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Abstract— This paper deals with the design problem of robust
iterative learning control (ILC), in the presence of noise that is
varying randomly from iteration to iteration. Two ILC schemes
are considered: one adopts the previous iteration tracking error
(PITE) and the other adopts the current iteration tracking error
(CITE), in the updating law. For both schemes, the convergence
results are obtained by using a frequency-domain approach, and
a comparison between them is presented from the viewpoints of
the convergence condition, robustness against plant uncertainty,
and delay compensation. It shows that sufficient conditions can
be derived to bound the tracking error and make its expectation
monotonically convergent in the sense of L2-norm, which work
effectively with robustness for all admissible plant uncertainties.
Furthermore, the sufficient conditions for both schemes can also
be formulated in terms of two complementary functions, which
do not depend on the delay time as well as the plant uncertainty
and, thus, make them convenient to be checked and solved using
the frequency-domain tools. Numerical simulations are included
to illustrate the effectiveness of the two proposed ILC schemes.

Index Terms— Iterative learning control, monotonic conver-
gence, previous iteration tracking error, current iteration track-
ing error, random iteration-varying noise, delay compensation.

I. INTRODUCTION

Iterative learning control (ILC) is found to be an attractive

technique when it comes to addressing systems that perform

the same task repetitively over a finite time interval ([1], [2]).

The key feature of ILC is to incorporate information from the

previous and/or current iterations in the updating law design,

such that the control objective is achieved finally in the sense

that the improvement of learning proceeds from one iteration

to the next. Owing to its simplicity and effectiveness, ILC has

generated considerable interest over the past two decades, in

many areas and applications.

Robustness has been considered one of the most important

issues in ILC, as argued and demonstrated in [3]. With regard
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to robust ILC, the model uncertainty has been widely studied.

It has been shown that using the frequency-domain approach,

the analysis and design of ILC can be achieved, guaranteeing

the robust convergence for all admissible model uncertainties

(see, e.g., [4]-[6]). One advantage of this approach to ILC is

that the convergence condition can be checked and/or solved

with many existing tools such as Bode plots, µ-synthesis and

Youla parameterization [7]. For the discrete-time counterpart,

see [8]. In addition to the model uncertainty, external (load

and/or measurement) disturbances have been investigated as

a practically important issue in robust ILC design (e.g., [9]),

as well as reinitialization errors (see [10], [11]). However, the

aforementioned results of robust ILC are derived for repeated

(or iteration-invariant) uncertainty. In ILC, the robustness is-

sue on iteration-varying uncertainties has also been discussed

with many schemes. For example, using a super vector-based

approach, an adaptive ILC has been studied in [12], a higher-

order ILC in [13], and an H∞-optimal ILC in [14]. From the

stochastic point of view, a class of promising ILC algorithms

have been investigated in, e.g. [15]. For more details, see [16]

for ILC with forgetting factor, [17] for ILC with wavelet filter

and [18] for ILC with iteration-varying filter, based on which

a statistical analysis of robust ILC design has been presented

very recently in [19]. Despite of all these existing results, the

theory for robust ILC is far from complete, even in the field

of linear plants as claimed in [3].

In this paper, two ILC schemes are addressed for uncertain

linear plants that are subject to noise varying randomly from

iteration to iteration. More specifically the first ILC scheme is

considered using the previous iteration tracking error (PITE)

in the control updating law, resulting in an open-loop strategy

(see [1] and denote it shortly by ILC-1). In contrast to ILC-1,

the second ILC scheme−denoted by ILC-2−is a closed-loop

strategy (see also [1]) that uses the current iteration tracking

error (CITE) to update the control law. In both ILC schemes,

there are two design parameters: the performance weighting

function and learning gain function, with different selections

of which new properties of ILC-1 and ILC-2 can be obtained.

The issues for convergence, implementation, robustness with

respect to external noise and model uncertainties, as well as

delay effect related to both ILC schemes, are discussed using

a frequency-domain analysis approach. It shows that for both

ILC schemes, monotonic convergence results can be obtained

and certain implementations can be derived to not only show

robustness against all admissible model uncertainties but also

to achieve the time delay compensation. Simulation tests are

finally provided to verify the theoretical study.

Throughout this paper, the ∞-norm and the 2-norm of any
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Fig. 1: Control system considered in the presence of noise y0

k
(t).

given function G(s) are defined, respectively, as

‖G(s)‖
∞

= sup
ω

|G(jω)| (1)

‖G(s)‖2 =

√

1

2π

∫

∞

−∞

|G(jω)|
2
dω. (2)

II. PROBLEM STATEMENT

Let us consider the system shown in Fig. 1, where P (s) is

the plant transfer function (TF), and uk(t), yk(t), and y0
k(t)

are the control input, system output, and zero-input response,

respectively, for t ∈ [0, T ] at the iteration k. From this figure,

the output is clearly given by

Yk(s) = P (s)Uk(s) + Y 0
k (s) (3)

where Yk(s) = L [yk(t)], Uk(s) = L [uk(t)], and Y 0
k (s) =

L
[

y0
k(t)

]

. It can be easily seen that Y 0
k (s) can represent the

noise including the reinitialization errors and the load and/or

measurement disturbances (like, e.g., [12], [18], [19]).

In the sequel, the Laplace variable s and the time variable

t will be omitted when this does not lead to any confusion.

In this paper, the objective is to examine two ILC schemes

in the presence of the random iteration-varying noise arising

from Y 0
k (s) and make a comparison between results obtained

for them. The following two ILC schemes are considered:

• ILC-1: The first ILC adopts the tracking error from the

previous iteration in the updating law which is given by

Uk+1(s) = W11(s) [Uk(s) + K1(s)Ek(s)] . (4)

• ILC-2: The second ILC uses the tracking error from the

current iteration in the updating law which is given by

Uk+1(s) = W12(s)Uk(s) + K2(s)Ek+1(s). (5)

In both schemes, W11 and W12 are the stable performance

weighting functions, K1 and K2 are the learning gains, Ek =
Yd−Yk = L [ek], and Yd = L [yd]. The variable yd denotes

the bounded reference trajectory, ek = yd − yk denotes the

tracking error at the iteration k, and U0 denotes the arbitrarily

selected initial control input that is assumed to be bounded.

Assumptions: Assume that Y 0 denotes noise that is varying

randomly from iteration to iteration. Thus, for each iteration

k, Y 0
k can be viewed as a sample selected from the population

Y 0. Let E denote the expectation operator with respect to the

iteration domain for a fixed s. Then, for this population Y 0,

it is considered that

1) The mean of the noise Y 0 is given by

E
(

Y 0
)

= Y 0
e . (6)

2) The L2-norm of the error Y 0 − Y 0
e is not more than

Λ, i.e.,
∥

∥Y 0 − Y 0
e

∥

∥

2
≤ Λ. (7)

Remark 1: For each iteration k, the mean of the noise Y 0
k

can be obtained from the issue 1), i.e., E
(

Y 0
k

)

= E
(

Y 0
)

=
Y 0

e , ∀k. While through the issue 2), the bound of the variance

of the noise Y 0 (hence Y 0
k , ∀k) can be provided. In particular,

let
[

y0(t) − y0
e(t)

]2
≤ λ2(t) and ‖λ(t)‖2 ≤ Λ. Thus, the fact

(7) is ensured, since
∥

∥Y 0(s) − Y 0
e (s)

∥

∥

2
=

∥

∥y0(t) − y0
e(t)

∥

∥

2
.

Moreover, the variance satisfies

Var
[

y0(t)
]

= E
[

y0(t) − y0
e(t)

]2
≤ λ2(t), ∀t

which leads to
∥

∥

∥

√

Var [y0(t)]
∥

∥

∥

2
≤ Λ. (8)

That is, the standard derivation of the noise can be bounded

by Λ, in the sense of L2-norm.

III. ANALYSIS AND COMPARISON RESULTS

A. Convergence Analysis

First of all, let us consider the ILC-1. Define

F1 = W11 (1 − PK1) (9)

E∗ =
1 − W11

1 − W11 + W11PK1

(

Yd − Y 0
e

)

(10)

and e∗(t) = L −1 [E∗(s)]. Then, the following theorem can

be obtained for ILC-1:

Theorem 1: Consider the system in Fig. 1 under the facts

of (6) and (7), and let the ILC law (4) be applied. If

‖F1‖∞ < 1 (11)

then 1) the expected tracking error E [ek(t)] is bounded for all

k and converges uniformly to e∗(t) as k → ∞, in the sense

of L2-norm, and 2) the tracking error ek(t) is bounded for

all k and satisfies (12) as k → ∞, where

lim sup
k→∞

‖ek(t) − e∗(t)‖2 ≤
1 + ‖W11‖∞
1 − ‖F1‖∞

Λ. (12)

Proof: See Appendix I.

Next, let us consider the ILC-2 and correspondingly, define

F2 =
W12

1 + PK2
, F3 =

1

1 + PK2
(13)

E⋄ =
1 − W12

1 − W12 + PK2

(

Yd − Y 0
e

)

(14)

and e⋄(t) = L −1 [E⋄(s)]. In the same way as in the proof of

Theorem 1, one can now show the following theorem related

to ILC-2:

Theorem 2: Consider the system in Fig. 1 under the facts

of (6) and (7), and let the ILC law (5) be applied. If

‖F2‖∞ < 1 (15)

then 1) the expected tracking error E [ek(t)] is bounded for all

k and converges uniformly to e⋄(t) as k → ∞, in the sense

of L2-norm, and 2) the tracking error ek(t) is bounded for

all k and satisfies (16) as k → ∞, where

lim sup
k→∞

‖ek(t) − e⋄(t)‖2 ≤
1 + ‖W12‖∞
1 − ‖F2‖∞

‖F3‖∞ Λ. (16)

Proof: See Appendix II.
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Now, the following Remarks are in order:

Remark 2: Obviously, the convergence results derived for

ILC-1 and ILC-2 are similar to each other. More specifically,

for both ILC schemes, the expected tracking error converges

monotonically to a certain limit trajectory that can be prede-

fined, and the tracking error varies around this limit trajectory

within a bound that is proportional to the bound on noise.

Remark 3: The trajectories E∗ and E⋄ are described in a

very similar way, which depend on the learning parameters,

the desired trajectory, and the mean of the noise. In particular,

if one takes W11 = 1 in (4) and W12 = 1 in (5), then one can

prove that for all t, e∗(t) = 0 and e⋄(t) = 0. In this case, the

expected tracking error for both schemes converges to zero,

and the tracking error varies around zero along the time axis

within a bound.

Remark 4: From (11) and (15), it is clear that convergence

conditions of two ILC schemes both require that the ∞-norm

of the transfer function (F1 or F2) should be less than 1. This

is the standard frequency-domain condition (see, e.g. [4]-[6]).

But, F1 and F2 are developed in different ways because the

previous and current iteration tracking errors are respectively

used by ILC-1 and ILC-2 to update their learning laws.

B. Robustness on Plant Uncertainty

Let us consider the plant TF P described by the following

uncertain form:

P = (1 + ∆W2) Gn (17)

where Gn is the nominal plant model, W2 is a known stable

TF as the weight, and ∆ is an unknown stable TF satisfying

‖∆‖
∞

≤ 1. For formulation, let us take

W11 = W−1
1 , K1 = −C (18)

in ILC-1 of (4) (like [6]), and take

W12 = W1, K2 = C (19)

in ILC-2 of (5) (like [5]), where W1 and C are now learning

parameters to be determined. To this end two complementary

functions associated with the nominal system are introduced

as:

S =
1

1 + GnC
, T = 1 − S =

GnC

1 + GnC
. (20)

Following the same steps used in [6], one can obtain from

(9), (17), (18) and (20) that

F1 = W−1
1 [1 + (1 + ∆W2)GnC]

=
1

W1(1 + GnC)−1

(

1 +
∆W2GnC

1 + GnC

)

=
1 + ∆W2T

W1S

(21)

and that

E∗ =
1 − W−1

1

1 − W−1
1 − W−1

1 (1 + ∆W2) GnC

(

Yd − Y 0
e

)

=
1 − W1

1 − W1 + (1 + ∆W2) GnC

(

Yd − Y 0
e

)

=
(1 − W1)S

1 + ∆W2T − W1S

(

Yd − Y 0
e

)

.

(22)

Using (21), the convergence condition (11) becomes
∥

∥

∥

∥

1 + ∆W2T

W1S

∥

∥

∥

∥

∞

< 1, ∀∆ (23)

which is equivalent to (see [6, Proposition 3])
∥

∥

∥

∥

1 + |W2T |

W1S

∥

∥

∥

∥

∞

< 1. (24)

That is, the convergence condition for the ILC-1 can be given

by (24) which exactly provides a condition to determine both

learning parameters W1 and C in (18). Next, we consider the

ILC-2. Using (13), (17), (19) and (20), one can derive that

F2 =
W1

1 + (1 + ∆W2) GnC

=
W1S

1 + ∆W2T

(25)

and that

E⋄ =
1 − W1

1 − W1 + (1 + ∆W2) GnC

(

Yd − Y 0
e

)

=
(1 − W1)S

1 + ∆W2T − W1S

(

Yd − Y 0
e

)

.

(26)

Based on (25), the condition of (15) becomes
∥

∥

∥

∥

W1S

1 + ∆W2T

∥

∥

∥

∥

∞

< 1, ∀∆ (27)

which, together with ‖W2T‖
∞

< 1, holds if and only if ([7])

‖W2T‖
∞

< 1,

∥

∥

∥

∥

W1S

1 − |W2T |

∥

∥

∥

∥

∞

< 1. (28)

Thus, (28) can give the convergence condition for the ILC-2,

and also provides the condition to design W1 and C in (19).

With the above analysis, the following Remarks are stated:

Remark 5: From (22) and (26), it can be clearly seen that

with the aid of S and T , the trajectories E∗ and E⋄ are given

in the same way, which further explains the aforementioned

fact of Remark 3. Moreover, it can be easily seen that both of

the trajectories are well defined if (23) and (27) are satisfied,

since they can ensure that for all ω, |1 + ∆W2| is not equal

to |W1S|.
Remark 6: As mentioned in Remark 4, F1 and F2 are of

different formulation ways. From (21) and (25), it is obvious

that one can be formulated in form of the inverse of the other.

However, both F1 and F2 can be expressed in terms of two

complementary parameters S and T . Benefiting from such an

expression, the convergence condition for both ILC schemes

can be simplified into (24) and (28), respectively, which are

independent of the uncertainty and can be easily checked via

using the frequency-domain tools, e.g., Bode plots.

C. Effect of Delay Factor

Now, let us consider the plant TF P having a delay factor,

which is given by

P = Ge−θs (29)

where G and θ are unknown TF and delay, respectively. For

the plant TF of (29), a nominal model is described by

P̂ = Gne−θ̂s (30)
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where Gn is a known TF, and θ̂ is an estimate of θ. Assume

that P is perturbed and described in the following uncertain

form:

P = (1 + ∆W2) P̂ (31)

where W2 is a known stable TF, and ∆ is an unknown stable

TF satisfying ‖∆‖
∞

≤ 1.

In order to deal with the delay factor, different approaches

are employed by the ILC-1 and ILC-2. For the first ILC, an

anticipatory approach is used, which takes learning parame-

ters of (4) as follows (see also [6]):

W11 = W−1
1 , K1 = −Ceθ̂s. (32)

As argued in [6], the anticipatory form of ILC-1 is available,

since a feedforward action is required, in essence, to generate

the current control input Uk+1. For the second ILC, a Smith

predictor-based approach is used (see also [4]). To this end,

the learning parameters of (5) are taken as

W12 =
W1

M
, K2 =

C

M
(33)

where M = 1+
(

Gn − P̂
)

C is generated from the structure

of the Smith predictor.

Considering (9) and inserting (30)-(32), one can obtain for

the ILC-1 that

F1 = W−1
1

[

1 − (1 + ∆W2) P̂
(

−Ceθ̂s
)]

= W−1
1 [1 + (1 + ∆W2)GnC]

(34)

which, by following the same steps of (21), yields

F1 =
1 + ∆W2T

W1S
.

Similarly, one can also obtain

E∗ =

(

1 − W−1
1

) (

Yd − Y 0
e

)

1 − W−1
1 + W−1

1 (1 + ∆W2) P̂
(

−Ceθ̂s
)

=
1 − W−1

1

1 − W−1
1 − W−1

1 (1 + ∆W2)GnC

(

Yd − Y 0
e

)

(35)

which, in view of (22), leads to

E∗ =
(1 − W1)S

1 + ∆W2T − W1S

(

Yd − Y 0
e

)

.

Hence F1, as well as E∗, has the same formulation with that

derived in the case without delay, which benefits from using

the anticipation θ̂ in the time axis. For more details, see [6].

Consequently, the convergence condition for the ILC system

(3), (4), and (30)-(32) can be given by (24).

For the ILC-2, using (13) and by inserting (30), (31) and

(33), it yields

F2 =
(W1 /M )

1 + (1 + ∆W2) P̂ (C /M )

=
W1

M + (1 + ∆W2) P̂C

=
W1

1 + GnC + ∆W2GnCe−θ̂s

=
W1S

1 + ∆W2Te−θ̂s

(36)

and

E⋄ =
1 − (W1 /M )

1 − (W1 /M ) + (1 + ∆W2) P̂ (C /M )

(

Yd − Y 0
e

)

=
M − W1

M − W1 + (1 + ∆W2) P̂C

(

Yd − Y 0
e

)

=
1 + GnC − GnCe−θ̂s − W1

1 + GnC + ∆W2GnCe−θ̂s − W1

(

Yd − Y 0
e

)

=
1 − Te−θ̂s − W1S

1 + ∆W2Te−θ̂s − W1S

(

Yd − Y 0
e

)

.

(37)

Using (36) and following [4], one can show that the condition

of (15) is still satisfied, i.e.,
∥

∥

∥

∥

∥

W1S

1 + ∆W2Te−jωθ̂

∥

∥

∥

∥

∥

∞

< 1, ∀∆ (38)

if (28) holds. That is, the convergence condition for the ILC

system (3), (5), (30), (31) and (33) can be given by (28).

Now, the following Remarks are given:

Remark 7: From the above development, one can find that

if the learning gains of (32) are taken in the ILC-1, and those

of (33) are taken in the ILC-2, then the convergence condition

for both schemes can be derived independent of not only the

plant uncertainty but also the delay factor. That is, conditions

designed for the nominal LTI model can work with sufficient

robustness with respect to the uncertainties arising from both

plant model and delay time.

Remark 8: Due to its structure, the ILC-1 can be designed

with an action using anticipation in time to compensate delay.

The anticipatory property of ILC has already been discussed,

e.g., in [1], [6]. Clearly, it can be seen that one advantage of

this property is that the design of ILC for an uncertain delay

plant can be achieved by considering related nominal model

that does not include delay. In contrast to [6], here the ILC is

extended to more general situations, which relaxes restricted

requirements on the initial conditions and disturbances.

Likewise, the ILC-2, designed with (33), can compensate

delay, since a Smith predictor is incorporated. In comparison

with the existing results (e.g., [4]), random iteration-varying

noise is taken into account, which makes the obtained results

more applicable.

Remark 9: For the ILC-1 the trajectory E∗ keeps the same

for both cases with and without delay, and becomes the zero

one when W1 = 1 is taken. Moreover, E∗ is independent of

the delay θ and its estimation θ̂. Hence, this limit trajectory

for TDS is determined in the delay-free case, rather than the

delay-dependent case.

For the ILC-2, it is obvious from (37) that E⋄ depends on

the estimation θ̂. If W1 = M is used, thus yielding W12 = 1,

then E⋄ still becomes zero (see Remark 3).

Remark 10: Particularly, if θ̂ = 0 is set, then the results of

this subsection will become those of the previous subsection.

For this case, the ILC-1 and ILC-2 offer standard open-loop

and closed-loop schemes for linear plants, respectively. As a

matter of fact, if θ is small, then the delay plant of (29) can be

treated by embedding P in a family where the representative

2060
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Fig. 2: Process of the tracking error for ILC-1.
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Fig. 3: Process of the tracking error for ILC-2.

element is described by (17) (or equivalently, (31) with θ̂ =
0). For the details of such a design approach, one can refer to

[7, pp. 46-48] which is based on the Bode magnitude plots.

IV. SIMULATION RESULTS

In this example, the delay plant of (29) is considered where

(see also the example in [4])

Gn =
1.2

1.3s + 1
, W2 =

2s + 1

0.7s + 5

the noise y0
k(t) is considered to be varying randomly within

[−0.1, 0.1], along both time axis t and iteration axis k, and

the simulation test is performed with yd(t) = 100 sin(0.1t),
t ∈ [0, 20π]. For both ILC schemes, the zero initial input is

adopted, i.e., u0(t) = 0 for all t.

To implement the ILC-1, the design parameters of (32) are

used, and more specifically,

W11 =
1

0.1s + 1
, K1 =

s2 + 2s + 2

0.1s2 + 12s + 10
eθ̂s

which leads to
∥

∥

∥

∥

1 + |W2T |

W1S

∥

∥

∥

∥

∞

= 0.9706.

For the ILC-2, the design parameters of (33) are used, i.e.,

W12 =
1

0.1s + 1
·

1

M
, K2 =

s2 + 2s + 1

0.1s2 + 10s + 1
·

1

M

which leads to
∥

∥

∥

∥

W1S

1 − |W2T |

∥

∥

∥

∥

∞

= 0.9787.

Clearly, the convergence conditions (24) and (28) hold. Then

the simulation results are shown in Figs. 2 and 3, respectively

for the ILC-1 and the ILC-2. In both figures the evolution of

the tracking error ek(t) along time axis t and iteration axis k

is described. It can be seen that the nice iteration-to-iteration

error convergence is possible. This illustrates that both ILC-

1 and ILC-2 can work effectively when the uncertain delay

plant is subject to random iteration-varying noise.

V. CONCLUSIONS

In this paper, two ILC schemes have been discussed, with

respect to uncertain linear systems in the presence of random

iteration-varying noise. It has been proved that under certain

conditions, monotonic convergence of both ILC schemes can

be guaranteed in the sense of expectation, which ensures that

the expected tracking error is monotonically convergent to a

limit trajectory that can be predefined, and the tracking error

is convergent to a neighborhood of this limit trajectory, with

an error bound proportional to the bound on noise. Numerical

simulations have been provided to illustrate the effectiveness

of these theoretical results, as well as robustness against the

model uncertainty and good property of delay compensation.

APPENDIX I: PROOF OF THEOREM 1

Proof: For the ILC system (3) and (4), it can be easily

shown that the tracking errors, at two sequential iterations k

and k + 1, satisfy

Ek+1 = Yd − PUk+1 − Y 0
k+1

= Yd − W11PUk − W11PK1Ek − Y 0
k+1

= (1 − W11) Yd + F1Ek + W11Y
0
k − Y 0

k+1

(39)

which, by taking the operation E and inserting (6), leads to

E (Ek+1) = (1 − W11) Yd + F1E (Ek)

+ W11E
(

Y 0
k

)

− E
(

Y 0
k+1

)

= (1 − W11)
(

Yd − Y 0
e

)

+ F1E (Ek) .

(40)

If one defines

E∗ =
1 − W11

1 −F1

(

Yd − Y 0
e

)

(41)

(due to (9), (41) is the same with (10)), then it can be derived

from (10) and (40) that

E (Ek+1) − E∗ = F1 [E (Ek) − E∗] (42)

which results in

‖E [ek+1(t)] − e∗(t)‖2 ≤ ‖F1‖∞ ‖E [ek(t)] − e∗(t)‖2 (43)

and thus

‖E [ek(t)] − e∗(t)‖2 ≤ ‖F1‖
k

∞
‖E [e0(t)] − e∗(t)‖2 . (44)

With the fact that yd(t) and u0(t) are bounded, one can easily

conclude that e0(t) (hence, E [e0(t)]) is bounded. Since W11

is stable, one can also conclude that if (11) is satisfied, then

E [ek(t)] is bounded for all k, and

lim
k→∞

‖E [ek(t)] − e∗(t)‖2 = 0 (45)
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(monotonic convergence in the sense of L2-norm). Moreover

subtracting (40) from (39) yields

Ek+1 − E (Ek+1) = F1 [Ek − E (Ek)]

+ W11

(

Y 0
k − Y 0

e

)

−
(

Y 0
k+1 − Y 0

e

)

(46)

which, under the fact of (7), leads to

‖ek+1(t) − E [ek+1(t)]‖2 ≤ ‖F1‖∞ ‖ek(t) − E [ek(t)]‖2

+ (1 + ‖W11‖∞) Λ.
(47)

Hence, if (11) holds, then it can be obtained from (47) that

lim sup
k→∞

‖ek(t) − E [ek(t)]‖2 ≤
1 + ‖W11‖∞
1 − ‖F1‖∞

Λ (48)

and consequently, (12) can be shown by using (45) and (48).

This proof is completed.

APPENDIX II: PROOF OF THEOREM 2

Proof: Similar to (39), the tracking errors Ek and Ek+1

for the ILC system (3) and (5) satisfy

Ek+1 = Yd − PUk+1 − Y 0
k+1

= Yd − W12PUk − PK2Ek+1 − Y 0
k+1

= (1 − W12) Yd + W12Ek − PK2Ek+1

+ W12Y
0
k − Y 0

k+1

(49)

and hence

Ek+1 =
1 − W12

1 + PK2
Yd +

W12

1 + PK2
Ek

+
W12

1 + PK2
Y 0

k −
1

1 + PK2
Y 0

k+1

= (F3 −F2) Yd + F2Ek + F2Y
0
k −F3Y

0
k+1

(50)

from which one can obtain

E (Ek+1) = (F3 −F2) Yd + F2E (Ek)

+ F2E
(

Y 0
k

)

−F3E
(

Y 0
k+1

)

= (F3 −F2)
(

Yd − Y 0
e

)

+ F2E (Ek) .

(51)

Moreover, if let

E⋄ =
F3 −F2

1 −F2

(

Yd − Y 0
e

)

(52)

which is equivalent to (14), then it can be obtained that

E (Ek+1) − E⋄ = F2 [E (Ek) − E⋄] (53)

which leads to

‖E [ek(t)] − e⋄(t)‖2 ≤ ‖F2‖∞ ‖E [ek−1(t)] − e⋄(t)‖2

≤ ‖F2‖
k

∞
‖E [e0(t)] − e⋄(t)‖2 .

(54)

Thus, one can conclude that if (15) is satisfied, then E [ek(t)]
is bounded for all k, and limk→∞ ‖E [ek(t)] − e⋄(t)‖2 = 0
(monotonic convergence in the sense of L2-norm). Clearly,

from (50) and (51), one has

Ek+1 − E (Ek+1) = F2 [Ek − E (Ek)]

+ F2

(

Y 0
k − Y 0

e

)

−F3

(

Y 0
k+1 − Y 0

e

)

(55)

which, together with (7), (13) and (15), yields

lim sup
k→∞

‖ek(t) − E [ek(t)]‖2 ≤
1 + ‖W12‖∞
1 − ‖F2‖∞

‖F3‖∞ Λ.

(56)

From this and the convergence of E [ek(t)] to e⋄(t), (16) is

immediate. This proof is completed.
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