 64
60

53 55

Average
95th percentile

Worst-case

Figure 10: Reduction in task completion time for
the partition-aggregate workflow.

For the Bing-like workload, we observe that Baraat out-
performs Orchestra at both the median and higher per-
centiles. This is because of head-of-line blocking with Or-
chestra’s FIFO based scheduling. Other schemes (pFabric,
RCP) perform close to Baraat at the median (or even slightly
better in the case of RCP) because they allow small tasks to
finish quicker while Baraat may give only a fixed fraction
of link bandwidth to small tasks (i.e., limited multiplex-
ing). However, the difference in performance is small and
at higher percentiles Baraat provides significant gains over
these schemes.

For data analytics workloads exhibiting heavy-tailed dis-
tributions (Table 4), Orchestra again suffers from head-of-
line blocking. In this case, size-based policies (pFabric, STF)
do result in reduction of completion time compared to fair-
sharing policies like RCP, especially beyond the median up
to the 95th percentile. However, even in this case, Baraat’s
FIFO-LM policy results in improved performance of roughly
60% relative to RCP and 36% over size-based policies at the
95th percentile.

For uniform workloads, Baraat and task-aware policies
(Orchestra and STF) have similar performance. Note that
due to the absence of heavy tasks in this workload, Baraat
and Orchestra collapse to the same policy. However, com-
pared to pFabric, Baraat provides reduction of 66% and 75%
at the 95th and 99th percentiles, respectively.

In summary, our results highlight that compared to exist-
ing solutions, Baraat can reduce the task completion time
both at the median and at the tail, and for a wide range of
workloads (uniform, bi-modal, heavy-tailed, etc).

5.2.2 Varying Workflows
We now look at Baraat’s performance under the different

workflows described in Figure 1 in §2. In particular, we
examine three workflows – (i) a two-level partition aggregate
workflow where requests arrive in an online fashion, (ii) the
storage retrieval scenario used for our testbed experiments
where tasks have parallel workflows and request arrival is
online, and (iii) a data-parallel application where tasks have
a parallel workflow and there is a batch of jobs to execute.
For this set of experiments, our focus is on the different
workflows, so we keep the workload static (i.e., homogeneous
workload described in the previous section) and use RCP as
the baseline for comparison.

Figure 10 plots the reduction in the task completion time
with Baraat compared to RCP for the partition-aggregate
workflow. As expected, the benefits increase with the load
– at 80% load, the worst case task completion time reduces
by 64%, while the average and 95th percentile by 60% and
61% respectively. In all cases, the confidence intervals for
the values provided are less than 10% within the mean, and

Bing Data-analytics Uniform

Policy median 95th perc. 99th perc. median 95th perc. 99th perc. median 95th perc. 99th perc.
RCP -5% 30% 34% 25% 58% 62% 7% 37% 40%
pFabric 4% 70% 76% 4% 43% 61% 38% 66% 75%
STF -8% 84% 97% 0 37% 64% 0 1% 6%
Orchestra 28% 27% 16% 94% 93% 84% 0 0 0

Table 4: Reduction in task completion time with Baraat relative to other policies.

 0

 20

 40

 60

 80

 100

40 80 120 160 200 400 600 800

B
en

ef
its

 c
om

pa
re

d
 to

 R
C

P
 (%

)

Batch size

2 3

25

36 33

47

37

53

40

56

44

63

46

65

47

66

single-stage
multi-stage

Figure 11: Reduction in mean task completion time
for data-parallel jobs.

are not plotted for clarity. For the storage retrieval scenario,
the worst case completion time reduces by 36% compared to
RCP at 80% load (35% and 16% reduction at 95th percentile
and the average respectively). The reduced benefit results
from the fact that tasks here involve a single stage.

Figure 11 presents Baraat’s benefits for the scenario in-
volving a batch of data-parallel jobs. For batch sizes of 400
jobs, average task completion time is reduced by 44% and
63% for single-stage and multi-stage jobs respectively. As
discussed in §2, batch execution scenarios involving single-
stage jobs only provide benefits at the average. For multiple
stages, worst case completion time also drops beyond batch
sizes of 40; for batch sizes of 400, worst case completion time
reduces by 32%.

5.2.3 Varying parameters
We now examine how varying the experiment parameters

affect performance. We will focus on the partition-aggregate
workflow at 80% load. We present only an overview of our
observations, which are based on Baraat’s performance in
comparison with RCP. Detailed results are available in the
technical report [12].
Adding computation. While our paper focuses on net-
work performance, we now consider tasks featuring both
network transfers and computation. We extend the simu-
lator to model computation for worker machines as an ex-
ponentially distributed wait time. As expected, as compu-
tation time increases as a fraction of the total task com-
pletion time, the benefits of Baraat drop. However, overall
Baraat still provides significant benefits. For example, at
80% load and when computation comprises 50% of the task,
the worst case completion time reduces by 25% and the av-
erage completion time reduces by 14% (50% reduction when
computation comprises 25% of the task completion time).
Heavy task identification. As discussed in §4, classifica-
tion is threshold-based in Baraat. For heavy-tailed distribu-
tions (e.g., Pareto or Log-normal), we found that a threshold
in the range between the 80th and the 90th percentile pro-
vides the best performance. Figure 12 highlights this for
the data analytics workload. Note that while Baraat shows
robust performance under a wide range of thresholds, a sig-
nificant mis-estimation of the threshold can severely affect
performance: if the threshold is too low, the policy will con-

20 50 70 80 90 95 99

0

20

40

60

80

100

Percentile

Be
ne

fits
 co

mp
are

d t
o R

CP
 (%

)

Figure 12: Performance of Baraat when varying the
heavy-task identification threshold for the data an-
alytics workload.

verge to fair-sharing (RCP) and if the threshold is too high,
it will converge to Orchestra.

6. DISCUSSION
The notion of task-aware scheduling underlying Baraat is

both affected by and has implications for various aspects of
data center network design. We briefly discuss some impor-
tant issues here.

Changes to the Network Fabric. While Baraat’s mech-
anism (SPC) requires light-weight changes to the network
switches, recent work may make it feasible to support task-
aware scheduling in a more non-intrusive manner. For exam-
ple, PASE [20] supports flow-based scheduling using existing
data plane functionality (i.e., priority queues and ECN) but
cannot support other Baraat requirements such as heavy
task identification. Similarly, proposals for programmable
switches[19] may make it easier to introduce Baraat-like
functionality in future.

Incremental Deployment. This paper focused on the
scenario where applications and network elements are both
Baraat compliant. We believe that there are potential ben-
efits of incrementally rolling-out the system. From an appli-
cations perspective, Baraat can be incrementally deployed
by considering non-Baraat traffic as background traffic on a
link. From a network perspective, Baraat can be deployed
on a subset of switches (e.g., close to the aggregators) to gain
partial benefits. We leave the exploration of these benefits
for future work.

Non-network resources. Baraat reduces network con-
tention through task serialization. However, it still retains
pipelined use of other data center resources. Consider a
web search example scenario where an aggregator receives
responses from a few workers. Today, either the CPU or
the network link at the aggregator will be the bottleneck
resource. Baraat is work conserving, so it will ensure the
fewest number of simultaneously active tasks that can ensure
that either the aggregator’s network link is fully utilized or
the CPU at the aggregator is the bottleneck. Thus, Baraat
does not adversely impact the utilization of non-network re-
sources. While additional gains can be had from coordi-

nated task-aware scheduling across multiple resources, we
leave this to future work.

7. RELATED WORK
We briefly discuss work that is most relevant to Baraat.
Task-Aware Schedulers and Network Abstractions.

Proposals that most closely relate to Baraat include Orches-
tra [11] and CoFlow [10] which also argue for bringing task-
awareness in data centers. Orchestra focuses on how task-
awareness could provide benefits for MapReduce style work-
loads. Baraat differs from Orchestra in three ways. First,
Baraat makes the scheduling decisions in a decentralized
fashion rather than through a centralized controller. Sec-
ond, Baraat uses FIFO-LM which has not been considered
in prior network scheduling proposals including Orchestra.
Third, while Orchestra focuses on improvement in the av-
erage task completion time for batched workload, we show
that we can also improve the tail completion time, for dy-
namic scenarios and multi-stage workloads.

CoFlow [10] focuses on a new abstraction that can capture
rich task semantics, which is orthogonal to Baraat’s focus on
scheduling policy and the underlying mechanism. However,
beyond the abstraction, CoFlow does not propose any new
scheduling policy or mechanism to achieve task-awareness.

Cluster Schedulers and Resource Managers. There
is a large body of work on centralized cluster schedulers and
resource managers [16, 23, 11, 1]. Some of these propos-
als use policies similar to FIFO-LM to balance fairness and
performance in their systems. For example, the Hadoop
fair scheduler [1] allows limited multiplexing, although the
limit is set by the user/administrator. However, the above
proposals focus on scheduling jobs on machines and not on
decentralized scheduling of flows (or tasks) over the network,
which requires new mechanisms.

Straggler Mitigation Techniques. Many prior pro-
posals attempt to improve task completion times through
various straggler mitigation techniques (e.g., re-issuing the
request) [7, 18]. These techniques are orthogonal to our
work as they focus on non-scheduling delays, such as delays
caused by slow machines or failures, while we focus on the
delays due to the resource sharing policy.

8. CONCLUSIONS
Baraat is a decentralized system for task-aware network

scheduling. It provides a consistent treatment to all flows of
a task, both across space and time. This allows active flows
of the task to be loosely synchronized and make progress
at the same time. By changing the level of multiplexing,
Baraat effectively deals with the presence of heavy tasks
and thus provides benefits for a wide range of workloads.
Our experiments show that Baraat can significantly reduce
the average as well as tail task completion time.

Acknowledgements: We thank our shepherd, Amin Vah-
dat, and the SIGCOMM reviewers for their feedback. We
are also grateful to the Kwiken [18] team, especially Ishai
Menache and Virajith Jalaparti, for sharing their Bing traces.

9. REFERENCES
[1] The Hadoop Fair Scheduler.

https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html.

[2] Memcached. http://memcached.org/.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In Proc. of NSDI, pages 19–19, 2010.

[4] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data
center TCP (DCTCP). In Proc. of SIGCOMM, 2010.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pfabric: Minimal near-optimal
datacenter transport. In ACM SIGCOMM, 2013.

[6] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica. PACMan: coordinated
memory caching for parallel jobs. In Proc. of NSDI, 2012.

[7] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using mantri. In Proc. of OSDI, 2010.

[8] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and
A. Rowstron. Scale-up vs scale-out for hadoop: Time to
rethink? In Proc. of SOCC, 2013.

[9] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for
evaluating mapreduce performance using workload suites. In
Proc. of MASCOTS, 2011.

[10] M. Chowdhury and I. Stoica. Coflow: An application layer
abstraction for cluster networking. In ACM Hotnets, 2012.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica.
Managing data transfers in computer clusters with orchestra. In
Proc. of ACM SIGCOMM, 2011.

[12] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized Task-aware Scheduling for Data Center
Networks. Technical Report MSR-TR-2013-96, Microsoft
Research, September 2013.
http://research.microsoft.com/apps/pubs/?id=201494.

[13] N. Dukkipati. Rate Control Protocol (RCP): Congestion
control to make flows complete quickly. PhD thesis, Stanford
University, 2007.

[14] M. Garey and D. Johnson. Computers and intractability. 1979.

[15] L. Hall. Approximability of flow shop scheduling. Mathematical
Programming, 82(1):175–190, 1998.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A platform
for fine-grained resource sharing in the data center. In Proc. of
NSDI, pages 22–22. USENIX Association, 2011.

[17] C. Hong, M. Caesar, and P. Godfrey. Finishing flows quickly
with preemptive scheduling. ACM SIGCOMM Computer
Communication Review, 42(4):127–138, 2012.

[18] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up distributed request-response
workflows. In Proc. of SIGCOMM, 2013.

[19] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazières. Tiny
packet programs for low-latency network control and
monitoring. In Proceedings of Hotnets, HotNets-XII. ACM,
2013.

[20] A. Munir, G. Baig, S. Irteza, I. Qazi, I. Liu, and F. Dogar.
Friends, not foes — synthesizing existing transport strategies
for data center networks. In Proc. of SIGCOMM, 2014.

[21] J. Nair, A. Wierman, and B. Zwart. Tail-robust scheduling via
limited processor sharing. Performance Evaluation,
67(11):978–995, 2010.

[22] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, et al.
Scaling memcache at facebook. In Proc. of NSDI, 2013.

[23] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
distributed, low latency scheduling. In Proc. of SOSP, 2013.

[24] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan. Measurement and
analysis of tcp throughput collapse in cluster-based storage
systems. In FAST, volume 8, pages 1–14, 2008.

[25] H. Röck. The three-machine no-wait flow shop is np-complete.
Journal of the ACM, 31(2):336–345, 1984.

[26] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha.
Sharing the data center network. In Proc. of NSDI, 2011.

[27] A. Wierman and B. Zwart. Is tail-optimal scheduling possible?
Operations Research, 60(5):1249–1257, 2012.

[28] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better
never than late: Meeting deadlines in datacenter networks. In
Proc. of ACM SIGCOMM, 2011.

[29] H. Yu, A. Vahdat, et al. Efficient numerical error bounding for
replicated network services. In Proc. of VLDB, 2000.

