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ABSTRACT: The goal of this paper is to canonize Borel measurable
mappings ����� � �, where �� is the Milliken space, i.e., the space
of all increasing infinite sequences of pairwise disjoint nonempty
finite sets of �. Our main result refers to the metric topology on the
Milliken space. The result is a common generalization of a theorem of
Taylor (cf. Theorem 0.4) and a theorem of Prömel and Voigt (cf.
Theorem 0.7).

0. INTRODUCTION

Ramsey’s Theorem [Ra30] is an important extension of the pigeon-
hole principle: If �����0 � ... � Pk-1 is a partition of � into finitely
many pieces, then for some i � k, Pi is infinite.

THEOREM 0.1. (Ramsey R) Let l ����� 	
����l = P0 � ... � Pk-1 is a
����������
����

l into finitely many pieces, there is an infinite set A �

���
� such that [A]l � Pi for some i � k.

Ramsey’s Theorem can be viewed as a canonization of finite-range
functions on ���l. Later P. Erdös and R. Rado [ErRa50] canonized
arbitrary such functions.

THEOREM 0.2. (Erdös-Rado ER) If k ��������
�����k ���������������
exists an infinite set X ����������������
������ 0, ..., k - 1 such that if
{x0, ..., xk-1} and {y0, ..., yk-1} are in [X]k with x0 < ... < xk-1 and y0 < ...
< yk-1, then

f({x0, ..., xk-1}) = f({y0, ..., yk-1}) iff xi = yi for all i ����
�����

About twenty years later N. Hindman [Hi74] analysed the space of
all finite subsets of �. He found the following famous result. For ���

� and a ���� let (a)� denote the collection of all increasing sequences
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of � pairwise disjoint nonempty finite subsets of �, which are
obtained by unions of some a(i), i ���.

THEOREM 0.3. (Hindman) Let k �����	
�
������� � k, then there exists
a ���� such that f is constant on (a)1.

This theorem was the basis of the work of K. R. Milliken and A. D.
Taylor mentioned below. Taylor proved a canonical partition relation
for finite subsets of ��that generalizes Hindman's Theorem in much
the same way that the Erdös-Rado Theorem generalizes Ramsey's
Theorem. In his proof Taylor used a n-dimensional version of
Theorem 0.3, which was obtained independently also by Milliken (see
Lemma 2.5, Hn).
The following result of Taylor [Ta76] was stimulating for a part of

this work.

THEOREM 0.4. (Taylor T) 	
� 
������� ����� ������������������������

such that exactly one of (a) - (e) holds:

(a) If m, n � (a)1, then f(m) = f(n).

(b) If m, n � (a)1, then f(m) = f(n) iff min(m) = min(n).

(c) If m, n � (a)1, then f(m) = f(n) iff max(m) = max(n).

(d) If m, n � (a)1, then f(m) = f(n) iff min(m) = min(n) and max(m) =
max(n).

(e) If m, n � (a)1, then f(m) = f(n) iff m = n.

F. Galvin and K. Prikry have shown in [GaPr73] that a similar result
to Theorem 0.1 is valid for finite partitions of ���� - with the
restriction that all pieces of the partitions must be Borel.

THEOREM 0.5. (Galvin-Prikry GP) ������ �!��������� = P0 � ... �
Pk-1, where each Pi is Borel. Then there is an infinite set A �����

� and
i � k with [A]� � Pi.

The power set of � can be identified with the Cantor space 2�. It can
be endowed with the product topology of the discrete topology on �.
It is a well-known fact that this topological space is completely
metrizable. Thus, we can interpret the spaces ���

l and ���� in the
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theorems above as topological spaces with the relative topology of
���

��. For distinction we call this topology the metric topology of
���

��.
A subset P �� ���� is called Ramsey iff there is an infinite set A �
���

� such that either [A] � � P or else [A] � � P = �. By Theorem 0.5
every Borel set is Ramsey.
J. Silver [Si70] extended the result of Galvin-Prikry to analytic sets.

Subsequent to Silver’s investigation A. Mathias [Ma68] obtained a
new proof of the same result.
For stronger results E. Ellentuck has introduced a finer topology on
���

� which is called Ellentuck topology. For any a � ����� and A �
���

� with a � A let [a, A]� = {S ����	�: a � S � a � A}. The
Ellentuck topology then has as basic open sets all the sets of the form
[a, A]� for a � A. Note that there are continuum many pairwise
disjoint ones of them. Clearly the Ellentuck topology is finer than the
metric topology.
Call a set P � ���� completely Ramsey iff for every a � A there is B
� [A] � with [a, B]� � P or [a, B]� � P = �. Ellentuck [El74] has
shown the following main result, which is slightly stronger than the
theorem of Galvin-Prikry.

THEOREM 0.6. (Ellentuck) Let P �� ����. Then P is completely
Ramsey, if P has the Baire property in the Ellentuck topology.

Moreover Galvin [El74] made the observation, that every completely
Ramsey set has the Baire property. Therewith also the converse of
Theorem 0.6 holds. An analogous result with respect to a finer
topology – the 
-topology – was proven by Milliken (see Theorem 4.4
in [Mi75]). Especially, we take notice of a corollary of Milliken’s
result (M): Let k > 0 and �� = P0 � ... � Pk-1 be a partition of �� into
finitely many pieces, where each Pi is Borel. Then there exists a ����

and i � k with (a)� � Pi.
P. Pudlák and V. Rödl [PuRö82] canonized Borel-measurable

mappings on ���� with a countable range. The following result of H.
J. Prömel and B. Voigt [PrVo85] gives the canonization of such
functions with arbitrary range.

THEOREM 0.7. (Prömel-Voigt PV) ���� ��� ���� � � be a Borel-
measurable mapping. Then there exists A �� ���

�
� ���� ������������� "�
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[A] �� ��#���$%��&'�����������$���(�)���*�� � [A] ���+����)������#�
�����"���� k) = s} has the following properties:

(a) )����� X for all X � [A] �,

(b) for no X, Y � [A] � there exists k ��)�,���&'�������)������)�,���
������������)��������������������-���($�����
���$��)�,��

(c) for all X, Y � [A] �����
�--�+����������������,���

�)������)�,��

The following Figure 0.1 shows the relation between the theorems
mentioned above. Here A � B means that A generalizes B.

FIGURE 0.1.

All of these implications are pretty obvious and well-known. It was
natural to search for a theorem, which stands at the place of the
interrogation sign. The purpose of this paper is to provide such a
theorem.
First, we give some definitions to be able to formulate our Main

Theorem. Let ��� denote the space of all increasing finite sequences
of pairwise disjoint nonempty finite subsets of �.

DEFINITION. Let "����� � {sm, min-sep, max-sep, min-max, sss, vss}.
For m ������� let sm(m) = �, min-sep(m) = {min(m)}, max-sep(m) =
{max(m)}, min-max(m) = {min(m), max(m)} and sss(m) = vss(m) = m.
Let x ����. Define�)�(x) as follows: Let k(0) = 0 and �k(i): 0 ��i � N
�� �� increasingly enumerate those k such that "��� � (k – 1)) = vss.
Moreover let ��.�����, if N ���. Now let )�(x) = ��k(i)�j�k(i+1)� "����

j)(x(j)): i � N�.

R GP

ER PV

Hn M
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Now we give our main result:

MAIN THEOREM. (MT) /����0��1�2���-�$���&��3-��$���(������

� �� ������������ "����� � {sm, min-sep, max-sep, min-max, sss, vss}
and a ���� such that for all x, y � (a)�

���������1���

�)�������)�(y).

REMARK. Moreover for the guaranteed a ���� it even holds that for
no x, y � (a)� the set )�(x) is a proper initial segment of )�(y) (see
Lemma 2.36).

We give the proof of the Main Theorem in chapter 2. In chapter 1 we
show that every analytic subset of the Milliken space is completely H-
Ramsey – a property that will be used in chapter 2. For the
implications MT � T and MT � PV see section A in the appendix.
The implication MT � M is obvious.
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1. THE MILLIKEN SPACE

Hindman’s Theorem can be stated in equivalent form speaking about
integers and their sums rather than finite sets and their unions. This
was first mentioned by Graham and Rothschild [GrRo71]. The sum of
two integers written in binary notation looks like the characteristic
function of the union of two sets, provided the integers in binary are
sufficiently spread out so that no carrying occurs upon addition. But
the proof of Hindman’s Theorem shows that the integers can be
chosen with such a property. Milliken [Mi75] stated and proved his
result in the sum notation.
The following results up to 1.15 (except for Hindman’s Theorem) are

essentially Milliken’s results in the finite set notation, except for
difference between his notation of 
-Ramseyness and our notation of
H-Ramseyness. Also see [To98] for an axiomatic treatment of these
arguments. First of all let us expand our notation.
We begin by establishing some notation. The set of nonnegative

integers is denoted by �, and we identify each element of � with the
set of its predecessors as usual, for instance k = {0, ..., k – 1}. For the
set of all subsets of X which have the same cardinality k ��� we write
[X] k. The collection of all finite resp. countably infinite subsets of X is
denoted by [X] �� resp. [X] �. Moreover let [X] �� = [X] �� � [X] �. If A
� ����� and B � �����, then we write A � B iff max(A) � min(B).
Finally, if s is a mapping, we will write dom(s) to denote the domain
of s and ran(s) to denote the range of s.

DEFINITION. Let �� denote the collection of all mappings ��� ���

���
�� with x(i) � x(j) for all i � j. If k ���, let �k denote all mappings

s: k �� ����� with the same property. Let ��� = �i����
i and ��� =

�
�� ����. Moreover we define �max to be the mapping ���� �����

with i � {i} for every i ���.

DEFINITION. If a ����, let (a)� denote the the set of all mappings x �
�

� such that for every i ��� there exists an A ������� with x(i) = �j�A

a(j). Analogously, if k ���, define (a)k to be the set of all mappings s
���

k with the property that for every i � dom(s) there exists an A �
���

�� with s(i) = �j�A a(j). Additionally, let (a)���= �i�� (a)i. Finally,
if s ����� and a ����, we use (s, a)� to denote the set of mappings x



OLAF KLEIN AND OTMAR SPINAS 7

���
� such that x(i) = s(i) for every i � dom(s) and for some b � (a)�,

x(i + dom(s)) = b(i) for every i ���.

Assume that s, t ����� and a, b ����. We abbreviate s � (t)�� resp. s
� (b)�� resp. a � (b)� as s � t resp. s � b resp. a � b.
Now let s ����� and t �����. If s and t are nonempty, we write s � t

iff s(dom(s)-1) � t(0). For the following definition suppose s � t, if s
and t are nonempty. Then we use s � t to denote the mapping �s(i): i <
dom(s), t(i): i < dom(t)�. Moreover for every k ��� let t � k denote the
mapping �t(i): i < k � and t � k denote the mapping �t(i): i � k�.
Note that (a)� and [a] �, t � k and t � k as well as s � t and s � t have

different meanings. Regard �� as a topological space endowed with
the neighborhood system consisting of sets of the form (s, a)� where s
�� �

�� and a �� ��. We will call �� the Milliken space and its
topology the H-Ellentuck topology. The following results will refer to
this topology till we revoke it.
Finally, we want to establish some abbreviations for simpler

notation. If p is a mapping with ran(p) � 1, we will write p instead of
p(0) or �.
 For the remainder of this paper let the lower case letters m, n be

elements of �1, p, q be elements of ��1, r, s, t be elements of ���, a,
b, c, x, y, z be elements of �� and i, j, k, l be elements of �.
Furthermore, let indexed letters be elements of the same space as the
corresponding non-indexed letters. Moreover we stipulate that,
whenever we write a concatenation like s � m, we have s � m for
nonempty s.

DEFINITION. Let R ����. We say a accepts s iff (s, a)� � R and a
rejects s iff there is no b � a which accepts s. Moreover we say a
decides s iff a accepts s or a rejects s.

For the next few proofs let R be an arbitrary but fixed set.

LEMMA 1.1. There exists a which decides every s � a.

PROOF. Inductively, we construct aj �� �
� for every j �� �. By

definition there is an a0 such that a0 decides �. Assume that a0, ..., aj

have been constructed with the property that for every i � j ai decides
every s � �a0(0), ..., aj-1(0)�. After 2j steps we can find an aj+1 � aj � 1
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which decides every s � �a0(0), ..., aj(0)�. Then a = �aj(0): j ���� has
the desired property. �

Now we repeat the result of Hindman as Theorem 1.2.

THEOREM 1.2. (Hindman [Hi74]) 	
�
������� � k, then there exists a
such that f is constant on (a)1.

For a simpler proof also see [Ba74].

LEMMA 1.3. If a decides every s � a and a rejects �, then there is b
� a which rejects every s � b.

PROOF. Inductively, we construct bj ���
� for every j ���. We begin

by claiming that there is b0 � a such that b0 rejects every s � b0 with
dom(s) = 1. To see this we define a mapping d: (a)1 � {acc, rej} by
d(s) = acc iff a accepts s. By using f({x0, ..., xk}) = d(�a(x0) � ... �
a(xk)�) Theorem 1.2 guarantees the existence of b0 � a such that d is
constant on (b0)

1. Now assume that b0 accepts every s � b0 with
dom(s) = 1. Thus, (s, b0)

� � R for every s � (b0)
1. But then (b0)

� � R,
as (b0)

� = �{(s, b0)
�: s � (b0)

1}, contradicting that a rejects �.
For the inductive step, using the same arguments repeatedly we can

construct bj � bj-1 � 1 such that bj rejects all s � bj with dom(s) = j +
1. The assertion follows by putting b = �bj(0): j ����. �

DEFINITION. We call R ���� H-Ramsey iff there is a such that (�,
a)� � R or (�, a)� ���� \ R.

LEMMA 1.4. Every open set R ���� is H-Ramsey.

PROOF. Take an a which by Lemma 1.1 decides every s � a. If a
accepts �, then (a)� � R. Otherwise a rejects �, and by Lemma 1.3 we
may assume that a rejects every s � a. Suppose that b � (a)� � R.
Then there is a neighborhood (r, c)� such that b � (r, c)� � R. This
implies that b accepts r and thus a cannot reject r, contradiction. �

The following two lemmas we obtained by straightforward
generalizations of the proofs of Lemma 1.1 and 1.3.
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LEMMA 1.5. For every s and a there exists b � a such that b decides
s � t for every t � b.

LEMMA 1.6. If a decides s � t for every t � a and a rejects s, then
there is b � a which rejects s � t for every t � b.

DEFINITION. We call C �� �� completely H-Ramsey iff for every s
and a there is b � a such that (s, b)� � C or (s, b)� ���� \ C.

The following lemma follows from Lemmas 1.5 and 1.6 as Lemma
1.4 did from 1.1 and 1.3.

LEMMA 1.7. Every open set C ���� is completely H-Ramsey.

COROLLARY 1.8. The complement of a completely H-Ramsey set is
completely H-Ramsey.

PROOF. Obvious from the definition. �

DEFINITION. We call C �� �� H-Ramsey null iff for every s and a
there is b � a such that (s, b)� ���� \ C.

LEMMA 1.9. If C ���� is nowhere dense, then it is H-Ramsey null.

PROOF. By Lemma 1.7 and Corollary 1.8 the closure Cof C is
completely H-Ramsey. Then there is b � a such that (s, b)� � Cor (s,
b)� ���� \ C���

� \ C. Since C is nowhere dense, the former case
cannot occur. �

LEMMA 1.10. If C ���� is meager, then it is H-Ramsey null.

PROOF. Let Cn be a sequence of nowhere dense sets whose union is
C. We may assume that Cn � Cn+1 holds for all n.
Inductively, we construct bj ���

� for every j ���. For any s and a, by
Lemma 1.9 we can get b0 � a such that (s, b0)

� ���� \ C0. Assume
that b0, ..., bj have been constructed such that (s � t, bj)

� ���� \ Cj for
every t � �b0(0), ..., bj-1(0)�. Then also by Lemma 1.9 we can find bj+1

� bj � 1 such that (s � t, bj+1)� ���� \ Cj+1 for every t � �b0(0), ...,
bj(0)�.
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Hence b = �bj(0): j ���� satisfies the assertion of the lemma. �

COROLLARY 1.11. 40��1� �&3���� �
� �� is nowhere dense iff it is
meager iff it is H-Ramsey null.

PROOF. Obvious from the definition of nowhere dense sets and
Lemma 1.10. �

LEMMA 1.12. Every set C ���� with the Baire property is completely
H-Ramsey.

PROOF. Any set C with the Baire property can be expressed as C =
C0 � C1 where C0 is open, C1 is meager and � is the symmetric
difference. Since C1 is meager, by Lemma 1.10 for any s and a we can
choose b � a so that (s, b)� ���� \ C1 and then by Lemma 1.7 there is
c � b such that (s, c)� � C0 or (s, c)� ���� \ C0. In the former case (s,
c)� � C and in the latter (s, c)� ���� \ C. �

LEMMA 1.13. Let C ����. Then C is completely H-Ramsey iff C has
the Baire property.

PROOF. Let C be completely H-Ramsey. Then we claim that N = C \
Int(C) is nowhere dense (so C has the Baire property). Indeed, if this
fails, there are s and a such that (s, a)� � N . Let b � a be such that
(s, b)� � C or (s, b)� ���� \ C. Since (s, b)� � N  �, (s, b)� ���� \ C
is impossible. So (s, b)� � C, thus (s, b)� � Int(C) and (s, b)� � N =
�, giving a contradiction.
 Hence, the assertion of the lemma follows by Lemma 1.12. �

A Souslin system is a class of closed sets that are indexed by finite
sequences of nonnegative integers. A Souslin set is one which can be
expressed in the form �f��� �k�� Sf�k where {Se}e is a Souslin system, f
� k is the restriction of f to the predecessors of k, and �� is the set of
all functions mapping � into �.

LEMMA 1.14. Every Souslin set C ���� is completely H-Ramsey.

PROOF. The Baire property is preserved under the Souslin operation -
for a proof see [Ku66]. Since closed sets have the Baire property,
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Lemma 1.12 gives our result. �

The following result and also the results of the remainder of this
paper will refer to the metric topology on ��. Note that by definition
the Milliken space is a subspace of ����

��)�. The latter one can be
regarded as a topological space with the product topology of the
discrete topology of �����. Hence the metric topology on �� is the
relative topology on ������)�. Notice that it is completely metrizable
and coarser than the H-Ellentuck topology.

THEOREM 1.15. Every analytic set C ���� is completely H-Ramsey.

PROOF. Every analytic set is a Souslin set [Ku66]. Since closed sets
in the metric topology on �� are also closed in the H-Ellentuck
topology, Lemma 1.14 applies directly. �
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2. PROOF OF THE MAIN THEOREM

The proof of the Main Theorem requires some further results. Our
first lemma is analogous to Lemma 1 in [PrVo85].

LEMMA 2.1. ��������� � � be Borel-measurable. Then there exists a
�&'�����������������'�������� (a)� is a continuous mapping.

PROOF. Let (Ij)j�� be an enumeration of all open intervals in � which
have rational endpoints. The Ij form a basis for the topology of the
reals. Inductively, we construct aj ���

� for every j ���. Put a0 ���max

and assume by induction that a0, ..., aj have been constructed such that
for all i � j and all s � �a0(0), ..., ai(0)� either (s, ai+1)� ���-1(Ii) or (s,
ai+1)� ���� 5��-1(Ii). Since Ij is open, it follows that �-1(Ij) ���

� must
be Borel and hence by Theorem 1.15 completely H-Ramsey. Hence
we can get an aj+1 � aj � 1 such that for all s � �a0(0), ..., aj(0)� either
(s, aj+1)� ���-1(Ij) or (s, aj+1)� ���� 5��-1(Ij).
We claim that a = �aj(0): j ���� has the desired properties. To see

this we shall prove that every inverse image ��� � (a)�)-1 (Ij) is the
union of all open sets (s, a)� with the property that s � �ai(0): i� j�
and (s, a)� ���-1(Ij). It is obvious that the union of these open sets is
part of the inverse image. So let x be an arbitrary but fixed element of
the inverse image. Therefore x � a and ������ Ij. Let k be maximal
such that s = x � k � �ai(0): i� j�. Then it follows x � (s, a)� ������
(a)�)-1 (Ij) and, thus, the assertion of the lemma. �

REMARK. Suppose ����� � � is Baire measurable with respect to the
H-Ellentuck topology. The same argument, using Lemma 1.12 instead
of Theorem 1.15, shows that ��� (a)� is continuous with respect to the
metric topology on �� for some a.

For the remainder of this section let ����
� � � be an arbitrary but

fixed mapping.

DEFINITION. Let s, t and x be such that s � t, x and s = �s(0), ..., s(k)�.
We abbreviate the mappings s � k � �s(k) � t(0)� � t � 1 resp. s � k � �s(k)
� x(0)� � x � 1 as s� � t resp. s� � x. Additionally, we define s� � � to be
s�. Moreover we use s� as a variable for s or s�.
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Analogously to [PrVo85] we introduce now the terms separating and
mixing.

DEFINITION. We say that s� and t� are separated by a iff ���� � x) 
���� � y) for all x, y � a with s � x, y and t � x, y. Moreover s� and t�
are mixed by a iff for no b � a the sets s� and t� are separated by b.
Finally, s� and t� are decided by a iff s� and t� are separated or mixed
by a.

We stipulate that, whenever we write a concatenation like s� � m�
resp. s� � m� � n�, we have s � m resp. s � m � n for nonempty s, m, n.

COROLLARY 2.2. For every s, t and a, there exists b � a which
decides s� and t�. If s� and t� are decided by b, then they are also
decided by each c � b, and c decides in the same way as b does.

PROOF. Obvious from the definition. �

LEMMA 2.3. (Transitivity of mixing) Assume that r� and s�, as well
as s� and t� are mixed by a. Then also r� and t� are mixed by a.

PROOF. Assume to the contrary that there exists b � a which
separates r� and t�. We may assume without loss of generality that r,
s, t � b. Consider the set A = {x � b: � y ��3����� ��1�������� � x)}.
Then A is analytic, so by Theorem 1.15 A is completely H-Ramsey.
By definition of completely H-Ramsey there exists c � b with (c)� �
A or (c)� � A = �. Both cases lead to a contradiction:
Assume first that (c)� � A. Then for all x � c there exists y � b such

that ���� ��1�������� � x). Since r� and t� are separated by b, it follows
that ���� � y) ����� � z) for every y, z � b. Hence we get ���� � x) 
���� � z) for all x, z � c, contradicting that s� and t� are mixed by a.
Otherwise if (c)� � A = �, then r� and s� are separated by c. �

LEMMA 2.4. For every a there exists b � a such that for every s, t �
b the sets s� and t� are decided by b.

PROOF. Inductively, we construct bj �� �
� for every j �� �. By

Corollary 2.2 there exists b0 � a such that � and � are decided by b0.
Assume that b0, ..., bj have been constructed such that for every i � j
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and for all s, t � �bk(0): k < i� the sets s� and t� are decided by bi.
Some applications of Corollary 2.2 yield bj+1 � bj � 1 such that the
inductive assumption is also satisfied for b0, ..., bj+1. Then b = �bj(0): j
���� has the desired properties. �

LEMMA 2.5. (Taylor [Ta76]) If k, l � 0 and f: (a)l � k, then there
exists b � a such that f is constant on (b)l.

For a proof see Lemma 2.2 in [Ta76].

The following Lemma is modeled in the image of Theorem 2.1 in
[Ta76].

LEMMA 2.6. For every s and a, there exists b � a such that exactly
one of the following properties holds:

(a) If m, n � b, then s � m and s � n are mixed by b.

(b) If m, n � b, then s � m and s � n are mixed by b iff min(m) =
min(n).

(c) If m, n � b, then s � m and s � n are mixed by b iff max(m) =
max(n).

(d) If m, n � b, then s � m and s � n are mixed by b iff min(m) =
min(n) and max(m) = max(n).

(e) If m, n � b, then s � m and s � n are mixed by b iff m = n.

PROOF. Lemma 2.4 guarantees the existence of b0 � a such that s � m
and s � n are decided by b0 for every m, n � b0. Let F be the set of all
functions f such that dom(f) = 3 and ran(f) � 2. Define g: (b0)

3 � F as
follows:

g(h)(0) = 0 iff s � �h(0) � h(1) � h(2)� and s � �h(0)� are mixed by b0.

g(h)(1) = 0 iff s � �h(0) � h(1) � h(2)� and s � �h(2)� are mixed by b0.

g(h)(2) = 0 iff s � �h(0) � h(1) � h(2)� and s � �h(0) � h(2)� are mixed
by b0.

By Lemma 2.5 there exists b1 � b0 and a function f = �f(0), f(1), f(2)�
� F such that g((b1)

3) = {f} . We claim first that f cannot be �0, 0, 1� or
�1, 0, 1� or �0, 1, 1�. The first two are ruled out by the observation that



OLAF KLEIN AND OTMAR SPINAS 15

if f(1) = 0, then we must have f(2) = 0. Indeed, if f(2)  0, then s �

�(b1(0) � b1(1)) � b1(2) � b1(3)� and s � �(b1(0) � b1(1)) � b1(3)� are
separated by b1. But since f(1) = 0, both of these are mixed with s �

�b1(3)�. By transitivity of mixing we get a contradiction. Similarly, the
third one is ruled out since if f(0) = 0, then we must have f(2) = 0.
This leaves five possibilities for f.
We will show that these five possibilities correspond to the five

clauses (a) - (e) of this lemma. By construction we are guaranteed that
exactly one case holds in the assertion.

Case (a). f = �0, 0, 0�. Let b = �b1(i): i � 1� and m, n � b. Since f(1)
= 0, s � m and s � �b1(0) � b1(1) � m� as well as s � n and s � �b1(0) �
b1(1) � n� are mixed by b. Moreover because f(0) = 0, we have that s �

�b1(0) � b1(1) � m� and s � �b1(0)� as well as s � �b1(0) � b1(1) � n�
and s � �b1(0)� are mixed by b. By transitivity of mixing it follows that
s � m and s � n are mixed by b whenever m, n � b, so b satisfies clause
(a) of the lemma.

Case (b). f = �0, 1, 0�. Let b = �b1(3i) � b1(3i + 1) � b1(3i + 2): i �
��. Suppose first that m, n � b with min(m) = min(n). Then m = �b(k)
� p� and n= �b(k) � q� for some k and some p, q � b � k. Since f(0) =
0, s � m and s � �b1(3k)� as well as s � n and s � �b1(3k)� are mixed by b.
By transitivity of mixing we obtain that s � m and s � n are mixed by b.
Conversely, if m, n � b and min(m) � min(n), then m = �b(k) � p�

for some k and p � b � k, and b(k) � n. Thus, s � m and s � �b(k) � n�
are mixed by b, since both are mixed with s � �b1(3k)� by virtue of the
fact that f(0) = 0. But since f(1) = 1, we have that s � �b(k) � n� and s �

n are separated by b, and so - by transitivity of mixing - we must have
that s � m and s � n are separated by b.
Thus, s � m and s � n are mixed by b iff min(m) = min(n), so b satisfies

clause (b) of the lemma.

Case (c). f = �1, 0, 0�. Let b = �b1(3i) � b1(3i + 1) � b1(3i + 2): i �
�� like in case (b). If m, n � b and max(m) = max(n), then m = �p �
b(k)� and n = �q � b(k)� for some k and p, q � b � k. Since f(1) = 0 we
have that s � m and s � �b1(3k + 2)� as well as s � n and s � �b1(3k + 2)�
are mixed by b. Hence s � m and s � n are mixed by b.
Conversely, if m, n � b and max(m) � max(n), then n = �q � b(k)�

for some k and q � b � k, and m � b(k). Thus, s � n and s � �m � b(k)�
are mixed by b, because both are mixed with s � �b1(3k + 2)� since f(1)
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= 0. But s � �m � b(k)� and s � m are separated by b since f(0) = 1. So
we must have that s � m and s � n are separated by b.
Hence s � m and s � n are mixed by b iff max(m) = max(n), and hence

b satisfies clause (c) of the lemma.

CLAIM 2.6.1. Let s and a be such that s � m and s � n are decided by a
for every m, n � a. If s � �h(0) � h(1) � h(2)� and s � �h(0)� are
separated by a for all h � (a)3, then there exists b � a such that s � m
and s � n are separated by b for every m, n � b with max(m) � max(n).

PROOF. Let a0, a1 be elements of ��. We construct b inductively. Put
b(0) = a(0) and suppose that b(0), ..., b(k-1) have been constructed
such that s � m and s � n are separated by a for all m, n � b � k with
max(m) � max(n). Let a0 � a with b(k) � a0(0). Choose �b(k)� � a0

such that s � m and s � �p � b(k)� are separated by a for every m, p �
b� k. This is possible, since otherwise for all �b(k)� � a0 there would
exist m, p � b � k such that s � m and s � �p � b(k)� are mixed by a.
Hindman's Theorem would yield a1 � a0 and fixed m, p � b � k such
that s � m and s � �p � b(k)� are mixed by a for every �b(k)� � a1. By
transitivity of mixing (Lemma 2.3) we get that s � �p � m� and s � �p �
n� are mixed by a for all m, n � a1. Choosing h = �p � a1(0), a1(1),
a1(2)� we get a contradiction to the assumption of the lemma. This
completes the construction of b. �

Case (d). f = �1, 1, 0�. To handle case (d) we choose b2 � b1 as
guaranteed to exist by Claim 2.6.1. Let b = �b1(3i) � b1(3i + 1) �
b1(3i + 2): i ����. We claim that if m, n � b, then s � m and s � n are
mixed by b iff min(m) = min(n) and max(m) = max(n).
Suppose first that min(m) = min(n) and max(m) = max(n). Then for

some i � j we have that s � m and s � �b2(3i) � b2(3j + 2)� as well as s �

n and s � �b2(3i) � b2(3j + 2)� are mixed by b, since f(2) = 0. By
transitivity of mixing we get that s � m and s � n are mixed by b.
For the converse, suppose that either min(m)  min(n) or max(m) 

max(n). If max(m)  max(n), then clearly s � m and s � n are separated
by b, by construction according to Claim 2.6.1. Hence we can assume
that max(m) = max(n) and min(m) � min(n). Let m = �b(k) � p � b(l)�
for some k � l and some p � �b(i): k � i � l� and b(k) � n. But then s �

m and s � �b2(3k) � b2(3l + 2)� as well as s � �b2(3k) � b2(3l + 2)� and s
� �b(k) � n� are mixed by b, since f(2) = 0. However, since f(1) = 1 we
have that s � �b(k) � n� and s � n are separated by b, and by the
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transitivity of mixing it follows that s � m and s � n are separated by b.
Thus, we have shown that b satisfies clause (d) of the lemma.

DEFINITION. For some given s and a we will say that t and b are
compatible iff t � b and s � �p � m� and s � �q � m� are separated by a
for every m � b and for all p, q � t with max(p)  max(q). Note that
p and q can be empty as agreed in the introduction. We will say that t
and b are very compatible iff they are compatible and, moreover, there
exists n � b and there exists c � b such that t � n and c are
compatible.

CLAIM 2.6.2. Let s and a be such that s � m and s � n are decided by a
for every m, n � a. Suppose that s � �h(0) � h(1) � h(2)� and s � �h(0)
� h(2)� are separated by a for all h � (a)3. Then if t and b are
compatible where b, t � a, then t and b are in fact very compatible.

PROOF. Suppose that t and b are compatible but not very compatible.
Then for every m � b and for all c � b with m � c there exists n � c
and there exists p, q � t � m such that max(p)  max(q) and s � �p � n�
and s � �q � n� are mixed by a. Notice that we cannot have both p, q �
t since t and b are compatible. Thus, we better use instead of any such
q a mapping of the form �q � m� with the restriction q � t. Now two
applications of Lemma 2.5 yield c � b and fixed p, q � t such that s �

�p � n� and s � �q � m � n� are mixed by a for every m � n � c. We
get mixing for all m � n because of our assumption above. Choosing h
� (c)3 we obtain that s � �p � h(2)� and s � �q � h(0) � h(2)� as well as
s � �p � h(2)� and s � �q � h(0) � h(1) � h(2)� are mixed by a since
�h(0), h(2)�, �h(0) � h(1), h(2)� � c. Thus, by transitivity of mixing s �

�q � h(0) � h(1) � h(2)� and s � �q � h(0) � h(2)� are mixed by a,
contradicting the condition imposed in the lemma. This completes the
proof of the   claim. �

Case (e). f = �1, 1, 1�. To handle case (e) we construct b2 � b1

inductively. To this end we build a sequence {(b2(i), ci): i ���% such
that b2 � (i + 1) and ci are compatible for every i ��� with ci ���

�. Let
b2(0) = b1(0) � b1(1) and c0 = b1 � 2. Notice that b2 � 1 and c0 are
compatible since f(1) = 1 and f(2) = 1. Suppose now that b2 � (k + 1)
and ck have been constructed and are compatible. Since f(2) = 1,
Claim 2.6.2 applies and hence we have that b2 � (k + 1) and ck are very
compatible. Thus, there exists �b2(k + 1)� � ck and there exists ck+1 �
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ck such that b2 � (k + 2) and ck+1 are compatible. This completes the
construction.
Now we claim that if m, n � b2 with m  n and max(m) = max(n),

then we have that s � m and s � n are separated by b2. To see this, let
b2(k) be the last piece of b2 occuring in (m � n) \ (m � n). Then we
can assume without loss of generality that m = �p � b2(k) � m0� and n
= �q � m0� for some p, q � b2 � k and some m0 � b2 with b2(k) � m0.
Since b2 � (k + 1) and ck are compatible, m0 � ck and max(p � b2(k)) �
max(q) we have that s � �p � b2(k) � m0� and s � �q � m0� are separated
by b2. Thus, s � m and s � n are separated by b2. Since f(0) = 1 and b2 �
b1, Claim 2.6.1 applies and we can choose b � b2 such that s � m and s
� n are separated by b whenever m, n � b and max(m) � max(n).
Finally, notice that if s � m and s � n are separated by b, we must have

m  n by definition of separated. So we can conclude that s � m and s �

n are mixed by b iff m  n.
This completes the proof of case (e) and with it, the proof of Lemma

2.6. �

The following definition is based on the five cases of Lemma 2.6.

DEFINITION. We say that s� is strongly mixed by a iff s� � m and s� � n
are mixed by a for every m, n � a. Moreover s is min-separated by a
iff for every m, n � a the sets s � m and s � n are mixed by a iff min(m)
= min(n). Furthermore, s� is max-separated by a iff for every m, n �
a the sets s� � m and s� � n are mixed by a iff max(m) = max(n).
Moreover we say that s is min-max-separated by a iff for every m, n
� a the sets s � m and s � n are mixed by a iff min(m) = min(n) and
max(m) = max(n). Finally, s� is strongly separated by a iff for every
m, n � a the sets s� � m and s� � n are mixed by a iff m = n.
Furthermore, we say s� is separated in some sense by a iff s� is min-

separated, max-separated, min-max-separated or strongly separated by
a. Moreover s is completely decided by a iff s is strongly mixed by a
or s is separated in some sense by a.

COROLLARY 2.7. For every s and a the following properties hold.

(a) Let s be strongly mixed by a. Then s � m� is strongly mixed by a
for every m � a.

(b) Let s be min-separated by a. Then s � m� is strongly mixed by a
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for every m � a.

(c) Let s be max-separated by a. Then s � m� is max-separated by a
for every m � a.

(d) Let s be min-max-separated by a. Then s � m� is max-separated
by a for every m � a.

(e) Let s be strongly separated by a. Then s � m� is strongly
separated by a for every m � a.

PROOF. Obvious from the definition. �

LEMMA 2.8. For every s and a the following properties hold.

(a) Let s� be strongly mixed by a. Then s� and s� � m� as well as s� �

m� and s� � n� are mixed by a for every m, n � a.

(b) Let s be min-separated by a. Then s � m� and s � n� are mixed by a
for every m, n � a with min(m) = min(n).

(c) Let s� be max-separated by a. Then s� and s� � m� as well as s� �

m� and s� � n� are mixed by a for every m, n � a.

(d) Let s be min-max-separated by a. Then s � m� and s � n� are
mixed by a for every m, n � a with min(m) = min(n).

PROOF. Case (a). Let s� be strongly mixed by a. First, we prove that
s� and s� � m� are mixed by a for every m � a. Assume to the
contrary that s� and s� � m resp. s� and s� � m� are not mixed by a for
some m � a. Hence there exists b � a such that s� and s� � m resp. s�
and s� � m� are separated by b. Since s� is strongly mixed by a, by
Corollary 2.2 we get that s� � m and s� � n are also mixed by b for
every m, n � a.
Now choose k minimal such that m � b(k). By definition of

separation we must have that s� � �b(k)� and s� � m resp. s� � �b(k)� and
s� � m� � �b(k)� are separated by b. However, since �b(k)� � a, both
facts contradict that s� is strongly mixed by a.
By transitivity of mixing the second assertion, that s� � m� and s� � n�

are mixed by a for every m, n � a, follows from the first one.

Case (b). Let s be min-separated by a. Assume to the contrary that s �

m and s � n� resp. s � m� and s � n� are not mixed by a for some m, n �
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a with min(m) = min(n). Hence there exists b � a such that s � m and s
� n� resp. s � m� and s � n� are separated by b. Since s is min-separated
by a, by Corollary 2.2 we get that s � m and s � n are also mixed by b
for every m, n � a with min(m) = min(n).
Now choose k minimal such that m, n � b(k). By definition of

separation we must have that s � m and s � n� � �b(k)� resp. s � m� �

�b(k)� and s � n� � �b(k)� are separated by b. However, since �b(k)� �
a, both facts contradict that s is min-separated by a.

Case (c). Let s� be max-separated by a. First, we prove that s� and s�
� m� are mixed by a for every m � a. Assume to the contrary that s�
and s� � m� are not mixed by a for some m � a. Hence there exists b
� a such that s� and s� � m� are separated by b. Since s� is max-
separated by a, by Corollary 2.2 we get that s� � m and s� � n are also
mixed by b for every m, n � a with max(m) = max(n).
Now choose k minimal such that m � b(k). By definition of

separation we must have that s� � �b(k)� and s� � m� � �b(k)� are
separated by b. However, since �b(k)� � a, this contradicts that s� is
max-separated by a.
By transitivity of mixing the second assertion, that s� � m� and s� � n�

are mixed by a for every m, n � a, follows from the first one.

Case (d). Let s be min-max-separated by a. Assume to the contrary
that s � m� and s � n� are not mixed by a for some m, n � a with
min(m) = min(n). Hence there exists b � a such that s � m� and s � n�
are separated by b. Since s is min-max-separated by a, by Corollary
2.2 we get that s � m and s � n are also mixed by b for every m, n � a
with min(m) = min(n) and max(m) = max(n).
Now choose k minimal such that m, n � b(k). By definition of

separation we must have that s � m� � �b(k)� and s � n� � �b(k)� are
separated by b. However, since �b(k)� � a, this contradicts that s is
min-max-separated by a. �

LEMMA 2.9. For every a there exists b � a which completely decides
every s � b.

PROOF. Inductively, we construct bj ���
� for every j ���. By Lemma

2.6 there exists b0 � a such that b0 completely decides �. Assume by
induction that b0, ..., bj have been constructed such that for every i � j
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and all s � �bk(0): k < i� the set bi completely decides s. Some
applications of Lemma 2.6 yield bj+1 � bj � 1 such that the inductive
assumption is also satisfied for b0, ..., bj+1. Then b = �bj(0): j ���� has
the desired properties. �

DEFINITION. a is canonical�
���� iff it has the following properties:

(a) The mapping ��� (a)� is continuous.

(b) If s, t � a, then s� and t� are decided by a.

(c) Every s � a is completely decided by a.

(d) Let s, t � a. Then s� and s� � m� are either mixed by a for all m
� a or separated by a for all m � a. Equally s� � m� and s� � m�,
s� � m� and t� � m�, s� � m� and s� � m� � n� as well as s� � m� and
t� � m� � n� are in each case either mixed by a for all m, n � a or
separated by a for all m, n � a.

(e) If s � a, then either for every x � a and all k ��� the set s� � (x �
k) is strongly mixed by a or for every x � a there exists k ���
such that s� � (x � k) is separated in some sense by a.

(f) There exists b with a = �b(3i) � b(3i + 1) � b(3i + 2): i ����
such that the properties (a) to (e) are even true for b instead of a.

LEMMA 2.10. 6��������������+��'�����'�����'�-�
�����

PROOF. First, observe by Corollary 2.2 that if s� and t� are decided
by a, then they are also decided by each b � a, and b decides in the
same way as a does. Hence by Lemma 2.1, 2.4 and 2.9 we are
guaranteed that there exists b0, which satisfies the properties (a) to (c)
of canonical.
Now we turn to property (d). Inductively, we construct cj ���

� for
every j ���. By Lemma 2.5 we can find c0 � b0 such that the sets �
and � � m are either mixed by c0 for every m � c0 or separated by c0

for every m � c0. Assume that c0, ..., cj have been constructed such
that for all i � j and for all s � �cl(0): l < i � the sets s and s � m are
either mixed by ci for every m � ci or separated by ci for every m �
ci. Again, invoking Lemma 2.5 there exists cj+1 � cj � 1 such that the
inductive assumption is also satisfied for c0, ..., cj+1. Then b1 = �cj(0): j
���� has the desired property. Applying some similar inductions, we
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get b1 fulfilling (a) to (d) of canonical.
Now we turn to property (e). Inductively, we construct cj ���

� for
every 7�8��. Consider the set C = {x � b1: � k ������� k is strongly
mixed by b1}. Since C is closed, by Theorem 1.15 there exists c0 � b1

such that (c0)
� � C or (c0)

� ���� \ C. Assume that c0, ..., cj have been
constructed such that for all i � j and for all s � �cl(0): l < i � either for
every x � ci and all k ��� the set s� � (x � k) is strongly mixed by ci or
for every x � ci there exists k ��� such that s� � (x � k) is separated in
some sense by ci. For every s � �cl(0): l < j � consider the sets Cs�,� =
{x � cj: � k ������ � �cj(0)�� � (x � k) is strongly mixed by cj}. Again,
all Cs�,� are closed. Hence some applications of Theorem 1.15 yield
cj+1 � cj � 1 such that the inductive assumption is also satisfied for c0,
..., cj+1. Then b = �cj(0): j ���� satisfies the properties (a) to (e) of
canonical.
Finally, let a = �b(3i) � b(3i + 1) � b(3i + 2): i ����. Hence a has

the properties (a) to (f). This completes the proof. �

For the remainder of this paper let a be canonical for �.

LEMMA 2.11. Let s � a.

(a) Let s be min-separated by a. If x, y ��������������
�

����������
� y)

implies min(x(0)) = min(y(0)).

(b) Let s� be max-separated by a. If x, y �������������� ����������� �

y) implies max(x(0)) = max(y(0)).

(c) Let s be min-max-separated by a. If x, y ��������������
�

����������
�

y) implies min(x(0)) = min(y(0)) and max(x(0)) = max(y(0)).

(d) Let s� be strongly separated by a. If x, y �� ��� ��������� � x) =
���� � y) implies that there exists k such that x(0) = y(0) � k or
y(0) = x(0) � k, i.e., either x(0) is an initial segment of y(0) or
conversely.

PROOF. Let x, y � a be such that ���� ����������� � y). Notice that we
can assume without loss of generality that max(x(0)) � max(y(0));
since max(x(0)) = max(y(0)) together with the hypothesis of each of
the four cases implies that s� � �x(0)� and s� � �y(0)� are mixed by a,
and the assertion follows by Lemma 2.6.
First of all, we show that if s� is separated in some sense by a and
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max(x(0)) � max(y(0)), we must have that min(x(0)) = min(y(0)).
Therefor assume to the contrary that min(x(0))  min(y(0)). We
distinguish three cases.
First, let max(x(0)) � min(y(0)). Since����� ����������� � y), we have

that s� � �x(0)� and s� are mixed by a. Hence by (d) of canonical we
must have that s� � m and s� are mixed by a for all m � a. By
transitivity of mixing it follows that s� � m and s� � n are mixed by a
for every m, n � a. But this contradicts that s� is separated in some
sense by a.
Next, suppose that min(x(0)) � min(y(0)) and max(x(0)) � min(y(0)).

Let v be the part of x(0) below min(y(0)). Since ���� ����������� � y),
we have that s� � �v�� and s� are mixed by a. Thus, by (d) of canonical
we must have that s� � m� and s� are mixed by a for all m � a. Now
let w denote the part of y(0) less than or equal to max(x(0)). Hence we
have that s� � �x(0)� and s� � �w�� are mixed by a. By transitivity of
mixing s� � �x(0)� and s� are mixed by a. Therefore, by (d) of
canonical we must have that s� � m and s� are mixed by a for all m �
a. Again, by transitivity of mixing it follows that s� � m and s� � n are
mixed by a for every m, n � a. But this contradicts that s� is
separated in some sense by a.
Finally, assume that min(x(0)) � min(y(0)). Let v be the part of y(0)

below min(x(0)). Since ���� ����������� � y), we have that s� and s� �

�v�� are mixed by a. Thus, by (d) of canonical we must have that s�
and s� � m� are mixed by a for all m � a. Now let w denote the part of
y(0) less than or equal to max(x(0)). Hence we have that s� � �x(0)� and
s� � �w�� are mixed by a. By transitivity of mixing s� � �x(0)� and s�
are mixed by a. Therefore, by (d) of canonical we must have that s� �

m and s� are mixed by a for all m � a. Again, by transitivity of
mixing it follows that s� � m and s� � n are mixed by a for every m, n
� a. But this contradicts that s� is separated in some sense by a.
Therewith we must have min(x(0)) = min(y(0)). This already proves

case (a) of this lemma.
Now we prove case (b) and (c) in one step. Therefor let s� be max-

separated or min-max-separated by a. Recall that we can assume
without loss of generality min(x(0)) = min(y(0)) and max(x(0)) �
max(y(0)).
Let v be the part of y(0) less than or equal to max(x(0)). Hence we

have that s� � �x(0)� and s� � �v�� are mixed by a. Additionally, the
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cases (c) and (d) of Lemma 2.8 yield that s� � m� and s� � n� are mixed
by a for all m, n � a with min(m) = min(n). Therefore s� � �v�� and s�
� �x(0)�� are mixed by a, because min(v) = min(x(0)). By transitivity
of mixing we get that s� � �x(0)� and s� � �x(0)�� are mixed by a.
Moreover by (d) of canonical we must have that s� � m and s� � m� are
mixed by a for every m � a. Altogether, we have that s� � �x(0)� and
s� � �x(0)��, s� � �x(0)�� and s� � �y(0)�� as well as s� � �y(0)�� and s� �

�y(0)� are mixed by a. Again, by transitivity of mixing we obtain that
s� � �x(0)� and s� � �y(0)� are mixed by a. But this contradicts the fact
that s� is max-separated or min-max-separated by a.
Hence we must have that max(x(0)) = max(y(0)), and the assertion

follows by Lemma 2.6.
Finally, we prove case (d) of this lemma. Therefor let s� be strongly

separated by a. Recall that we can assume without loss of generality
min(x(0)) = min(y(0)) and max(x(0)) � max(y(0)). Suppose to the
contrary that x(0) is not an initial segment of y(0).
Let b with a � b be as in (f) of canonical. Moreover let v denote the

longest common initial segment of x(0) and y(0). Choose k with
min(x(0) � y(0)) � b(k). Since x(0) is not an initial segment of y(0), we
have that s� � �v�� and s� � �v�� � �b(k)�� are mixed by b. Hence by (d)
of canonical we must have that s� � m� and s� � m� � n� are mixed by b
for all m, n � b. Furthermore, let w denote the part of y(0) less than or
equal to max(x(0)). Therewith we get that s� � �x(0)� and s� � �w�� are
mixed by b, too. Since v is an initial segment of w, we get with the
result above that s� � �w�� and s� � �v�� are mixed by b. Hence by
transitivity of mixing s� � �x(0)� and s� � �v�� are mixed by b.
Moreover since v is an initial segment of x(0), property (d) of
canonical yields that s� � m� and s� � m� � n are mixed by b for all m, n
� b. Thus, equally s� � �y(0)� and s� � �v�� are mixed by b, and by
transitivity we obtain that s� � �x(0)� and s� � �y(0)� are mixed by b.
Since a � b, we must have that s� � �x(0)� and s� � �y(0)� are also
mixed by a. But this contradicts that s� is strongly separated by a.
Hence we must have that x(0) is an initial segment of y(0). This

completes the proof. �

LEMMA 2.12. Let s, t � a. Suppose s� and t� are mixed by a and s�
is separated in some sense by a. If x, y �����&'����������� ����������� �

y), then max(x(0)) � min(y(0)).
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PROOF. Let x, y � a be such that ���� ����������� � y). Assume to the
contrary that max(x(0)) � min(y(0)). Note that max(x(0)) = min(y(0))
is impossible by (f) of canonical.
Choose 0 � k � dom(t) maximal with max(t(k-1)) � max(x(0)) if

possible, otherwise choose k = 0. Moreover if k � dom(t), let v denote
the part of t(k) less than or equal to max(x(0)). Thus, if k = dom(t) or v
= �, we have that s� � �x(0)� and t � k� are mixed by a. Otherwise we
have that s� � �x(0)� and t � k � �v�� are mixed by a.
Moreover since s� and t� are mixed by a, there exist x0, y0 � a with s
� x0, y0 and t � x0, y0 such that ���� � x0�������� 

� y0).
Now assume that we are in the first case, where s� � �x(0)� and t � k�

are mixed by a. If k ��dom(t), we can choose y1 � a by y1 = �t(i): k �
i � dom(t)� � y0 such that ���� � x0��������� k� 

� y1). By choice of k we
have s � x0, y1 and t � k � x0, y1. Hence by (b) of canonical we must
have that s� and t � k� are mixed by a.
Next, suppose that we are in the case, where s� � �x(0)� and t � k � �v��

are mixed by a. Let w be the part of t(k) above max(v). If k � dom(t) –
1, choose y1 � a by y1 = �w� � �t(i): k � i � dom(t)� � y0, otherwise
choose y1 = �w� � y0. Therewith we have that ���� � x0��������� k � �v�� �

y1) with s � x0, y1 and t � k � �v� � x0, y1. Thus, by (b) of canonical we
get that s� and t � k � �v�� are mixed by a.
Since s� and t� are mixed by a, by transitivity of mixing we can

conclude that s� � �x(0)� and s� are mixed by a, contradicting all cases
of Lemma 2.11. �

LEMMA 2.13. Let s, t � a. If x, y � a with min(x(0)) = min(y(0))
�&'����������� ����������� � y), then s� � m� and t� � m� are mixed by a
for every m � a.

PROOF. Let b with a � b be as in (f) of canonical. Choose k with
min(x(0)) � b(k). Since ���� ����������� � y), we have that s� � �b(k)��
and t� � �b(k)�� are mixed by b. By (d) of canonical we must have that
s� � m� and t� � m� are mixed by b for every m � b. Since a � b, by
Corollary 2.2 we also have that s� � m� and t� � m� are mixed by a for
every m � a. �

LEMMA 2.14. Let s, t � a. Suppose s and t are mixed by a and both s
and t are min-separated by a. If x, y �����&'�����������

�

����������
� y),
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then min(x(0)) = min(y(0)).

PROOF. Let x, y � a be such that ���� ����������� � y). Assume to the
contrary that min(x(0))  min(y(0)). By symmetry we can suppose
without loss of generality that min(x(0)) � min(y(0)). Moreover by
Lemma 2.12 it suffices to prove that the assumption that min(x(0)) �
min(y(0)) and max(x(0)) � min(y(0)) leads to a contradiction.
Let v be the part of x(0) below min(y(0)). Since ���������������� y), we

must have that s � �v�� and t are mixed by a. Moreover since s and t
are mixed by a, by transitivity of mixing we get that s � �v�� and s are
mixed by a, contradicting case (a) of Lemma 2.11. �

LEMMA 2.15. Let s, t � a. Suppose s and t are mixed by a and both s
and t are min-separated by a. Then s � m and t � n are mixed by a for
all m, n � a with min(m) = min(n).

PROOF. Since s and t are mixed by a, there exist x, y � a such that
����

�

����������
� y). By Lemma 2.14 we have that min(x(0)) = min(y(0)).

Moreover by Lemma 2.13 we get that s � m� and t � m� are mixed by
a for every m � a. Additionally, case (b) of Lemma 2.8 yields that s �

m and s � m� as well as t � m� and t � n are mixed by a for all m, n � a
with min(m) = min(n). Thus, by transitivity of mixing we get that s � m
and t � n are mixed by a for every m, n � a with min(m) = min(n). �

LEMMA 2.16. Let s, t � a. Suppose s� and t� are mixed by a and both
s� and t� are max-separated by a. If x, y �����&'����������� �����������
� y), then max(x(0)) = max(y(0)).

PROOF. Let x, y � a be such that ���� ����������� � y). Assume to the
contrary that max(x(0))  max(y(0)). By symmetry we can suppose
without loss of generality that max(x(0)) � max(y(0)). Moreover by
Lemma 2.12 it suffices to prove that the assumption that max(x(0)) �
max(y(0)) and max(x(0)) � min(y(0)) leads to a contradiction.
So let w be the part of y(0) less than or equal to max(x(0)). Since ����

�

���������� � y), we have that s� � �x(0)� and t� � �w�� are mixed by a.
Additionally, case (c) of Lemma 2.8 yields that t� and t� � �w�� are
mixed by a. Moreover since s� and t� are mixed by a, by transitivity
of mixing it follows that s� and s� � �x(0)� are mixed by a,
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contradicting case (b) of Lemma 2.11. �

LEMMA 2.17. Let s, t � a. Suppose s� and t� are mixed by a and both
s� and t� are max-separated by a. Then s� � m and t� � n are mixed by
a for all m, n � a with max(m) = max(n).

PROOF. Since s� and t� are mixed by a, there exist x, y � a such that
���� �� ��� �� ���� � y). By Lemma 2.16 we have that max(x(0)) =
max(y(0)). Hence by definition of mixing we must have that s� � �x(0)�
and t� � �y(0)� are mixed by a. Moreover we have that t� � �x(0)� and t�
� �y(0)� are mixed by a, because t� is max-separated by a. By
transitivity of mixing we get that s� � �x(0)� and t� � �x(0)� are mixed
by a. Thus, (d) of canonical yields that s� � m and t� � m are mixed by
a for all m � a.
Again, since t� is max-separated by a, we have that t� � m and t� � n

are mixed by a for every m, n � a with max(m) = max(n). Finally, by
transitivity of mixing we obtain that s� � m and t� � n are mixed by a
for all m, n � a with max(m) = max(n). �

LEMMA 2.18. Let s, t � a. Suppose s and t are mixed by a and both s
and t are min-max-separated by a. If x, y �����&'�����������

�

����������
�

y), then min(x(0)) = min(y(0)) and max(x(0)) = max(y(0)).

PROOF. Let x, y � a be such that ���������������� y). First, assume to
the contrary that min(x(0))  min(y(0)). By symmetry we can suppose
without loss of generality that min(x(0)) � min(y(0)). Moreover by
Lemma 2.12 it suffices to prove that the assumption that min(x(0)) �
min(y(0)) and max(x(0)) � min(y(0)) leads to a contradiction.
Let v be the part of x(0) below min(y(0)). Since ���������������� y) we

must have that s � �v�� and t are mixed by a. Since s and t are mixed
by a, by transitivity of mixing we get that s � �v�� and s are mixed by
a, contradicting case (c) of Lemma 2.11.
Hence we must have min(x(0)) = min(y(0)). Now assume to the

contrary that max(x(0))  max(y(0)). Equally by symmetry we can
suppose without loss of generality that max(x(0)) � max(y(0)).
 Let w be the part of y(0) less than or equal to max(x(0)). Therewith

we have that s � �x(0)� and t � �w�� are mixed by a. Since min(x(0)) =
min(y(0)), Lemma 2.13 yields that s � �w�� and t � �w�� are mixed by a.
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By transitivity of mixing we get that s � �x(0)� and s � �w�� are mixed
by a, contradicting case (c) of Lemma 2.11. This completes the proof
of the lemma. �

LEMMA 2.19. Let s, t � a. Suppose s and t are mixed by a and both s
and t are min-max-separated by a. Then s � m� and t � m� are mixed by
a for every m � a. Moreover s � m and t � n are mixed by a for all m, n
� a with min(m) = min(n) and max(m) = max(n).

PROOF. Since s and t are mixed by a, there exist x, y � a such that
����

�

����������
� y). By Lemma 2.18 we get that min(x(0)) = min(y(0))

and max(x(0)) = max(y(0)). Therefore, Lemma 2.13 yields that s � m�
and t � m� are mixed by a for every m � a, which is our first assertion.
Additionally, by definition of mixing we have that s � �x(0)� and t �

�y(0)� are mixed by a. Moreover we have that t � �x(0)� and t � �y(0)�
are mixed by a, because t is min-max-separated by a. By transitivity
of mixing we get that s � �x(0)� and t � �x(0)� are mixed by a. Thus, (d)
of canonical yields that s � m and t � m are mixed by a for all m � a.
Again, since t is min-max-separated by a, we have that t � m and t � n

are mixed by a for every m, n � a with min(m) = min(n) and max(m)
= max(n). Finally, by transitivity of mixing we obtain that s � m and t �

n are mixed by a for all m, n � a with min(m) = min(n) and max(m) =
max(n). �

LEMMA 2.20. Let s, t � a. Suppose s� and t� are mixed by a and both
s� and t� are strongly separated by a. If x, y �����&'����������� � x) =
���� � y), then there exists k such that x(0) = y(0) � k or y(0) = x(0) �
k, i. e., either x(0) is an initial segment of y(0) or conversely.

PROOF. Let x, y � a be such that ���� ����������� � y). First, assume to
the contrary that min(x(0))  min(y(0)). By symmetry we can suppose
without loss of generality that min(x(0)) � min(y(0)). Moreover by
Lemma 2.12 it suffices to prove that the assumption that min(x(0)) �
min(y(0)) and max(x(0)) � min(y(0)) leads to a contradiction.
Let v be the part of x(0) below min(y(0)). Since ���� ����������� � y),

we must have that s� � �v�� and t� are mixed by a. Moreover since s�
and t� are mixed by a, by transitivity of mixing we get that s� � �v��
and s� are mixed by a, contradicting case (d) of Lemma 2.11.
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Hence we must have that min(x(0)) = min(y(0)). Now assume to the
contrary that neither x(0) is an initial segment of y(0) nor conversely.
By symmetry we can suppose without loss of generality that x(0) is
not an initial segment of y(0).
Let v denote the longest common initial segment of x(0) and y(0).

Moreover choose k with min(x(0) � y(0)) � a(k). Since ���� �����������
� y), we have that either s� � �v�� � �a(k)�� and t� � �v�� or s� � �v�� and
t� � �v�� � �a(k)�� are mixed by a. Additionally, by Lemma 2.13 we
have that s� � �v�� and t� � �v�� are mixed by a, because min(x(0)) =
min(y(0)). Thus, by transitivity of mixing we get in the first case that
s� � �v�� � �a(k)�� and s� � �v��, in the second case that t� � �v�� and t� �

�v�� � �a(k)�� are mixed by a. Both cases contradict case (d) of Lemma
2.11. �

Now we want to analyse the case that s� is strongly separated by a.
Since a is canonical for �, we are able to distinguish exactly two
possibilities.

DEFINITION. Let s � a. Suppose that s� is strongly separated by a.
We say that s� is still strongly separated by a iff s� � m and s� � m� are
mixed by a for every m � a. Moreover s� is very strongly separated
by a iff s� � m and s� � m� are separated by a for every m � a.

COROLLARY 2.21. Let s � a.

(a) Let s� be still strongly separated by a. Then s� � m� is still
strongly separated by a for every m � a.

(b) Let s� be very strongly separated by a. Then s� � m� is very
strongly separated by a for every m � a.

PROOF. Obvious from the definition. �

LEMMA 2.22. Let s, t � a. Suppose s� and t� are mixed by a and both
s� and t� are very strongly separated by a. If x, y �����&'����������� �

��������� � y), then x(0) = y(0).

PROOF. Let x, y � a be such that ���� �� ��������� � y). By Lemma
2.20 we have that x(0) is an initial segment of y(0) or conversely.
Moreover by symmetry we can suppose without loss of generality that
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x(0) is an initial segment of y(0).
Assume to the contrary that max(x(0)) � max(y(0)). Since ���� � x) =
���� � y), we have that s� � �x(0)� and t� � �x(0)�� are mixed by a. By
(d) of canonical we get that s� � m and t� � m� are mixed by a for all m
� a. Since min(x(0)) = min(y(0)), by Lemma 2.13 we also have that
s� � m� and t� � m� are mixed by a for all m � a. Finally, by
transitivity of mixing we can conclude that s� � m and s� � m� are
mixed by a for every m � a. But this contradicts our assumption that
s� is very strongly separated by a. �

LEMMA 2.23. Let s, t � a. Suppose s� and t� are mixed by a and both
s� and t� are very strongly separated by a. Then s� � m and t� � m are
mixed by a for all m � a.

PROOF. Otherwise by (d) of canonical we would have that s� � m and
t� � m are separated by a for every m � a. By Lemma 2.22 this would
contradict that s� and t� are mixed by a, so the assertion follows. �

LEMMA 2.24. Let s, t � a. Suppose s� and t� are mixed by a and s�
is strongly mixed by a. Moreover assume that t� is either min-
separated, min-max-separated or strongly separated by a. If x, y � a
�&'����������� ����������� � y), then max(x(0)) � min(y(0)).

PROOF. Let x, y � a be such that ���� ����������� � y). Assume to the
contrary that max(x(0)) � min(y(0)). By Lemma 2.12 we must have
that min(x(0)) � max(y(0)). We distinguish three cases.
For the first case suppose that min(x(0)) � min(y(0)) and min(x(0)) �

max(y(0)). Let v denote the part of y(0) below min(x(0)). Since ���� �

��������� � y), we have that s� and t� � �v�� are mixed by a. Moreover
since s� and t� are mixed by a, by transitivity of mixing we get that t�
and t� � �v�� are mixed by a. But this contradicts case (a), (c) and (d)
of Lemma 2.11.
Next, assume that min(x(0)) � min(y(0)) and max(x(0)) � max(y(0)).

Let v be the part of x(0) less than or equal to max(y(0)). Since ���� � x)
�� ���� � y), we have that s� � �v�� and t� � �y(0)� are mixed by a.
Additionally, by (a) of Lemma 2.8 we have that s� and s� � �v�� are
mixed by a, because s� is strongly mixed by a. Moreover since s� and
t� are mixed by a, by transitivity of mixing we obtain that t� and t� �
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�y(0)� are mixed by a. Equally, this contradicts case (a), (c) and (d) of
Lemma 2.11.
Finally, suppose that min(x(0)) � min(y(0)) and max(x(0)) �

max(y(0)). Let v denote the part of y(0) less than or equal to max(x(0)).
Since ���� �� ��������� � y), we have that s� � �x(0)� and t� � �v�� are
mixed by a. Additionally, by (a) of Lemma 2.8 we have that s� and s�
� �x(0)� are mixed by a, because s� is strongly mixed by a. Moreover
since s� and t� are mixed by a, by transitivity of mixing we get that t�
and t� � �v�� are mixed by a, a contradiction as above. �

LEMMA 2.25. Let s, t � a. Suppose s� and t� are mixed by a, s� is
strongly mixed by a and t� is max-separated by a. If x, y � a such that
���� ����������� � y), then max(x(0)) � max(y(0)).

PROOF. Let x, y � a be such that ���� ����������� � y). Assume to the
contrary that max(x(0)) � max(y(0)). By Lemma 2.12 we must have
min(x(0)) � max(y(0)). We distinguish two cases.
First, suppose that max(x(0)) � max(y(0)) and min(x(0)) � max(y(0)).

Let v denote the part of x(0) less than or equal to max(y(0)). Since
���� ����������� � y), we have that s� � �v�� and t� � �y(0)� are mixed by
a. Moreover by (a) of Lemma 2.8 we have that s� � �v�� and s� are
mixed by a, because s� is strongly mixed by a. Finally, since s� and t�
are mixed by a, by transitivity of mixing we can conclude that t� �

�y(0)� and t� are mixed by a. But this contradicts case (b) of Lemma
2.11.
Next, assume that max(x(0)) = max(y(0)). By definition of mixing we

have that s� � �x(0)� and t� � �y(0)� are mixed by a. Since s� is strongly
mixed by a, by (a) of Lemma 2.8 we get that also s� � �x(0)� and s� are
mixed by a. Moreover we have that s� and t� are mixed by a.
Therefore, by transitivity of mixing we get that t� � �y(0)� and t� are
mixed by a, which equally contradicts case (b) of Lemma 2.11. �

LEMMA 2.26. Let s, t � a. Suppose s and t are mixed by a, s is min-
separated by a and t is min-max-separated by a. If x, y � a such that
����

�

� ��� �� ����
� y), then min(x(0)) = min(y(0)) and max(x(0)) �

max(y(0)).
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PROOF. Let x, y � a be such that ���� ����������� � y). First of all, we
prove that we must have min(x(0)) = min(y(0)). For that purpose
assume to the contrary that min(x(0))  min(y(0)). Two applications of
Lemma 2.12 yield that max(x(0)) � min(y(0)) and min(x(0)) �
max(y(0)). We distinguish two more cases.
First, suppose that min(x(0)) � min(y(0)) and max(x(0)) � min(y(0)).

Let v denote the part of x(0) below min(y(0)). Since ���������������� y),
we have that s � �v�� and t are mixed by a. Moreover s and t are mixed
by a. Hence by transitivity of mixing we get that s � �v�� and s are
mixed by a. But this contradicts case (a) of Lemma 2.11.
Next, assume that min(x(0)) � min(y(0)) and min(x(0)) � max(y(0)).

Let v be the part of y(0) below min(x(0)). Since ���������������� y), we
have that s and t � �v�� are mixed by a. Moreover s and t are mixed by
a. Hence by transitivity of mixing we get that t and t � �v�� are mixed
by a. This contradicts case (c) of Lemma 2.11.
Hence we have min(x(0)) = min(y(0)). Now we show that we also

have that max(x(0)) � max(y(0)). Therefor assume to the contrary that
max(x(0)) � max(y(0)).
Let v denote the part of x(0) less than or equal to max(y(0)). Since ���

�

� ��� �� ����
� y), we have that s � �v�� and t � �y(0)� are mixed by a.

Additionally, by (b) of Lemma 2.8 we get that s � �y(0)�� and s � �v��
are mixed by a, because min(v) = min(y(0)). Moreover since min(x(0))
= min(y(0)), Lemma 2.13 yields that s � �y(0)�� and t � �y(0)�� are also
mixed by a. Altogether, by transitivity of mixing we get that t � �y(0)�
and t � �y(0)�� are mixed by a. But this contradicts case (c) of Lemma
2.11. �

LEMMA 2.27. Let s, t � a. Suppose s and t are mixed by a, s is min-
separated by a and t is min-max-separated by a. Then s � m� and t �

m� are mixed by a for every m � a.

PROOF. Since s and t are mixed by a, there exist x, y � a such that
����

�

� ��� �� ����
� y). By Lemma 2.26 we must have that min(x(0)) =

min(y(0)). Hence Lemma 2.13 yields that s � m� and t � m� are mixed
by a for every m � a. �

LEMMA 2.28. Let s, t � a.
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(a) Suppose s� and t� are mixed by a and both s� and t� are still
strongly separated by a. Then s� � m� and t� � m� are mixed by a
for every m � a.

(b) Suppose s� and t� are mixed by a, s� is still strongly separated by
a and t� is very strongly separated by a. Then s� � m� and t� � m�
are mixed by a for every m � a. Moreover s� � m� and t� � m are
separated by a for every m � a.

(c) Suppose s� and t� are mixed by a and both s� and t� are very
strongly separated by a. Then s� � m� and t� � m� are mixed by a
for every m � a. Moreover s� � m and t� � m� are separated by a
for every m � a.

PROOF. Since s� and t� are mixed by a, there exist x, y � a such that
���� �� ��� �� ���� � y). In each of the three cases both s� and t� are
strongly separated by a. Hence by Lemma 2.20 we must have that x(0)
is an initial segment of y(0) or conversely. Since min(x(0)) =
min(y(0)), by Lemma 2.13 we have that s� � m� and t� � m� are mixed
by a for every m � a.
The rest of the result follows directly by the definition of being still

and very strongly separated, using the transitivity of mixing. �

LEMMA 2.29. Let s, t � a. Suppose s and t� are mixed by a and s is
min-separated by a. Then t� is neither max-separated nor strongly
separated by a.

PROOF. Since s and t� are mixed by a, there exist x, y � a such that
����

�

� ��� �� ���� � y). Assume to the contrary that t� is either max-
separated or strongly separated by a. Two applications of Lemma 2.12
yield that min(x(0)) � max(y(0)) and max(x(0)) � min(y(0)). We
distinguish five cases.
For the first case suppose that min(x(0)) � min(y(0)) and max(x(0)) �

min(y(0)). Let v be the part of x(0) below min(y(0)). Since ���� � x) =
���� � y), we have that s � �v�� and t� are mixed by a. Moreover s and
t� are also mixed by a. Hence by transitivity of mixing we obtain that
s � �v�� and s are mixed by a. But this contradicts case (a) of Lemma
2.11.
Next, assume that t� is max-separated by a and min(x(0)) � min(y(0))

as well as min(x(0)) � max(y(0)). Choose k with min(x(0)) � a(k). Let
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w denote the part of y(0) less than or equal to max(a(k)). If max(a(k))
� max(y(0)), we get that s � �a(k)�� and t� � �w�� are mixed by a,
because ��������������� � y). Otherwise, we must have that max(a(k)) =
max(y(0)), since min(x(0)) � max(y(0)). Then we have that s � �a(k)��
and t� � �y(0)� are mixed by a. In the former case, by (c) of Lemma 2.8
we get that t� � �w�� and t� are mixed by a. Moreover since s and t�
are mixed by a, by transitivity of mixing we obtain that s � �a(k)�� and
s are mixed by a. This contradicts case (a) of Lemma 2.11. If we are in
the latter case, we additionally have that t� � �y(0)� and t� � �a(k)� are
mixed by a, because t� is max-separated by a and max(a(k)) =
max(y(0)). By transitivity of mixing we can conclude that s � �a(k)��
and t� � �a(k)� are mixed by a. Moreover by (d) of canonical we must
have that s � m� and t� � m are mixed by a for all m � a. Finally, by
(b) of Lemma 2.8 we have that s � m� and s � n� are mixed by a for
every m, n � a with min(m) = min(n). Again, by transitivity of mixing
we obtain that t� � m and t� � n are mixed by a for all m, n � a with
min(m) = min(n). But this contradicts that t� is max-separated by a.
For the third case suppose that t� is strongly separated by a and

min(x(0)) � min(y(0)) as well as min(x(0)) � max(y(0)). Let v be the
part of y(0) below min(x(0)). Since ��������������� � y), we have that s
and t� � �v�� are mixed by a. Moreover s and t� are mixed by a. Hence
by transitivity of mixing we obtain that t� and t� � �v�� are mixed by a.
But this contradicts case (d) of Lemma 2.11.
Now assume that t� is max-separated by a and min(x(0)) = min(y(0)).

By Lemma 2.13 we get that s � m� and t� � m� are mixed by a for
every m � a. Additionally, by (c) of Lemma 2.8 we have that t� � m�
and t� are mixed by a for all m � a, because t� is max-separated by a.
Moreover since s and t� are mixed by a, by transitivity of mixing we
obtain that s � m� and s are mixed by a for every m � a. This
contradicts case (a) of Lemma 2.11.
Finally, suppose that t� is strongly separated by a and min(x(0)) =

min(y(0)). Equally, by Lemma 2.13 we get s � m� and t� � m� are
mixed by a for every m � a. Additionally, by (b) of Lemma 2.8 we
have that s � m� and s � n� are mixed by a for all m, n � a with min(m)
= min(n). Thus, by transitivity of mixing we get that t� � m� and t� �

n� are mixed by a for every m, n � a with min(m) = min(n). But this
contradicts case (d) of Lemma 2.11. �
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LEMMA 2.30. Let s, t � a. Suppose s� and t� are mixed by a and s�
is max-separated by a. Then t� is neither min-max-separated nor
strongly separated by a.

PROOF. Since s� and t� are mixed by a, there exist x, y � a such that
���� ����������� � y). Assume to the contrary that t� is either min-max-
separated or strongly separated by a. Two applications of Lemma 2.12
yield that max(x(0)) � min(y(0)) and min(x(0)) � max(y(0)). Now we
distinguish three cases.
For the first case suppose that min(x(0)) � min(y(0)) and max(x(0)) �

min(y(0)). Let b with a � b be as in (f) of canonical. Moreover let v
denote the part of x(0) below min(y(0)). Choose k with min(y(0)) �
b(k). Additionally, let w denote the part of x(0) less than or equal to
max(b(k)). Since ���� ����������� � y), we have that s� � �v�� and t� as
well as s� � �w�� and t� � �b(k)�� are mixed by b. By (c) and (f) of
canonical we have that s� is also max-separated by b. Therefore, by
(c) of Lemma 2.8 we get that s� � �v�� and s� � �w�� are mixed by b.
Thus, by transitivity of mixing we obtain that t� and t� � �w�� are
mixed by b. Now (d) and (f) of canonical yield that t� and t� � m� are
mixed by b for every m � b. Finally, since a � b, we can conclude
that t� and t� � m� are mixed by a for every m � a. But this
contradicts case (c) and (d) of Lemma 2.11.
Next, suppose that min(x(0)) � min(y(0)) and min(x(0)) � max(y(0)).

Let v be the part of y(0) below min(x(0)). We have that s� and t� � �v��
are mixed by a. Since s� and t� are mixed by a, we get that t� and t� �

�v�� are mixed by a, a contradiction as above.
Finally, assume that min(x(0)) = min(y(0)). By Lemma 2.13 we have

that s� � m� and t� � m� are mixed by a for all m � a. Moreover by (c)
of Lemma 2.8 we have that s� � m� and s� � n� are mixed by a for
every m, n � a, because s� is max-separated by a. By transitivity of
mixing we get that t� � m� and t� � n� are mixed by a for every m, n �
a.
This contradicts case (c) and (d) of Lemma 2.11. �

LEMMA 2.31. Let s, t � a. Suppose s and t� are mixed by a and s is
min-max-separated by a. Then t� is not strongly separated by a.
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PROOF. Since s and t� are mixed by a, there exist x, y � a such that
����

�

���������� � y). Assume to the contrary that t� is strongly separated
by a. Two applications of Lemma 2.12 yield that max(x(0)) �
min(y(0)) and min(x(0)) � max(y(0)). Now we distinguish three cases.
For the first case suppose that min(x(0)) � min(y(0)) and max(x(0)) �

min(y(0)). Let v be the part of x(0) below min(y(0)). Since ���� � x) =
���� � y), we have that s � �v�� and t� are mixed by a. Moreover s and
t� are mixed by a. Hence by transitivity of mixing we get that s � �v��
and s are mixed by a. But this contradicts case (c) of Lemma 2.11.
Next, suppose that min(x(0)) � min(y(0)) and min(x(0)) � max(y(0)).

Let v be the part of y(0) below min(x(0)). Since ��������������� � y), we
have that s and t� � �v�� are mixed by a. Moreover s and t� are mixed
by a. Hence by transitivity of mixing we get that t� and t� � �v�� are
mixed by a, contradicting case (d) of Lemma 2.11.
Finally, assume that min(x(0)) = min(y(0)). By Lemma 2.13 we get

that s � m� and t� � m� are mixed by a for all m � a. Moreover by (d)
of Lemma 2.8 we have that s � m� and s � n� are mixed by a for every
m, n � a with min(m) = min(n), because s is min-max-separated by a.
By transitivity of mixing we get that t� � m� and t� � n� are mixed by a
for every m, n � a with min(m) = min(n). This contradicts case (d) of
Lemma 2.11. �

Now we define the parameter " of the mapping )� which will
canonize our given �.

DEFINITION. For given canonical a define "�� ����� � {sm, min-sep,
max-sep, min-max, sss, vss} as follows: Let "�������$ iff s is strongly
mixed by a; moreover let "������$��9�� iff s is min-separated by a;
let "������$��9�� iff s is max-separated by a; let�"������$��9$�� iff s
is min-max-separated by a; let�"��������� iff s is still strongly separated
by a; finally, let "������0�� iff s is very strongly separated by a.
Recall that )� is defined as follows:
For m ������� let sm(m) = �, min-sep(m) = {min(m)}, max-sep(m) =

{max(m)}, min-max(m) = {min(m), max(m)} and sss(m) = vss(m) = m.
Let x � (a)�. Define�)�(x) as follows: Let k(0) = 0 and �k(i): 0 ��i � N
�� �� increasingly enumerate those k such that "��� � (k – 1)) = vss.
Moreover let ��.�����, if N ���. Now let )�(x) = ��k(i)�j�k(i+1)� "����

j)(x(j)): i � N�.
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Finally, we need three more definitions in order to give our last few
lemmas.

DEFINITION. Let x, y � a and k ���.
If possible, choose i ��0 maximal such that max(x(i – 1)) � min(a(k)),

otherwise choose i = 0. Additionally, let v denote the part of x(i)
below min(a(k)). Now define xk� as follows: If v = �, let xk� = x � i,
otherwise let xk� = x � i � �v��.
Next, choose i minimal such that min(a(k)) � min(x(i)). Additionally

if i � 0, let v denote the part of x(i – 1) larger than or equal to
min(a(k)), otherwise let v = �. Now define xk� as follows: If v = �, let
xk� = x � i, otherwise let xk� = �v� � x � i.
Finally, if possible, choose 0 � i �� ��$�)�(x)) resp. 0 � j �
��$�)�(y)) maximal such that $���)�(x)(i – 1)) � min(a(k)) resp.
$���)�(y)(j – 1)) � min(a(k)), otherwise choose i = 0 resp. j = 0.
Additionally, let v resp. w denote the part of )�(x)(i) resp. )�(y)(j)
below min(a(k)). Now we say that )�(x) corresponds�+����)�(y) up to k
iff )�(x) ������)�(y) � j and v = w.

REMARK. By definition of xk� and xk� it follows that xk� 
� xk� = x for

every x � a and k ���.

LEMMA 2.32. Let x, y � a. Suppose that xi� and yi� are mixed by a for
every i ������6�������������1��

PROOF. For every i ��� let xi, yi � a be such that���xi� 
� xi������yi� 

�

yi). These sets exist, because xi� and yi� are mixed by a. Moreover by
definition of xk� we obtain that limi�� xi� 

� xi = x and limi�� yi� 
� yi = y.

By (a) of canonical we have that ��� (a)� is continuous. Hence we get
that �������-�$i�����xi� 

� xi) and ��1����-�$i�����yi� 
� yi). Thus, limi��

��xi� 
� xi) and limi�����yi� 

� yi) exist. Finally, since ��xi� 
� xi������yi� 

� yi)
for every i ���, we get that limi�����xi� 

� xi) = limi�����yi� 
� yi), so we

are done. �

LEMMA 2.33. Let x, y � a and k �����:&���������)�(x) corresponds
+����)�(y) up to k. Then xk� and yk� are mixed by a.

PROOF. We prove the assertion in the lemma by induction on k.
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Suppose first that k = 0. By definition of xk� we have that x0� = � and
y0� = �. Thus, by definition of mixing we have that x0� and y0� are
mixed by a.
Now assume that the assertion is true for some k. We show that it is

also true for k + 1. For that purpose suppose that )�(x) corresponds
with )�(y) up to k + 1. Hence )�(x) also corresponds with )�(y) up to k.
By inductional assumption we have that xk� and yk� are mixed by a.
Additionally, assume without loss of generality that xk+1�  xk� or yk+1�

 yk�. We distinguish ten cases.
For the first case suppose that both xk� and yk� are strongly mixed by

a. We have that sm(m) = � for every m � a. Since )�(x) corresponds
with )�(y) up to k + 1, we have that either xk+1� = xk� or xk+1� = xk� 

�

�a(k)�� and that either yk+1� = yk� or yk+1� = yk� 
� �a(k)��. By (a) of

Lemma 2.8 we get that xk� and xk� 
� �a(k)�� as well as yk� and yk� 

�

�a(k)�� are mixed by a. Moreover since xk� and yk� are mixed by a, by
transitivity of mixing we obtain that xk+1� and yk+1� are mixed by a.
Next, assume that xk� is strongly mixed by a. Moreover suppose that

yk� is either min-separated, min-max-separated or strongly separated
by a. We have that sm(m) = � as well as min-sep(m) = {min(m)}, min-
max(m) = {min(m), max(m)} and sss(m) = vss(m) = m for every m �
a. Since )�(x) corresponds with )�(y) up to k + 1, we must have that
xk+1� = xk� 

� �a(k)�� and yk+1� = yk�. By (a) of Lemma 2.8 we get that
xk� and xk� 

� �a(k)�� are mixed by a. Therefore, since xk� and yk� are
mixed by a, by transitivity of mixing we obtain that xk+1� and yk+1� are
mixed by a.
Now assume that xk� is strongly mixed by a and yk� is max-separated

by a. We have that sm(m) = � and max-sep(m) = {max(m)} for every
m � a. Since )�(x) corresponds with )�(y) up to k + 1, we must have
that either xk+1� = xk� or xk+1� = xk� 

� �a(k)�� and that either yk+1� = yk�

or yk+1� = yk� 
� �a(k)��. By (a) of Lemma 2.8 we get that xk� and xk� 

�

�a(k)�� are mixed by a. Moreover by (c) of Lemma 2.8 we get that yk�

and yk� 
� �a(k)�� are mixed by a. Since xk� and yk� are mixed by a, by

transitivity of mixing we obtain that xk+1� and yk+1� are mixed by a.
For the fourth case suppose that both xk� and yk� are min-separated by

a. We have that min-sep(m) = {min(m)} for every m � a. Since )�(x)
corresponds with )�(y) up to k + 1, we must have that xk+1� = xk� 

�

�a(k)�� and yk+1� = yk� 
� �a(k)��. By Lemma 2.15 we get that xk� 

�
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�a(k)� and yk� 
� �a(k)� are mixed by a, because xk� and yk� are mixed by

a. Moreover by (b) of Lemma 2.8 we get that xk� 
� �a(k)� and xk� 

�

�a(k)�� as well as yk� 
� �a(k)� and yk� 

� �a(k)�� are mixed by a.
Therefore, possibly by transitivity of mixing, we obtain that xk+1� and
yk+1� are mixed by a.
Next, assume that xk� is min-separated by a and yk� is min-max-

separated by a. We have that min-sep(m) = {min(m)} and min-max(m)
= {min(m), max(m)} for every m � a. Since )�(x) corresponds with
)�(y) up to k + 1, we must have that xk+1� = xk� 

� �a(k)�� and yk+1� = yk�
� �a(k)��. By Lemma 2.27 we get that xk� 

� �a(k)�� and yk� 
� �a(k)�� are

mixed by a, because xk� and yk� are mixed by a. Moreover by (b) of
Lemma 2.8 we get that xk� 

� �a(k)�� and xk� 
� �a(k)� are mixed by a.

Therefore, possibly by transitivity of mixing, we obtain that xk+1� and
yk+1� are mixed by a.
We observe that if xk� is min-separated by a, then by Lemma 2.29 yk�

is neither max-separated nor strongly separated by a.
For the sixth case suppose that both xk� and yk� are max-separated by

a. We have that max-sep(m) = {max(m)} for every m � a. Since )�(x)
corresponds with )�(y) up to k + 1, we must have that either ((xk+1� =
xk� � xk+1� = xk� 

� �a(k)��) � (yk+1� = yk� � yk+1� = yk� 
� �a(k)��)) or that

(xk+1� = xk� 
� �a(k)� � yk+1� = yk� 

� �a(k)�). By (c) of Lemma 2.8 we get
that xk� and xk� 

� �a(k)�� as well as yk� and yk� 
� �a(k)�� are mixed by a.

Moreover by Lemma 2.17 we get that xk� 
� �a(k)� and yk� 

� �a(k)� are
mixed by a, because xk� and yk� are mixed by a. Therefore, possibly by
transitivity of mixing, we obtain that xk+1� and yk+1� are mixed by a.
We observe that if xk� is max-separated by a, then by Lemma 2.30 yk�

is neither min-max-separated nor strongly separated by a.
For the seventh case assume that both xk� and yk� are min-max-

separated by a. We have that min-max(m) = {min(m), max(m)} for
every m � a. Since )�(x) corresponds with )�(y) up to k + 1, we must
have that either xk+1� = xk� 

� �a(k)�� and yk+1� = yk� 
� �a(k)�� or that

xk+1� = xk� 
� �a(k)� and yk+1� = yk� 

� �a(k)�. By Lemma 2.19 we get that
xk� 

� �a(k)�� and yk� 
� �a(k)�� as well as xk� 

� �a(k)� and yk� 
� �a(k)� are

mixed by a, because xk� and yk� are mixed by a. Therefore, xk+1� and
yk+1� are mixed by a.
We observe that if xk� is min-max-separated by a, then by Lemma

2.31 yk� is not strongly separated by a.
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For the eighth case suppose that both xk� and yk� are still strongly
separated by a. We have that sss(m) = m for every m � a. Since )�(x)
corresponds with )�(y) up to k + 1, we must have that xk+1� = xk� 

�

�a(k)�� and yk+1� = yk� 
� �a(k)��. By (a) of Lemma 2.28 we get that xk� 

�

�a(k)�� and yk� 
� �a(k)�� are mixed by a, because xk� and yk� are mixed

by a. Therefore, xk+1� and yk+1� are mixed by a.
Next, assume that xk� is still strongly separated by a and yk� is very

strongly separated by a. We have that sss(m) = vss(m) = m for every
m � a. Since )�(x) corresponds with )�(y) up to k + 1, we must have
that xk+1� = xk� 

� �a(k)�� and yk+1� = yk� 
� �a(k)��. By (b) of Lemma

2.28 we get that xk� 
� �a(k)�� and yk� 

� �a(k)�� are mixed by a, because
xk� and yk� are mixed by a. Therefore, xk+1� and yk+1� are mixed by a.
Finally, suppose that both xk� and yk� are very strongly separated by

a. We have that vss(m) = m for every m � a. Since )�(x) corresponds
with )�(y) up to k + 1, we must have that either xk+1� = xk� 

� �a(k)��
and yk+1� = yk� 

� �a(k)�� or that xk+1� = xk� 
� �a(k)� and yk+1� = yk� 

�

�a(k)�. By (c) of Lemma 2.28 we get that xk� 
� �a(k)�� and yk� 

� �a(k)��
are mixed by a, because xk� and yk� are mixed by a. Moreover by
Lemma 2.23 we get that xk� 

� �a(k)� and yk� 
� �a(k)� are mixed by a.

Therefore, xk+1� and yk+1� are mixed by a.
Altogether, by symmetry we can conclude that in every case xk+1�

and yk+1� are mixed by a. This completes the proof. �

LEMMA 2.34. Let x, y �����:&���������)�������)��1���6����������

��1��

PROOF. First, we observe that )�(x) corresponds with )�(y) up to i for
every i ���, because )�������)�(y). Hence by Lemma 2.33 we get that
xi� and yi� are mixed by a for all i ���. Thus, Lemma 2.32 yields that
���������1�. �

LEMMA 2.35. Let x, y �����:&���������)�(x) �)��1���6���������

��1��

PROOF. Since )�(x) �)�(y), we can choose k maximal such that )�(x)
corresponds with )�(y) up to k. By Lemma 2.33 we get that xk� and yk�

are mixed by a. We show that ����� � ��1�. For that purpose we
distinguish nine cases.
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For the first case assume that xk� is strongly mixed by a. Moreover
suppose that yk� is either min-separated, min-max-separated or
strongly separated by a. We have that sm(m) = � as well as min-
sep(m) = {min(m)}, min-max(m) = {min(m), max(m)} and sss(m) =
vss(m) = m for every m � a. Since k is chosen maximal such that
)�(x) corresponds with )�(y) up to k, we must have that either xk+1� =
xk� or xk+1� = xk� 

� �a(k)�� and that yk+1� = yk� 
� �a(k)��. This implies

that max(xk�(0)) � min(yk�(0)). Thus, by Lemma 2.24 we obtain that
���k� 

� xk�) ���1k� 
� yk�), because xk� and yk� are mixed by a.

Next, assume that xk� is strongly mixed by a and yk� is max-separated
by a. We have that sm(m) = � and max-sep(m) = {max(m)} for every
m � a. Since k is chosen maximal such that )�(x) corresponds with
)�(y) up to k, we must have that either xk+1� = xk� or xk+1� = xk� 

�

�a(k)�� and that yk+1� = yk� 
� �a(k)�. This implies that max(xk�(0)) �

max(yk�(0)). Thus, by Lemma 2.25 we obtain that ���k� 
� xk�) ���1k� 

�

yk�), because xk� and yk� are mixed by a.
We observe that we cannot have that both xk� and yk� are strongly

mixed by a. This would contradict the choice of k, because sm(m) = �
for all m � a.
For the third case suppose that both xk� and yk� are min-separated by

a. We have that min-sep(m) = {min(m)} for every m � a. Moreover
we have chosen k maximal such that )�(x) corresponds with )�(y) up
to k. Therefore, by symmetry we must have without loss of generality
that xk+1� = xk� and yk+1� = yk� 

� �a(k)��. This implies that min(xk�(0)) �
min(yk�(0)). Thus, by Lemma 2.14 we obtain that ���k� 

� xk�) ���1k� 
�

yk�), because xk� and yk� are mixed by a.
Next, assume that xk� is min-separated by a and yk� is min-max-

separated by a. We have that min-sep(m) = {min(m)} and min-max(m)
= {min(m), max(m)} for every m � a. Since k is chosen maximal such
that )�(x) corresponds with )�(y) up to k, we must have that either xk+1�

= xk� 
� �a(k)�� and yk+1� = yk�, xk+1� = xk� and yk+1� = yk� 

� �a(k)�� or
that xk+1� = xk� 

� �a(k)�� and yk+1� = yk� 
� �a(k)�. This implies that

min(xk�(0))  min(yk�(0)) or max(xk�(0)) � max(yk�(0)). Thus, by
Lemma 2.26 we obtain that ���k� 

� xk�) ���1k� 
� yk�), because xk� and

yk� are mixed by a.
We observe that if xk� is min-separated by a, then by Lemma 2.29 yk�

is neither max-separated nor strongly separated by a.
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For the fifth case suppose that both xk� and yk� are max-separated by
a. We have that max-sep(m) = {max(m)} for every m � a. Moreover
we have chosen k maximal such that )�(x) corresponds with )�(y) up
to k. Therefore, by symmetry we must have without loss of generality
that either xk+1� = xk� or xk+1� = xk� 

� �a(k)�� and that yk+1� = yk� 
�

�a(k)�. This implies that max(xk�(0)) � max(yk�(0)). Thus, by Lemma
2.16 we obtain that ���k� 

� xk�) ���1k� 
� yk�), because xk� and yk� are

mixed by a.
We observe that if xk� is max-separated by a, then by Lemma 2.30 yk�

is neither min-max-separated nor strongly separated by a.
For the sixth case assume that both xk� and yk� are min-max-separated

by a. We have that min-max(m) = {min(m), max(m)} for every m � a.
Moreover we have chosen k maximal such that )�(x) corresponds with
)�(y) up to k. Therefore, by symmetry we must have without loss of
generality that either xk+1� = xk� and yk+1� = yk� 

� �a(k)�� or that xk+1� =
xk� 

� �a(k)�� and yk+1� = yk� 
� �a(k)�. This implies that min(xk�(0)) �

min(yk�(0)) or max(xk�(0)) � max(yk�(0)). Thus, by Lemma 2.18 we
obtain that ���k� 

� xk�) ���1k� 
� yk�), because xk� and yk� are mixed by

a.
We observe that if xk� is min-max-separated by a, then by Lemma

2.31 yk� is not strongly separated by a.
For the seventh case suppose that both xk� and yk� are still strongly

separated by a. We have that sss(m) = m for every m � a. Moreover
we have chosen k maximal such that )�(x) corresponds with )�(y) up
to k. Therefore, by symmetry we must have without loss of generality
that xk+1� = xk� and yk+1� = yk� 

� �a(k)��. This implies that neither xk�(0)
is an initial segment of yk�(0) nor conversely. Thus, by Lemma 2.20
we obtain that ���k� 

� xk�) ���1k� 
� yk�), because xk� and yk� are mixed

by a.
Next, assume that xk� is still strongly separated by a and yk� is very

strongly separated by a. We have that sss(m) = vss(m) = m for every
m � a. Since k is chosen maximal such that )�(x) corresponds with
)�(y) up to k, we must have that either xk+1� = xk� 

� �a(k)�� and yk+1� =
yk�, xk+1� = xk� and yk+1� = yk� 

� �a(k)�� or that xk+1� = xk� 
� �a(k)�� and

yk+1� = yk� 
� �a(k)�. The former two cases imply that neither xk�(0) is an

initial segment of yk�(0) nor conversely. Thus, by Lemma 2.20 we
obtain that ���k� 

� xk�) ���1k� 
� yk�), because xk� and yk� are mixed by
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a. In the latter case by (b) of Lemma 2.28 we get that xk� 
� �a(k)�� and

yk� 
� �a(k)� are separated by a. Therefore, by definition of separation

we obtain that ���k+1� 
� xk+1�) ���1k+1� 

� yk+1�).
Finally, suppose that both xk� and yk� are very strongly separated by

a. We have that vss(m) = m for every m � a. Moreover we have
chosen k maximal such that )�(x) corresponds with )�(y) up to k.
Therefore, by symmetry we must have without loss of generality that
either xk+1� = xk� 

� �a(k)�� and yk+1� = yk� or that xk+1� = xk� 
� �a(k)��

and yk+1� = yk� 
� �a(k)�. This implies that xk�(0)  yk�(0). Thus, by

Lemma 2.22 we obtain that ���k� 
� xk�) ���1k� 

� yk�), because xk� and
yk� are mixed by a.
Altogether, by symmetry we can conclude that in every case �����

��1�. This completes the proof. �

REMARK. Both the following definition and Lemma 2.36 are
necessary to guarantee that property (b) of Theorem 0.7 follows from
our Main Theorem.

DEFINITION. Let x, y � a. We say that )�(x) is a proper initial
segment��
�)�(y) iff there exists k ��� such that )�(x) corresponds with
)�(y) up to k, xj� is strongly mixed by a for every j � k and there exists
l � k such that yl� is separated in some sense by a.

LEMMA 2.36. There are no x, y �����&'�������)�(x) is a proper initial
��($�����
�)�(y).

PROOF. Assume to the contrary that there exist x, y � a such that
)�(x) is a proper initial segment of )�(y). According to the definition
above there exists k ��� such that )�(x) corresponds with )�(y) up to k,
xj� is strongly mixed by a for every j � k and there exists l � k such
that yl� is separated in some sense by a. By Lemma 2.33 we get that
xk� and yk� are mixed by a. Hence by definition of being mixed there
exist x0, y0 � a such that ���k� 

� x0������1k� 
� y0). Since xj� is strongly

mixed by a for all j � k, by (e) of canonical we have that (xk� 
� x0)j� is

also strongly mixed by a for every j � k. Equally, since there exists l �
k such that yl� is separated in some sense by a, by (e) of canonical
there exists i � k such that (yk� 

� y0)i� is also separated in some sense by
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a. Hence by definition of )� we have )�(xk� 
� x0) �)�(yk� 

� y0). Since
���k� 

� x0������1k� 
� y0), we get a contradiction to Lemma 2.35.

This completes the proof of the lemma and with it the proof of the
Main Theorem. �
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A. COROLLARIES

Finally we show that both the theorem of Taylor (Theorem 0.4) and
the theorem of Prömel-Voigt (Theorem 0.7) follow from our Main
Theorem.

PROOF. (ad Theorem 0.4) Consider for a given 
�� ����� �� �� the
mapping �;���� �� ��with x � f(x(0)). First we show that �; is a
Borel measurable mapping, which is an assumption of our Main
Theorem. Note that this result refers to the metric topology on �

�.
Therewith the sets �i�� Ui ���

� form a basis, where Ui������
� for all

but finitely many i ���. Since the inverse image ��;�-1 of an arbitrary
subset of � is open, �; is even continuous.
For all k � 0 we have that x � k is strongly mixed by every a ���max.

This holds by definition of strongly mixing. Moreover � cannot be
still strongly separated by some a. Otherwise we would have that
�a(0)� and �a(0)�� are mixed by a. By Corollary 2.21 we would get
that �a(0)�� is still strongly separated by a, too. Because of our
observation above we additionally have that �a(0)� is strongly mixed
by a. Hence we would be in the case of Lemma 2.24. Since �a(0)� � x �
k is still strongly mixed by a for every k and x � a, we would get a
contradiction.
Invoking our Main Theorem there exist ";�� {sm, min-sep, max-sep,

min-max, vss} and a ���� such that for all x, y � a

f(x(0)) = f(y(0)) iff ";���!�����";�1�!��.

This is Theorem 0.4. �

PROOF. (ad Theorem 0.7) Assuming a Borel function ��� ���� � �
we construct the mapping �;���� � � with x ���({min(x(i)): i ���%�.
In order to apply our Main Theorem we have to prove that �; is Borel.
Let (���� ����	� with g(x) = {min(x(i)): i ���%. Since �;�����	 g and
� is Borel, it is enough to show that g is Borel. ���� can be identified
with the Cantor space 2� as a topological space endowed with the
product topology. Since ��	� � ����, for every I, J � ��	�� with I � J
= � the sets UI, J = {X � ��	�: � i � I � j � J i � X � j � X} form a
basis for the topology on ����. It is obvious that the (sub)basis is
countable, so it suffices to show that g-1(UI, J) is Borel for each I, J.
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We have that g-1(UI, J) = {x ����: {min(x(i)): i ���%�� UI, J}. The sets
{�i�� Vi: � i ����<i �����

�� � Vi������
�� for all but finitely many i}

���
� form a basis for ��. Since only a finite number of pieces x(i)

consider the sets I, J, g-1(UI, J) is a union of open sets of ��. Hence g-

1(UI, J) is open, too. Therewith g is continous. Since continuous
mappings are Borel, g is also Borel.
For given a let x � a. Assume that for some k the set x � k is max-

separated, min-max-separated or strongly separated by a. We have
that x � k � �x(k)� and x � k � �x(k) � x(k + 1)� are mixed by a, since
�x(k)� and �x(k) � x(k + 1)� have the same minimum and hence �;����

k � �x(k)� ��1�����;���� k � �x(k) � x(k + 1)� � y) for all y � a. But this
contradicts the cases (b) - (d) of Lemma 2.11. Thus, for all k we
neither have that x � k is max-separated, min-max-separated, still
strongly separated nor very strongly separated by a.
Therewith our Main Theorem yields ";����� � {sm, min-sep} and a
� �� such that for all x, y � a it holds that �;�������;�1� iff )��(x) =
)��(y). Let A = {min(a(i)): i �� �% and define for every x � a the
mapping )���*�� � [A] �� by )�#$���������������%�����)��(x).
By definition of )�� we get that )����� X for all X � [A] �.
Additionally, Theorem 0.7 requires that no )��� is a proper initial

segment of some )�,�. This property directly follows from Lemma
2.36.
Finally, since both �; and )�� only depend on the minima of all

pieces, for all X, Y � [A] � it follows that ���������,� iff )������)�,�. �
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