Constructing Sailing Match Race Schedules:
Round-Robin Pairing Lists

Craig Macdonald, Ciaran McCreesh, Alice Miller, and Patrick Prosser

University of Glasgow, Glasgow, Scotland
patrick.prosser@glasgow.ac.uk

Abstract. We present a constraint programming solution to the prob-
lem of generating round-robin schedules for sailing match races. Our
schedules satisfy the criteria published by the International Sailing Fed-
eration (ISAF) governing body for match race pairing lists. We show
that some published ISAF schedules are in fact illegal, and present cor-
responding legal instances and schedules that have not previously been
published. Our schedules can be downloaded as blanks, then populated
with actual competitors and used in match racing competitions.

1 Introduction

This work describes a round-robin competition format that arises from sailing,
known as match racing. Competitors, i.e. skippers, compete against each other in
a series of matches taking place in rounds, known as flights. A match is composed
of two skippers, with each skipper in a boat on their own. Skippers in a match set
off together, one on the port side, the other starboard, and first home wins that
match. Criteria published by the International Sailing Federation (ISAF) dictate
what makes a legal match race schedule and what should be optimized. This is
a rich set of criteria, 13 in all, and as far as we know, all published schedules
have been produced by hand. This is a daunting task. A close inspection of
these schedules reveals that most are illegal, violating many of the match race
scheduling criteria, many schedules are missing, and some that are legal are far
from the ISAF definition of optimality.

This paper describes the scheduling problem. We present a constraint pro-
gramming solution and document how this model was constructed incrementally.
We believe this illustrates how adaptable constraint programming is: a robust
model can be developed incrementally to address all of the required criteria.
Our schedules are then constructed in a sequence of stages, not dissimilar to the
hybrid and decomposition based approaches by Lombardi and Milano [3]. Some
ISAF published schedules are presented along with some of our own, some of
these being new. These schedules are essentially blank forms, made available to
event organizers, which can be filled in with names of actual competitors, i.e.
these schedules are reusable.

The paper is organized as follows: we introduce the 13 match racing criteria,
then explain the constraint models and four stages of schedule construction, and
then schedules are presented. We finish with discussion and a conclusion.



2 Problem Definition: Round-Robin Pairing Lists

The guidelines for running match racing events [2] places a number of criteria
on how the competing skippers are scheduled into flights and matches, known as
pairing lists. Several of these criteria are applicable when the number of skippers
exceeds the number of available boats, in which case skippers have to change in
and out of boats, and are allowed time in the schedule to check and fine-tune
the boat they change into. Typically, matches set off at 5 minute intervals with
each match taking about 20 minutes. Therefore, if we have 10 skippers and 10
boats we have 45 matches, 9 flights each of 5 matches, and if each flight takes
about 50 minutes, eight or nine flights a day is a reasonable achievement for most
events [2]. Consequently, the number of boats and skippers involved is typically
small.

The criteria for match racing schedules (pairing lists) are given in ISAF
“International Umpires’ and Match Racing Manual” [2], section M.2 “Recom-
mended Criteria for Round Robin Pairing Lists”, and are detailed below.

Principal Criteria in Order of Priority:

1. Each skipper sails against each other skipper once.
2*. When skippers have an even number of matches, they have the same
number of port and starboard assignments.
3*. When skippers have an odd number of matches, the first half of the
skippers will have one more starboard assignment.
4. No skipper in the last match of a flight should be in the first match of
the next flight.
5. No skipper should have more than two consecutive port or starboard
assignments.
6. Each skipper should be assigned to match 1, match 2, etc. in a flight as
equally as possible.
7. In flights with five or more matches, no skipper should be in the next-
to-last match in a flight and then in the first match of the next flight.
8. If possible, a skipper should be starboard when meeting the nearest
lowest ranked skipper (i.e. #1 will be starboard against #2, #3 will be
starboard against #4).
9. Close-ranked skippers meet in the last flight.
10. Minimize the number of boat changes.
11. Skippers in the last match of a flight do not change boats.
12. Skippers in new boats do not sail in the first match of the next flight.
13. Skippers have a reasonable sequence of matches and blanks.

Note that criteria 10, 11 and 12 only apply when there are fewer boats than
skippers; 11 and 12 override 6 when changes are required, and 13 applies
when there are more boats than skippers.




We have rephrased criteria 2 and 3 (denoted *) to clarify an error in the man-
ual [2]. Note that the order of matches within a flight is significant and is con-
strained, as is the order of flights within a schedule and the position of skippers
within a match. This permits fair schedules that provide sufficient changeover
time for skippers changing boats, etc.

Criterion 6 allows us to measure the balance of a schedule. Perfect balance
would be when a skipper has as many matches in first position in flights as in
second position in flights, and so on. For example, if we had 9 skippers, each
skipper would have 8 matches and could be in the first, second, third or fourth
match of a flight. In perfect balance, each of the 8 skippers would appear twice
in each position. Balance is one of our optimization criteria, and we do this
unconditionally, even when there are more skippers than boats.

Criterion 13 uses the term blanks where conventionally we use the term bye.
That is, a blank is a bye and a bye is a flight where a skipper does not compete
(and is ashore).

Criterion 12 discusses boat changes: if in flight ¢ this skipper is not in a match
(i.e. it is a bye for this skipper) but is in a match in flight 4 + 1 then he has to
get into a boat, rearrange all his kit and set the boat to his preference before
racing commences, and this is a boat change.

Next, we note that skippers can be ranked prior to an event, based on their
performance in previous events', which is used to seed the skippers. The ordering
of skippers within a match signifies their starting position (port or starboard),
as skippers allocated the starboard starting position gain a small competitive
advantage in that match—criterion 8 accomplishes the seedings.

Criterion 10 is ambiguous: this could be interpreted on a schedule basis: i.e.
to minimize the overall number of changes in the entire pairing list schedule; or
alternatively as well as a fair, but minimal number of changes across all skippers.
In our work, we minimize the overall number of changes.

There are some conflicts inherent in the criteria. Take criteria 4 and 11,
assume we have 4 boats, and in flight 7 the last match is the pair of skippers
(x,y). Criterion 11 dictates that skippers z and y must appear in the next
flight, ¢ + 1, and criterion 4 that neither can be first in the next flight. This
forces skippers z and y to compete in flight ¢ + 1 as the last match, violating
criterion 1. Therefore, although not explicitly stated, it is not possible to satisfy
every criteria with fewer than 6 boats.

3 The Constraint Models

Our approach produces schedules in four stages. The first stage produces a
schedule that respects criteria 1, 4, 11 and 12, and minimizes criteria 10 (boat
changes). The second stage constructs a schedule that respects criteria 1, 4, 11,
12 (again), has criterion 10 as a hard constraint generated from first stage, and
minimizes criterion 6 (balance). This results in a multi-objective schedule that

! http://www.sailing.org/rankings/match/



Flight Matches

Table 1. A round-robin schedule with 7 skippers,

0 (0,1) (2:3) (4.5 6 boats and 7 flights. Skippers are numbered 0 to
1 (0,2) (4,6) (1,5) 6. Note that the order of skippers within a flight is
2 (2,6) (075) (1,3) significant, as is position within a match (port or
3 (576) (073) (1a4) starboard). This schedule is the result of stages 1
4 (3,5) (1,6) (2,4) and 2, and has yet to be renumbered and oriented
5  (3,6) (0,4) (2,5) (stages 3 and 4).

6 (34) (1,2) (0,6)

attempts to minimize boat changes and balance. The third stage satisfies crite-
rion 9, and is a simple translation of the schedule produced in stage 2. The final
stage orients skippers within matches to address criteria 2, 3, 5 and 8.

We now describe the constraint models and processes used in each stage. In
the text below we assume there are n skippers and b boats, with m = b/2 matches
in a flight. In total there are t = n(n—1)/2 matches and f = [n(n—1)/m] flights.
We use the schedule in Table 1, for 7 skippers and 6 boats, to help illustrate the
constraint models.

3.1 Stage 1: Minimizing Boat Changes

Modeling skippers: The first thing we model, in the first half of Figure 1, is a
skipper. Each skipper ¢ has both a temporal view of their schedule (“who, if
anyone, am I racing in the match at time ¢?”), and a state view (“where am I
racing within flight f?”). The temporal view is via the array timeSlot defined in
(V1). If variable timeSlot[i] = k and k > 0 then this skipper is in a match with
skipper k at time 3.

Variable state[i] (V2) gives the state of this skipper in flight i, corresponding
to time slots timeSlot[m - i] to timeSlot[m(i + 1) — 1]. The cases in (C1) state
that a skipper can be in a match in the first time slot in the flight, or in the
middle of the flight?, or in the last time slot of the flight. Alternatively, if all
time slots in a flight are equal to —1 then the skipper is in a bye (i.e. not in a
match in this flight), and if all time slots in a flight are equal to —2 then the
skipper has finished all matches.

We must then ensure that each skipper o is in a match with all other skip-
pers {0, ...,n — 1} \ {o}. This is (C2), which is enforced by imposing a global
cardinality constraint [5] on the array timeSlot.

State transitions: The state variables are then used to impose match race cri-
terion 4 (if last in flight ¢ then not first in flight ¢ + 1), criterion 11 (if last in
flight ¢ then not in a bye in flight ¢ 4+ 1) and criterion 12 (if flight 4 is a bye then
flight 7 4 1 is not first). These criteria are imposed in (C3) by the deterministic
finite automaton (DFA) shown in Figure 2 using Pesant’s regular constraint [4].

2 j.e. not first and not last.



A copy of these variables and constraints is created for each skipper o:

V1 € {0...t—1} : timeSlot[r] € {-2...t—1}\ {0} (V1)
Vi € {0... f—1} : state[i] € {FIRST, MID, LAST, BYE, END} (V2)
Vie{0..f—1}: (C1)

state[i] = FIRST < timeSlot[m -i] > 0

state[il] =MD < 3JFje{m-i+1..m-(i+1)—2}: timeSlot[j] >0
state[i] = LAST < timeSlotim - (i4+1)—1] >0

state[il] = BYE < Vje{m-i.m-(i+1)—1}: timeSlot[j] = —1
state[il] = END & Vje{m-i.m-(i+1)—1}: timeSlot[j] = —2

eachOccursExactlyOnce(timeSlot, {0, ...,n—1} \ {o}) (C2)
regular(state, Figure 2) (C3)
Vi € {0... f—2} : changeli] € {0,1} (V3)
totalChanges € N (V4)
Vi € {0... f—2} : changeli] = 1 & state[i] = BYE A state[i + 1] # BYE (C4)
totalChanges = Y, change (C5)
Match and temporal perspectives:

Vi€ {0..n—2}:Vj e {i+l..n—-1}:

matchl[i, j] € {0...t—1} (V5)

match[j, ] = matchls, j]

Vk e {0..t—1}:

matchli, j| = k < ofi].timeSlot[k] = j A o[j].timeSlot[k] = i (C6)

Vi€ {0..n—2}:Vj € {i+1..n—1}:

modMatchli,j] € {0... f—1} (V6)

modMatchl[j, 1] = modMatchli, j]

modMatchli, j]) = match[i, j|/m (cn)
Vi € {0...n—1} : allDifferent(modMatchli]) (C8)
Vr e {0..t—1}:

time[r] € {(0,1) ... (n—2,n—1)} (V1)

Vi€ {0..n—2}:Vj € {i+1...n—1} : time[r] = (4,5) & match[i,j] =1 (C9)
totalBoatChanges = Y o.totalChanges (V8)
minimise(totalBoatChanges) (C10)

Fig. 1. Our constraint model, from a skipper perspective (top) and a match and tem-
poral perspective (below). The number of skippers is n, and m is the number of matches
in a flight. The number of flights is f = [n(n — 1)/m], and there are t = n(n — 1)/2
matches (and time slots) in total. We define N to include zero.



Skipper 5:

Ll Jaf L1 [ofLJof Jlef [ Jl8l [ JL T J2f [ ]

Flight Matches

0 (2,3)
(4,6)
(0,5)
(0,3)
(1,6)
(0,4)
(1,2)

Fig. 2. A pictorial representation of a skipper (skipper 5) with multicoloured state and
grey timeslots. The schedule for skipper 5 is in bold and the DFA for criteria 4, 11
and 12 is drawn with state START in white, FIRST in blue, MID in yellow, LAST in
green, BYE in pink and END in red. The edge marked x is explained in the text.

S T s W N

The arcs in Figure 2 represent possible transitions from one state to another.
The DFA is encoded as a set of transition objects (g;, ¢, g;), where a transition is
made from state g; to state ¢; when encountering input ¢. In addition we specify
the accepting states, which are all states except the start state (white) and the
bye state (pink). This constraint also ensures that if a skipper has finished all
matches in flight ¢ (i.e. is in state END) then that skipper will also have finished
all matches in flight i + 1 (and so on). Note that when we have as many boats
as skippers, the directed edge (BYE, LAST) (marked x) becomes bidirectional.

Figure 2 also shows the skipper-oriented variables and constraints corre-
sponding to skipper 5 in the schedule shown in Table 1. The state array is
presented as coloured boxes, and below that is the timeSlot array. The arrows
represent the channeling constraints (C1). The state array is coloured with green
representing LAST, yellow for MID, blue for FIRST, red for LAST and (not shown)
pink for BYE. The schedule of Table 1 is reproduced with the matches for skipper
5 emboldened.

Boat changes: A boat change occurs when a skipper has been in a BYE state in
flight 7 and then is in a match in the next flight ¢ 4+ 1. This is encoded using the
array of zero/one variables (V3), and the constraint (C4), and accumulated into
totalChanges (V4, C5).



Match perspective: We are now in a position to model criterion 1 (each skip-
per sails against every other skipper) and optimization criterion 10 (minimize
boat changes). In the second half of Figure 1 we present a match perspective
of the schedule, using a two dimensional array of variables match (V5), where
match[i, j] is the time slot in which skippers o[i] and o[j] meet in a match. Only
the half above the diagonal is represented, and the lower half is made up of ex-
actly the same variables, i.e. matchl[i, j] is exactly the same constrained variable
as match[j, ). Constraint (C6) states that a match between skippers oli] and
olj] takes place at time k (i.e. match[i,j] = k) if and only if skipper o[i]’s k*"
time slot is skipper o[j] and conversely that skipper o[j]’s k' time slot is skipper
oli]. Variables (V6) and constraints (C7) then convert this from time slots to
flights, i.e. modMatchli, j] is the flight in which skippers o[i] and o[j] meet for
a match. Finally, constraint (C8) ensures that each skipper’s match occurs in
different flights. Also, since modMatchli, j| = modMatch[j, i], setting rows to be
all different also ensures that columns are all different.

Temporal perspective: We now take a temporal view (V7), such that time[r] is
a pair (Z,7), stating that at time 7 skippers o[i] and o[j] are in a match. We
channel between the match perspective and the temporal perspective using (C9).

Optimization criteria: Finally we have the optimization criterion (criterion 10)
to minimize the number of boat changes. This is handled by (V8) and (C10).

Decision variables: The decision variables are time[0] to time[t — 1], i.e. for each
time slot we decide what match takes place. A symmetry break is made at the
top of search by forcing the first round to contain the matches (0,1),(2,3), ...,
ie. Vi € {0...m — 1} : match[2i,2i + 1] = 4. (This is independent of criterion 9,
which will be enforced in a subsequent stage by renumbering.)

Figure 3 gives a pictorial view of the entire model, using the 7 skipper and 6
boat problem. On the right we have the 7 skippers with their states and time
slots. Again, on the right we give the schedule actually produced. On the left we
have the modMatch and match arrays, and at the bottom the time array. The
arrows show the channeling between parts of the model.

The schedule presented has 6 boat changes: there are no boat changes in
flight 0 (first flight), in flight 1 skipper 6 has a boat change, in flight 2 skipper 3
has a boat change, in flight 3 skipper 4, in flight 4 skipper 6, in flight 5 skipper
0, and flight 6 skipper 1.

3.2 Stage 2: Minimizing Imbalances

Having produced a schedule that minimizes boat changes, we then minimize
imbalance (i.e. apply criterion 6) by extending the model in Figure 4. Assuming
the first stage produces a schedule with 8 boat changes we post this as a hard
constraint (C11) in stage 2. For each skipper o we introduce a zero/one variable
positionli, j] (V9) which is 1 if and only if skipper ¢ is in a match in time m-j+1,



Skipper 0

modMatch

012 3 45 6
0]- 0135 26
1 10 - 6 2 3 1 4
2116 - 045 2 schedule
313 20 - 6 45 Flight Matches
415346 - 01 0 (0,1) (2,3) (4,5)
5021540 - 3 ; ((2)72) (é,g) (?g)
closesis 569 03 1w
I 4 (35) (16) (2.4)
match 5  (3,6) (0,4) (2,5)
0 3456 6 (34) (1,2) (0,6)
0 |- 0 3 1016 20
1 - 19 8 11 5 13
2 - 11417 6
3 - 1812 15 B
4 - 2
5 -
6 -
!
time [ov]es]as|oa]ae]an]eo]es]as]colon[an|ean]as]eo|eo]oa]esn]eo]an]we]

Fig. 3. A pictorial representation of the entire model of the schedule for 7 skippers and 6 boats. The schedule is reproduced on the right.
In the centre we have the 7 skippers, on left the modMatch and match arrays, and along the bottom the time array. The arrows signify
channeling between parts of the model.



The objective value from stage 1 is used as a hard constraint:

totalBoatChanges < f8 (C11)

A copy of these variables and constraints is created for each skipper o:

Vie{0..m—-1}:Vje{0.. f-1}:

position[i, j] € {0,1} (V9)

position[i, j] = 1 < timeSlotm.j +1i] > 0 (C12)
Vi€ {0..m—1}:

imbalance[i] € N (V10)

n—1 =

imbal )| = | ——— — ition|i, j C13

tmbalanceli] - JZ::O position|i, j| (C13)
mazxImbalance € N (V11)
mazImbalance = maximum (imbalance) (C14)

We minimize the maximum imbalance over all skippers:

Vi € {0...n—1} : imbalance(i] = o[i].mazImbalance (V12)
mazImbalance € N (V13)
mazImbalance = maximum (imbalance) (C15)
minimise(mazImbalance) (C16)

Fig. 4. Additions to the constraint model in Figure 1 for stage 2. The constant (3 is
the minimum number of boat changes found in stage 1.

Flight Matches

Table 2. A round-robin schedule with 7 skippers,

0 (0,6) (2:3) (45 6 boats and 7 flights, which is the result of stages
1 (0,2) (4,1) (6,5) 1, 2, and 3. It has 6 boat changes and imbalance
2 (2,1) (0,5) (6:3) 1. An example of imbalance is skipper o[0] with 2
3 (5,1) (0,3) (6:4)  matches in position 0 (first), 3 in position 1 and 1
4 (3,5) (6,1) (2,4) (mid) in position 2 (last). Perfect balance would be
5  (3,1) (0,4) (2,5) 2 matches in each position, only achieved by o[2].
6 (34) (62) (0,1)




Flight Matches

0 (0,6) (3,2)

I: (0,2) (4,1)

(2,1) (5,0)

N (L5) (3.0)

' (3,5) (6,1)

(1,3) (0,4)

3: (413) (276)
4:
5:
6:

Fig. 5. A pictorial representation of the orientation process, stage 4. Top right is the
actual oriented schedule. Below that is the DFA to satisfy criterion 5. On the left is the
zero/one variables, a row representing a skipper’s sequence of competitors. An edge
between variables corresponds to a matched pair, that must take different values.

AN AN N N N N
— Ot l\)jk D O Ot
SN RO W U
NN AN AN AN AN

U W N

i.e. in the i*" match of the j'* flight (C12). Imbalance (V10) is then computed
for each position, as the absolute amount over or under the expected presence
in a given position (C13). Finally, we compute the maximum imbalance over all
positions for this skipper (V11, C14).

We then capture the maximum imbalance over all skippers (V12, V13 and C15)
and minimize this (C16). As before, the decision variables are time[0] to time[t — 1]
and the same symmetry breaking is imposed at top of search.

3.3 Stage 3: Renaming Skippers

Stage 3 then takes as input the schedule produced in stage 2 and renames skip-
pers in the last round of the last flight to be (0, 1), satisfying criterion 9. This
is a simple linear process. The schedule produced for 7 skippers and 6 boats is
shown in Table 2.

3.4 Stage 4: Orienting Matches

The final stage, stage 4, orients skippers within matches, such that they are ei-
ther port (red) or starboard (green). This is done to satisfy criteria 2, 3, 5 and 8.
A sketch of the constraint model is given with a supporting diagram, Figure 5.
A two dimensional array of constrained integer variables orient[i,j] € {0,1}
has orientli,j] = 0 if and only if skipper o[i] is on port side in his j** match
(starboard otherwise). For example, taking the schedule in Table 2, skipper



o[2] meets skippers in the order 3,0,1,4,5,6; skipper ¢[3] meets skippers in the
order 2,6,0,5,1,4 and o[5] meets skippers in the order 4,6,0,1,3,2. Therefore
orient[2,0] = 1 and orient[3,0] = 0 (criterion 8), orient[2,4] # orient[5,5]
and orient[3, 3] # orient[5,4]. Summation constraints on each skipper enforce
criteria 2 and 3 (equal number of port and starboard matches). Criterion 8 is en-
forced by posting constraints such that in a match (o[i], o[j]) where |i — j| =1,
the higher indexed skipper (lower ranked) is on the port side. A regular con-
straint is posted for criterion 5 (restricting sequences of port and starboard
assignments).

In Figure 5, port is red and starboard green. The sequence of zero/one vari-
ables for each skipper is shown on the left. Bottom right is the DFA, and top
right is the final schedule produced from stages 1 to 4. The schedule has 6 boat
changes and a maximum imbalance of 1. The schedule presented here is new,
not appearing in the example schedules provided in the manual [2].

4 Sample Schedules

We present four pairs of schedules. The first pair is for 8 skippers and 6 boats,
one published by ISAF, the other generated by us. Next, we present two new
schedules, not appearing in the ISAF manual, for 9 skippers and 6 boats and 9
skippers with 8 boats, then 10 skippers and 6 boats, again both published by
ISAF and generated by us. Finally, we show what is a relatively easy problem, 8
skippers and 8 boats. For each of our schedules (with the exception of the latter
“easy-8” problem) we used 1 day CPU time for the first stage (minimizing boat
changes) then a further 2 days to minimize imbalance. We were unable to prove
optimality in this time, therefore some of these schedules might be improved.
The processor used was an Intel (R) Xeon (R) E5-2660 at 2.20GHz. Note, stages
3 and 4 (renaming and orientation) completed in less than a second.

Flight Matches Flight Matches

0 (52)(43) (1,6) 0 (2,7) (3,0) (54)
1 (4,2) (6,5) (3,1) 1 (0,2) (4,3) (7,5)
2 (6,4) (2,1) (3,5) 2 (0,4) (7,6) (5,3)
3 (6,2) (5,0) (1,7) 3 (4,6) (5,0) (3,1)
4 (5,1) (0,6) (2,7) 4 (6,5) (3,2) (1,4)
5 (7,5) (2,0) (6,3) 5 (6,3) (4,7) (2,1)
6 (0,7)(41) (3,2) 6 (7,3) (1,6) (4,2)
7 (74)(0,3) 7 (7,1) (2,5) (6,0)
8 (4,0) (7,3) 8 (5,1) (0,7) (6,2)
9 (54) (7,6) (1,0) 9 (1,0

Fig. 6. Schedules for 8 skippers and 6 boats. On the left, the published ISAF schedule
(illegal), and on the right is our schedule.



Flight Matches Flight Matches

0 (0,7) (3,2) (5,4) 0 (0,6) (3,2) (5,4) (1,7)
1 (0,2) (7,4) (5,3) 1 (2,0) (6,3) (4,1) (8,7)
2 (4,0) (7,3) (2,5) 2 (6,4) (0,5) (7,2) (3,8)
3 (3,0) (2,4) (6,5) 3 (4,7) (1,8) (0,3) (5,2)
4 (4,3) (5,1) (8,6) 4 (3,1) (7,5) (8,0) (2,6)
5 (3,1)(6,2) (4,8) 5 (3,7) (4,8) (2,1) (6,5)
6 (6,3) (1,4) (8,2) 6 (8,2) (1,6) (5,3) (0,4)
7 (4,6) (2,7) (1,8) 7 (5,1) (7,0) (6,8) (4,3)
8 (7,6) (0,8) (2,1) 8 (8,5) (2,4) (7,6) (1,0)
9 (8,7) (5,0) (6,1)

10 (8,5) (1,7) (0,6)

11 (7,5) (3,8) (1,0)

Fig. 7. Two new schedules. On the left, 9 skippers and 6 boats, and on the right 9
skippers and 8 boats.

8 skippers and 6 boats: We first analyze the ISAF schedule, Figure 6 on the
left. Criterion 4 (skippers in last match in a flight cannot be first in next flight)
is violated on 3 occasions (skipper 1 in flight 3, skipper 7 in flight 4, skipper
0 in flight 7). Criterion 5 (no more than two consecutive port or starboard
assignments) is violated for skipper 6 (flights 1 to 3) and skipper 7 (flights 7 to
9). Criterion 6 (imbalance) is violated for skippers 6 and 8. Criterion 12 (new
boats do not sail first) is violated in flight 9 for skipper 5. Finally, the schedule
has 8 boat changes. Our schedule, Figure 6 on the right, respects all criteria and
has 6 boat changes and a maximum imbalance of 1.

9 skippers: Two new schedules are presented in Figure 7, on the left for 6 boats
and on the right for 8 boats. Neither of these schedules appear in the ISAF
Umpires’ Manual. Both schedules respect all criteria. For 6 boats there are 8
boat changes (no skipper making more than 1 boat change) and a maximum
imbalance of 2. For 8 boats there are again 8 boat changes, no skipper with
more than 1 boat change, and each skipper 4 times on starboard side and 4 on
port side.

10 skippers and 6 boats: Figure 8 shows the ISAF schedule on the left for 10
skippers and 6 boats and on the right, our schedule. The ISAF schedule violates
criterion 5 (no more than 2 consecutive port or starboard assignments) ten times
(twice for skippers 0, 1 and 6 and once for skippers 3, 7, 8 and 9). Criterion 12
(new boats do not sail first) is violated 7 times (in flight 3 for skippers 6 and
2, flight 5 for skipper 8, flight 6 for skipper 7, flight 8 for skipper 1, flight 9 for
skipper 4 and flight 12 for skipper 4 again). There are 22 boat changes, with the
minimum changes for a skipper being 1 and the maximum 3. Our schedule, right
of Figure 8, satisfies all criteria, has 12 boat changes with the minimum changes
for a skipper being 0 and the maximum 2, and a maximum imbalance of 1.



Flight

Matches

Flight

Matches

0 O UL WN—O

©

10
11
12
13
14

0O Ul W~ O

©

10
11
12
13
14

(4,7) (3,2) (0,5)
(2,4) (7,0) (3,5)
(0,4) (7,3) (5,2)
(4,3) (0,2) (5,7)
(3,0) (6,5) (2,7)
(6,3) (7,1) (8,2)
(7,6) (2,1) (9,8)
(2,6) (8,7) (4,9)
(6,8) (1,4) (7,9)
(8,1) (5,4) (9,6)
(5,1) (9,2) (4,6)
(1,9) (6,0) (8,4)
(0,9) (3,8) (6,1)
(8,0) (9,5) (1,3)
(5,8) (9,3) (1,0)

Fig. 8. Schedules for 10 skippers and 6 boats. On the left, the ISAF published schedule
(illegal), and on the right, our schedule.

8 skippers and 8 boats (easy-8): Figure 9 shows the ISAF schedule on the right
for 8 skippers and 8 boats and on the right, our schedule. The ISAF schedule
violates criterion 4 (last match in a flight cannot be first in next flight) for
skipper 5 in flights 1 and 2. Also, criterion 5 (no skipper should have more than
2 consecutive port or starboard assignments) is violated for skippers 0, 1, 3, 4 and
6. Furthermore, skipper 1 appears in the last match of four flights resulting in
significant imbalance. Our schedule, on the right, satisfies all criteria, is optimal
(maximum imbalance of 1) and took less than 10 seconds in total (all stages) to

Matches

Flight

Matches

produce.
Flight
0 (5
1 (2
2 (0
3 (7
4 (3
5 (6
6 (7

3) (1,

I

I

2) (4,
4) (
5) ( 6
3) ( 4
0) (4,7) (6,
4) (7,5) (2
6) ( 3

I

6) (0
L7) (5
3) (4
5) (2
0) (3
2) (1

0

U W N =

(4
(3
(4
(1
(0
(7
(6

)(

3) (2,

2) (0.4
1) (7,3
7) (6,5
5) (4,6
0) (2,1
2) (5,3

’

Fig. 9. Schedules for 8 skippers and 8 boats. On the left, the published ISAF schedule
(illegal), and on the right, our schedule.



5 Discussion

It was anticipated that this problem would be easy to model. This naivety was
due to the use of the term “round-robin” for these schedules, leading us to believe
that we could use some of the models already in the literature [7,6,1]. This
naivety slowly dissolved as we addressed more and more of the ISAF criteria. A
number of models we produced were scrapped due to misunderstanding about the
actual problem, i.e. a communication problem between the authors. Eventually
this was resolved by presenting the majority of the criteria as a deterministic
finite automaton. This became our Rosetta Stone, with the surprising benefit
that it not only improved the team’s communications, it was also a constraint
(the regular constraint).

The staged approach was taken cautiously. We expected that isolating the
orientation of schedules as a post-process might leave us with a hard or insoluble
problem. So far, every schedule we have produced has been oriented with very
little search, typically taking less than a second.

We used the Choco constraint programming toolkit and one of our goals was
to use only toolkit constraints, i.e. we wanted to see how far we could go without
implementing our own specialized constraints. We are pleased to say that we did
not have to do anything out of the box, although we did feel that we had used
just about every constraint there was.

There are many redundant variables in our model. One of our first valid mod-
els was essentially that shown in Figure 2, and did not use modMatch and match
variables. Performance was hopeless, struggling to produce a 7 skipper 6 boat
schedule in days. The modMatch and match variables were added. This improved
domain filtering, and a flattened match array was used as decision variables.
That is, the decisions where “when do we schedule this match?”. At this point
we had not yet produced a 9 skipper 6 boat schedule and we suspected that
the combined criteria might exclude such a schedule. A non-constraint model
was developed, primarily to attempt to prove that there was no schedule for 9
skippers with 6 boats. This program used a backtracking search with decision
variables being positions within flights, i.e. time slots being assigned to matches.
At the top of search, the matches in the first flight were set, and symmetry
breaking was used to reduce the number of legal second flights. A solution was
found in seconds! With this experience we added in the time variables, channeled
these into the existing model and used these as decision variables, i.e. the ques-
tion now was “what match will we do now?”. We also anchored the matches in
the first flight. With these changes we began to produce schedules in acceptable
time. The model was then built upon, incrementally adding criteria. This took a
surprisingly short amount of time, sometimes minutes of coding to add in a new
feature. The model was then enhanced so that it would address optimization
rather than just satisfaction, again a trivial programming task.

We have only reported a handful of our schedules, however there are missing
schedules i.e. unpublished and not yet produced by us. Examples of these are 10
skippers and 8 boats, 11 skippers with fewer than 10 boats, 12 skippers and 8
boats, 13 skippers and 8 boats and 14 skippers with fewer than 10 boats. None of



I'f',; ‘;(r
51 ¥4

i
A."‘

i M
Ql\m Jd
Y e

Fig. 10. Scene from an imaginary dinghy race.

these schedules have been published by the ISAF, although we expect that they
can be produced by selectively violating some of constraints. We have also not
yet encoded criterion 7, addressing the situation of 10 or more boats. To do this
we will have to modify the DFA used by the regular constraint in the first two
stages. In addition, we have yet to address the format of two-group round-robin
schedules as also found in the manual [2].

6 Conclusion

We have produced new and better match race schedules. These schedules can
be used by anyone who competes under the criteria published by ISAF. Our
schedules can be downloaded as blank schedules and then populated with the
names of the actual competing skippers.

So, why did we use constraint programming? The answer is obvious: we are
constraint programmers, or to borrow Mark Twain’s words “To a man with a
hammer, everything looks like a nail”. But actually, constraint programming has
been a good way to go. From an engineering perspective, it has allowed us to
prototype solutions quickly and to build solutions incrementally. There is also an
advantage that we might exploit in the future: we can now investigate the effect
different criteria have on our ability to produce schedules and how relaxation of
those affect optimization criteria. That is, the constraint program might be used
to design the next set of criteria for match race schedules, or allow the event
organizer to decide which criteria to sacrifice to ensure a faster schedule with
fewer boat changes.



References

1. Martin Henz, Tobias Miiller, and Sven Thiel. Global constraints for round robin
tournament scheduling. Furopean Journal of Operational Research, 153(1):92-101,
2004.

2. International Sailing Federation. ISAF International Umpires’ and Match Racing
Manual, 2012.

3. Michele Lombardi and Michela Milano. Optimal methods for resource allocation
and scheduling: a cross-disciplinary survey. Constraints, 17(1):51-85, 2012.

4. Gilles Pesant. A regular language membership constraint for finite sequences of
variables. In Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference, CP 2004, Toronto, Canada, September 27 - October 1,
2004, Proceedings, pages 482—-495, 2004.

5. Claude-Guy Quimper, Peter van Beek, Alejandro Lépez-Ortiz, Alexander Golynski,
and Sayyed Bashir Sadjad. An efficient bounds consistency algorithm for the global
cardinality constraint. In Francesca Rossi, editor, Principles and Practice of Con-
straint Programming CP 2003, volume 2833 of Lecture Notes in Computer Science,
pages 600—-614. Springer Berlin Heidelberg, 2003.

6. Rasmus V. Rasmussen and Michael A. Trick. Round robin scheduling - a survey.
European Journal of Operational Research, 188(3):617-636, 2008.

7. Michael A. Trick. Integer and constraint programming approaches for round-robin
tournament scheduling. In Practice and Theory of Automated Timetabling IV, 4th
International Conference, PATAT 2002, Gent, Belgium, August 21-23, 2002, Se-
lected Revised Papers, pages 63—77, 2002.



