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Abstract

Statistical analysis with missing data is commonly conducted using the concept of Multiple Imputation
(MI) [35]. Predictive Mean Matching (PMM) has become a very popular semi-parametric method within
the MI framework to impute values from the support of an incomplete variable. Moreover, it can be shown
that PMM is more robust to model misspecification than purely parametric methods. However, these
benefits come at the price of deviating from the Bayesian framework of MI, where imputations are based
on draws from the posterior predictive distribution of the missing data. At present, several different PMM
algorithms in MI software exist, but no theoretical foundation has yet been provided that shows either of
the matching variants to be superior. We review all the existing software implementations and show their
MI-improperness. As a consequence of the identified problems, we develop a new PMM procedure called
MIDAStouch that largely builds on ideas by Siddique & Belin 2008 [42] and is publicly available as an
R package [26]. This new method is finally investigated within a simulation study, where it is compared
to existing software implementations. We find that the MI-improperness of the existing PMM procedures
leads to an attenuation bias of the total variance estimate. The simulation study reveals that the bias is
large for small sample sizes, but can be avoided by applying the proposed MIDAStouch procedure.

Keywords: Multiple imputation, Predictive Mean Matching, Approximate Bayesian Bootstrap, Distance-
Based Donor Selection

1 Introduction

‘Multiple imputation is a statistical technique designed to take advantage of the flexibility in modern
computing to handle missing data. With it, each missing value is replaced by two or more imputed
values in order to represent the uncertainty about which value to impute.’

These few first words in Rubin’s seminal book on this matter [35] fully express the rationale of multiple
imputation. For a more formal representation we let Y denote a multidimensional variable that can be split
into an observed part Yobs, and a missing part Ymis, such that Y = [Yobs, Ymis]. The missing data can be
imputed under a Bayesian framework by making random draws from the posterior predictive distribution

f(Ymis|Yobs) =

∫
ψ∈Ψ

f(ψ|Yobs)f(Ymis|ψ, Yobs)dψ, (1)

where ψ are the imputation model parameters. Since direct draws from f(Ymis|Yobs) are usually not feasible,
MI algorithms typically make random draws from the observed-data posterior distribution f(ψ|Yobs), followed
by subsequent random draws from the conditional predictive distribution of the missing data f(Ymis|ψ, Yobs)
[29, p88]. The components of this typical MI procedure are referred to as the Posterior (P) step and the
Imputation (I) step, respectively [21, p201]. However, in order to avoid treating imputed and observed values
alike, these two steps are repeated M ≥ 2 times, yielding M data sets which are identical for Yobs, but
typically not for Ymis. Applying Rubin’s rules leads to an additional variance component for an estimated
parameter that accounts for the uncertainty induced by the missing data, thus making frequentist inference
more conservative. The detailed combining rules and theoretical justification can be found in [35].

MI has developed into one of the dominating strategies on handling incomplete data, various books have
been published, and algorithm are implemented in numerous statistical software packages, such as R, SAS,
SPSS, and Stata.

1.1 The evolution of MI algorithms

Probably the first publicly available MI algorithm was NORM by Joseph Schafer in 1997 [39, p399]. The
NORM algorithm assumes that Y ∼ Np(µ,Σ)1. Random draws from the posterior distribution are composed

1There are extensions for e.g. categorical variables [39, p399].
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of drawing Σ|Yobs from an inverse Wishart distribution, and subsequently drawing µ|Σ, Yobs from a multivariate
normal. The missing values are imputed by drawing Ymis|µ,Σ, Yobs from a multivariate normal as well. The
procedure is MCMC based for non-monotone missing patterns, which, however, need not be within the scope
of this paper. If Y is normally distributed, this so-called joint modeling algorithm leads to proper multiple
imputation [35, p118f.][39, p105f.].

Multivariate distributions are hard to define for real data sets, though. Hence a different class of algo-
rithms emerged that is based on conditional univariate imputations [27]. The advantage of this so-called fully
conditional specification (FCS) approach2 is the flexibility in terms of choosing an appropriate imputation
model for each variable. The conditional predictive distribution of the missing data can now be denoted as
f(Yj,mis|Yj,obs, Y−j , ψj). For non-monotone missingness patterns this procedure is akin to Gibbs sampling [10].

The MICE (multivariate imputations by chained equations) algorithm by Stef van Buuren and Karin
Oudshoorn was published in 2000, and has laid the foundation for many similar FCS algorithms like Stata::ice
[31], IVEware in SAS [28], or the SPSS::MI routines [15]. Meanwhile the FCS approach has gained the upper
hand over joint modeling.3 The work in this paper adds to the FCS algorithms, too.

1.2 The evolution of PMM algorithms

It is important to note that all the early FCS implementations were purely parametric, and could be considered
proper MI algorithms, if the joint distribution of Y existed [22], and the distributional assumptions were
correct. While FCS led to a considerable gain in flexibility, it did not solve the problem of potential implausible
imputations. Well defined conditional predictive distributions are simply not capable of reflecting the empirical
distributions of survey data, appropriately. This is where Predictive Mean Matching (PMM, [34, p92], [20])
steps in.

PMM is a semi-parametric hot-deck imputation method [41, p429] that is now not only implemented in
numerous software packages (see table 1) but is even the default procedure for continuous variables in many
of them. For instance, MICE is comprising PMM as the default for continuous variables ever since its very
first version [49, p33]. The reasons for PMM’s popularity within MI algorithms are multifold. Compared to
a fully parametric imputation, PMM is less sensitive to model misspecification [41, p429], namely non-linear
associations, heteroscedastic residuals, and deviations from normality [24, p4]. An illustrative example is given
in van Buuren 2012 [47, p70]. Moreover, PMM imputations are considered plausible, because the imputed
values are observed in the data set [41, p429]. However, the quality of PMM imputations largely depends upon
the availability of near donors. Applying PMM in e.g. truncation settings does not make any sense [18, p38].

1.3 Linking MI and PMM

Although the concept of multiple imputation has been combined with PMM many times (see table 1), there
is some skepticism around. Little & Rubin 2002 state about PMM [21, p69]

‘... properties of estimates derived from such matching procedures remain largely unexplored.’

Koller-Meinfelder 2009 notes [18, p32]

‘The difficult part about Predictive Mean Matching is to utilize its robust properties within the
Multiple Imputation framework in a way that Rubin’s combination rules still yield unbiased vari-
ance estimates.’

And, recently Morris, White & Royston 2014 warned in the same context [24, p5]

‘... there is thus no guarantee that Rubin’s rules will be appropriate for inference.’

This theoretical uncertainty along with the prominence of PMM in practice motivated our work. The remainder
of this paper is structured as follows. The sections 2 and 3 introduce into both, the details of the previous work
we refer to and the applied notation. Section 4 reveals the differences between the existing PMM algorithms
and the theory of multiple imputation. In section 5 we present a new PMM procedure that we call MIDAStouch
and that overcomes the identified differences while being largely built on the work by Siddique & Belin 2008
[42]. Section 6 presents a simulation study comparing all major PMM software implementations.

2 The univariate case

Let the data be univariate normal
yn×1 ∼ N(µ, σ2

y) (2)

2also referred to as ’switching regressions’, ’sequential regressions’ or most commonly ’chained equations’
3As an indicator we refer to R-Studio [32] reporting the number of R-package [26] installations from their own servers on

http://cran-logs.rstudio.com/. In the whole year 2015 the FCS flagship package R::mice [48] was installed more than six
times as often as the joint modeling flagship package R::norm [40] (64,671 times versus 10,015 times).
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We denote nmis as the number of missing values or recipients and nobs = n−nmis as the number of non-missing
values or donors in y. We assume ignorability for the missingness as

P (y = missing) = α0 6= f(y), 0 < α0 < 1 (3)

In this simple case fully parametric multiple imputation can be carried out by repeating the following two
steps M ≥ 2 times to correctly reflect the uncertainty about the parameters of the imputation model.

1. The P-step

(a) Draw σ̃2
y|yobs ∼ Γ−1(nobs

2 , 1
2 ·

nobs∑
i=1

(yi − ˆ̄yobs)
2).

(b) Draw µ̃|yobs, σ̃2
y ∼ N(ˆ̄yobs,

σ̃2
y

nobs
).

2. The I-step

(a) Draw nmis times from ỹ ∼ N(µ̃, σ̃2
y).

This procedure corresponds to method number four in Little & Rubin 2002 [21, p216].

2.1 The P-step and the bootstrap

The P-step of the above procedure is substituted by a bootstrap in a number of existing software packages
(see table 1) as originally proposed in Heitjan & Little 1991 [13, p18]. Instead of drawing M times from the
posterior distributions of the parameters to reflect their uncertainty, the Maximum-Likelihood (ML) estimates
of M independent bootstrap samples are utilized. This procedure corresponds to method number six in Little
& Rubin 2002 [21, p216].

It may be worth noting that even though the packages claim to use different bootstrap procedures they are
doing very much the same thing. In the initial paper [33, p131] on the Bayesian Bootstrap (used by R::BaBooN
[23]) Rubin 1981 already shows that its statistical properties are very similar to those of the simple bootstrap
[8]. The Approximate Bayesian Bootstrap (ABB) for the P-step (used by SAS::MIDAS [43]) is even just a
simple bootstrap [42, p85].

2.1.1 The Approximate Bayesian Bootstrap

However, the ABB for the univariate case as presented in the original paper, is a kind of shortcut-imputation
[36, p368]. Rather than drawing parameters in the P-step the ABB just draws a bootstrap sample. And,
rather than drawing from the conditional predictive distribution in the I-step, the ABB just draws from the
empirical bootstrap sample considering the integer bootstrap weights ω. This model-free imputation procedure,
however, is unique to the univariate case. Kim 2002 [16, p472] showed that the ABB delivers correct inferences
for nobs → ∞ only. This is due to the fact that the bootstrap estimator ignores the appropriate degrees
of freedom correction just like the Maximum-Likelihood estimator [6, p22]. Thus, for finite nobs the total
parameter variance is underestimated. Parzen et al. 2005 [25, p973] suggest the following bias-correction
factor PLF :

PLF =

n2

nobs
+ nmis

M ·
(
n−1
nobs
− n

(nobs)2

)
n2

nobs
+ nmis

M ·
(
n−1
nobs
− n

(nobs)2

)
− n·nmis

nobs
·
(

3
n + 1

nobs

) (4)

Some criticism about this correction factor stems from Demirtas et al. 2007 [7].

2.2 The I-step and Predictive Mean Matching (PMM)

PMM [34, p92] substitutes the draw from the conditional predictive distribution. This was first described by
Little 1988 [20, p292]. Translating his approach to our easy example from the equations (2) and (3) gives:

1. Calculate the (predictive) mean for the nobs elements of y as ˆ̄yobs = 1
nobs
·
nobs∑
i=1

yi.

2. Draw the (predictive) mean for the nmis elements of y as µ̃|yobs, σ̃2
y ∼ N(ˆ̄yobs,

σ̃2
y

nobs
).

3. Match each element of µ̃ymis to the its respective closest element of ˆ̄yobs.

4. Impute the observed yobs of the closest matches.

Note that in this univariate case all recipients are equally far away from all donors in terms of their predictive
means. I.e., the procedure described just samples randomly with replacement from the set of donors in the
sample. Hence, the total parameter variance of this procedure is even smaller than the already downward
biased variance of the ABB, that samples randomly from a bootstrap sample (see section 2.1.1).
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3 The multivariate case

The univariate case is especially important for understanding the ABB (see section 2.1.1). Even though PMM
can be applied in a univariate setting (see section 2.2) it was developed for the multivariate case. This section
is to formerly introduce PMM.

Suppose that in addition to the variable with missing values (see equation (2)) we observe a set of p − 1
fully observed variables.

yn×1, Xn×(p−1) ∼ Np(µ,Σ) (5)

We still assume ignorability for the missingness, now a little bit more complex,

P (y = missing) = Φ (X∗ · α+ η) (6)

where X∗ denotes the X matrix from above with a leading constant column, η i.i.d. normal noise and Φ the
normal c.d.f.. The correct conditional imputation model is the linear model.

y = X∗ · β + ε (7)

with ε denoting i.i.d. normal noise with zero mean and variance σ2
ε . Note that the missing pattern is monotone

and thus no Gibbs sampler iterations are necessary [47, p104]. Fully parametric imputation can be carried out
in a very similar fashion as in the univariate case.

1. The P-step

(a) Draw σ̃2
ε |yobs, Xobs ∼ Γ−1(nobs

2 , 1
2 · (ε̂

ML
obs )′ · (ε̂ML

obs ))

(b) Draw β̃|yobs, Xobs, σ̃
2
ε ∼ Np(β̂ML

obs , σ̃
2
ε · (X∗

′

obs ·X∗obs)−1)

2. The I-step

(a) Draw independently from ỹmis ∼ N(Xmis · β̃, σ̃2
ε ).

A detailed description is given in van Buuren 2012 [47, p58]. Again, the P-step oftentimes is substituted by a
bootstrap [47, p59]. Little’s 1988 PMM for the multivariate case is conducted as follows [20, p292].

1. Calculate the predictive mean for the nobs elements of y as ŷobs = X∗obs · β̂ML
obs .

2. Calculate the predictive mean for the nmis elements of y as ˆ̃ymis = X∗mis · β̃.

3. Match each element of ˆ̃ymis to the its respective closest element of ŷobs.

4. Impute the observed yobs of the closest matches.

4 Why PMM does it wrong

Now that we have presented the fundamentals we may turn to our criticism. We identified four imputer’s
degrees of freedom in the specification of PMM. We will refer to those four items in each of the upcoming
sections as follows:

# imputer’s degrees of freedom introduction
section

improvement
section

simulation
section

1 In-sample versus out-of-sample predictions 4.1 5.1 6.2.1
2 Type-1 versus Type-2 matching 4.2 5.2 6.2.2
3 Neighbor selection 4.3 5.3 6.2.3
4 Considering the uncertainty about all parameters 4.4 5.3 6.2.4

This section shall give an introduction and point out the issues in the current implementations. It may be
worth noting that the items 2 and 3 are frequently discussed in the existing literature (see e.g. [47]), whereas
we are doing pioneer work in this section by shedding light on the items 1 and 4 in the PMM context.

4.1 In-sample versus out-of-sample predictions

Little’s 1988 PMM (see section 3) proposes to estimate the model parameters based on all the donors and
to use them for the prediction of ŷ for both, the donors and the recipients. Hence, in this setting the donor
predictions are in-sample whereas the recipient predictions are out-of-sample. Especially, for small nobs the
model is closer to the donors, because it is optimized in this way, than to the recipients (for a proof assuming
the simplest model see appendix 8.1). Consequently, the residual variance added to the recipients will be too
small.

This implementation is still the rule. We found two exceptions, though. The procedures by the packages
R::mi [9] and R::BaBooN [23] estimate the parameters on the full set of observations while using previously
imputed values for ymis.
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4.2 Type-1 versus Type-2 matching

Little’s 1988 procedure of matching ŷobs to ˆ̃ymis (see section 3) has later been called Type-1 matching. In
contrast, matching ˆ̃yobs to ˆ̃ymis is called Type-2 matching [13, p19]. Van Buuren 2012 argues that following
Little’s 1988 procedure but using Type-2 matching in the case where only one predictor is present the M
multiple imputations are exactly alike and therefore parameter uncertainty does not propagate at all [47, p71].
Few packages offer Type-3 matching (see table 1), that draws twice from the set of parameters, once for the
donors and once for the recipients and then matches ˆ̃yIobs to ˆ̃yIImis.

4.3 Neighbor selection

Little’s 1988 nearest neighbor approach (see section 3), the so-called deterministic hot-deck [1, p44], is a special
case of the general k-nearest-neighbor selection [13, p16], that is most commonly applied in today’s software
packages. An adaptive procedure to choose the optimal k has been developed, but is hardly used in practice
[41]. Van Buuren 2012 discusses this issue in detail and states that k = 1 led to selecting the same donor
over and over again and was therefore undesirable. Choosing a large k resolved this issue but hindered the
procedure to preserve the correlation structure [47, p71].

We want to add to this discussion by focusing on the point estimate for the variance of y. If the distributions
of the donors and recipients are roughly comparable then a large k will increase the probability for the donors
closer to the center to give their value to the recipients closer to the bounds. That inevitably decreases the
variance of y (for a proof see appendix 8.2). Hence, the estimate of the variance of y based on the imputed
data is downward biased for larger k.

4.4 The consideration of σ̂2’s uncertainty

Note that Little’s 1988 procedure (see section 3) for all M imputations draws from a conditional predictive
distribution described by N(X∗mis · β̃, σ̂2

ε ) rather than from N(X∗mis · β̃, σ̃2
ε ). In other words, the uncertainty

about the imputation model parameter σ̂2
ε does not at all propagate in the PMM approaches as they are

implemented in a broad variety of software packages. Type-2 matching makes things better, but not well
enough. Notice that in Type-2 matching the residual variance varies among the M imputations, however, only
due to the variation by β̃. In other words, Type-2 matching assumes that

V ar(σ̂2
ε )|β = 0 (8)

whereas it is ‘more realistic in most cases’ to assume that [11, p57]

V ar(σ̂2
ε )|β = V ar(σ̂2

ε ) > 0 (9)

The only exception is SAS::MIDAS [43]. We could not find any evidence on the authors (or anybody else)
being aware of this issue, though. Their approach, however, is somewhat different from Little’s 1988 original
procedure and is therefore described below.

4.4.1 Distance-based donor selection by Siddique & Belin 2008

The distance-based donor selection uses the donor’s bootstrap weights not only for the P-step, but also for
the I-step. This ensures that the parameter uncertainty about σ̂2 propagates. For recipient j donor i from the
full donor pool is drawn with probability

P (i
imputes→ j) = f(ω, ˆ̃yobs, ˆ̃yj , κ) =

ωi · d−κi,j
nobs∑
i=1

(ωi · d−κi,j )

(10)

ω denotes the non-negative integer bootstrap weights of the donors, di,j the scalar absolute distance between
the predictive means of donor i and recipient j and κ a ‘closeness’ parameter adjusting the importance of the
distance. For κ = 0 the procedure is equivalent to the Approximate Bayesian Bootstrap (see section 2.1.1),
for κ→∞ the procedure becomes equivalent to the deterministic hot deck (see section 4.3). Siddique & Belin
2008 propose κ = 3, which has become the default in SAS::MIDAS.

5 Towards a proper I-step substitute using PMM

Having identified the issues in current PMM implementations we show now how to do it better.
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5.1 In-sample versus out-of-sample predictions

We follow the common approach of estimating the imputation model parameters using the donors only [27,
p94]. Hence, in-sample prediction for the recipients (see e.g. [23]) is impossible. We propose to estimate
nobs sets of parameters to obtain the donor predictions by the leave-one-out principle. This way, the donor
predictions are out-of-sample, too, avoiding the variance underestimation described in section 4.1. The distance
between the i’th donor and the j’s recipient is then calculated as follows assuming Type-2 matching.

dij = |(xi − xj) · β̃−i| (11)

xi denotes the row-vector of X∗ for the i’th donor, xj the row-vector of X∗ for the j’th recipient and β̃−i a

random draw from the distribution of β̂−i not conditional on the i’th donor data.

5.2 Type-1 versus Type-2 matching

The parametric I-step is conditional on one set of parameters drawn in the P-step. Type-2 matching does it
likewise. Both, Type-1 and Type-3 matching, however, condition on an extra set of parameters, which is the
Maximum-Likelihood estimate for the former and an additional draw for the latter. So, neither Type-1 nor
Type-3 matching can substitute the I-step appropriately. We therefore argue to use Type-2 matching. Note
that van Buuren’s zero between-variance criticism (see section 4.2) does not apply if the uncertainty about σ̂2

is considered properly as in the MIDAS procedure (see section 4.4.1).

5.3 Neighbor selection and the consideration of σ̂2’s uncertainty

We generally suggest to use the distance-based donor selection by Siddique & Belin 2008 (see section 4.4.1).
In addition to section 5.1 we introduce two slight modifications to the MIDAS procedure below. We call this
touched up version of MIDAS MIDAStouch.

5.3.1 Estimate a value for κ from the data

Rather than using a fixed κ we recommend to set

κ(R2
obs) =

(
50 ·R2

obs

1 + δ −R2
obs

) 3
8

(12)

where R2
obs denotes the coefficient of determination based on the full donor set and δ a very small positive

scalar number to ensure real results also for the unlikely case of R2
obs = 1. The functional form is the inverse

of Little’s 2004 sales response to advertising function [19, p1845]. The key idea is that the better y can be
explained by X∗ the more important the d′s, i.e. the conditionality on X∗, become in equation (10). Note
that

∂κ

∂R2
obs

> 0 (13)

In the extreme case, where R2
obs = 0 the MIDAS procedure considering equation (12) is equivalent to the

Approximate Bayesian Bootstrap (see section 2.1.1). Siddique & Belin 2008 further state that reasonable
values for κ are within [0; 10] [42, p88] and found in a simulation study that the ideal value for κ is 3 [42, p98]
in a setting with R2 = .29. Equation (12) reflects these findings as follows:

κ(R2
obs = 0) = 0 (14)

κ(R2
obs = .9) ≈ 10 (15)

κ(R2
obs = .29) ≈ 3 (16)

5.3.2 Apply the PLF correction to the total variance

Since the MIDAS concept is based on the ABB it suffers from the same shortcomings as the ABB itself,
namely the underestimation of the total variance for finite nobs (see section 2.1.1). We recommend to apply
the PLF correction factor (see equation (4)). However, since the drawing probabilities are now heterogeneous
after conditioning on the bootstrap weights a slight adaption will be necessary. We propose to substitute nobs
by a measure of the effective sample size neff [17, p427] and consequently substitute n by neff + nmis. The

expression is neff = n2
obs/

∑(
w1

w0

)2

[3, p5]. w1 denotes the applied weights, that in our application stem from

the MIDAS procedure (see equation (10)) and w0 the starting (i.e. bootstrap) weights ω. Averaging over all
recipients and the M imputed data sets gives:

neff =
1

M · nmis
·
M∑
m=1

nmis∑
j=1

nobs∑
i=1

 d−κm
i,j,m

nobs∑
i=1

(ωi,m · d−κm
i,j,m)


2
−1

(17)
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Such a variance correction has yet been developed for the mean only. A starting point for a variance correction
of linear regression parameters can be found in Wu 1986 [50, p1280].

6 A simulation study

We stated above that all existing software packages suffered from the theoretical shortcomings of PMM. This
section presents a simulation study in order to illustrate the magnitude of both, the identified shortcomings
and the proposed improvements. To give a full picture we compare our proposed method to all PMM software
packages listed by Morris et al. [24] (see table 1)4. Furthermore we compare to two benchmark algorithms, a
fully parametric one utilizing the additional information of a normal likelihood (mice.impute.norm) and a fully
improper PMM approach that treats the Maximum-Likelihood parameter estimates as the truth (pmm.nob).

6.1 Simulation setup

For simplicity we refer to the multivariate normal setting presented above (see section 3) and set all off-diagonal
elements of the correlation matrix equal. To recognize different challenges in real-world applications we set up
a full factorial design considering the following four binary factors.

1. Missing completely at random (MCAR, i.e. α−1 = 0) versus missing at random (MAR, i.e. no restrictions
on α in equation (6)) [21, p12]. We operationalize MAR as P (y = missing) = Φ

(
1
4 · (X1 +N(0, 3))

)
.

2. Number of covariates p−1 = 1 versus p−1 = 8. We want to address van Buuren’s zero between-variance
criticism about Type-2 matching in the presence of one predictor only (see section 4.2).

3. Coefficient of determination R2 = 0 versus R2 = .75. The former is very similar to the univariate case
(see section 2) whereas the latter might be more realistic.

4. Number of donors nobs = 10 versus nobs = 200. Our main criticism is that the existing software packages
mostly ignore σ̂2’s uncertainty (see section 4.4). This effect should become particularly obvious for a
small number of donors.

Furthermore, we fix M = 25, nmis = 100, all marginal means at zero, all marginal variances at one and the
number of Monte Carlo simulations at nsim = 250 for each combination.

6.2 Simulation results

We focus on the estimates of the mean of y, denoted as ˆ̄y, and of the regression coefficient of X1 in the linear
regression model of y on X∗, denoted as β̂1. Utilizing the concept of multiple imputation [21, p211] and the
appropriate degrees of freedom [2] we construct 95% frequentist confidence intervals. For each simulation run
we note whether or not the true parameter value is covered by such a confidence interval. For each cell in the

results tables (see tables 2 and 3) we average the coverages over 24

22 · nsim = 1, 000 simulation runs. Since we
expect the number of donors nobs to be the most important factor we present all its interactions.

In section 4 we have developed four imputer’s degrees of freedom in the specification of PMM and have
pointed out the associated issues in the existing software implementations. In the remainder of this section
we review these issues in the light of the simulation results and with a focus on the relative performance of
the proposed MIDAStouch procedure.

6.2.1 In-sample versus out-of-sample predictions

Most existing implementations mix in-sample and out-of-sample predictions (see table 1). The two exceptions,
namely R::BaBooN and R::mi, perform in-sample predictions for both donors and recipients. However, the
results of these two implementations seem rather in line with all others than outstanding. All MIDAStouch
procedures perform out-of-sample predictions for donors and recipients (see section 5.1). This seems to be a
significant improvement over the existing SAS::MIDAS implementation (see tables 2 and 3) with an overall
coverage of 905h versus 857h for nobs = 10 and 947h versus 939h for nobs = 200.

6.2.2 Type-1 versus Type-2 matching

For the larger number of covariates (p− 1 = 8) the matching type does not seem influencial. However, for one
covariate only (p− 1 = 1) Type-2 matching along with the deterministic hot-deck leads to a between variance
estimate of zero (see section 4.2). This effect can be observed in the respective column of the simulation results
tables (see tables 2 and 3). The coverages of the implementations R::mi, SPSS and Stata::mi are equal to the
R::pmm.nob benchmark coverages. Even though all MIDAStouch procedures are built on Type-2 matching
no such effect can be observed for them, which is what we have expected (see section 5.2).

4We excluded Solas here for technical reasons. Solas neither provides a batch mode nor a loop functionality to efficiently
handle many incomplete data sets coming along naturally with a simulation study.
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6.2.3 Neighbor selection

In section 4.3 we argued that the point estimate for the variance of y is downward biased for larger k. We
cannot clearly see this effect in the simulation results tables that show the coverages only (see tables 2 and 3).
This is why, we had a closer look. For the nobs = 10 simulation runs the mean point estimate for the variance
of y (the true variance is 1) is .848 and .773 for all implementations with k = 1 and k > 1, respectively5. This
difference is highly significant. For the nobs = 200 runs the differences diminish, because k is small relative to
the number of donors, the mean point estimates are .995 and .992.

The mean point estimates for the variance of y of the proposed MIDAStouch implementation are .822 and
.999 for nobs = 10 and nobs = 200, respectively.

6.2.4 The consideration of σ̂2’s uncertainty

SAS::MIDAS and hence the MIDAStouch procedures are much closer to the 95% coverage than any other
existing PMM software implementation (see table 2). This result supports our criticism about ignoring σ̂2’s
uncertainty in many implementation (see section 4.4).

6.2.5 The proposed MIDAStouch procedure

We used the open R::mice framework to implement the MIDAStouch procedure. All implementations presented
in the top boxes of the tables 2 and 3 differ from the originally proposed MIDAS procedure by performing out-
of-sample predictions only (see section 4.1). Additionally, we explicitly distinguish between a fixed closeness
parameter κ as originally proposed and our suggested variable κ (see equation (12)). Also, we show separately
the effect of the modified PLF correction (see equations (4) and (17)).

Especially the results from table 2 (nobs = 10) indicate that our proposed touching up of the MIDAS
procedure has led to an improvement. This seems to be true for all means, i.e. the out-of-sample predictions
for the donors (compare SAS::MIDAS to R::MIDAStouch with κ = 3), the modified closeness parameter
(compare R::MIDAStouch with κ = 3 to the R::MIDAStouch presented two lines above) and the application
of the PLF correction (compare the R::MIDAStouch to the second lines given), the latter being available for
the ˆ̄y only. The results of the fully implemented R::MIDAStouch with the PLF correction are never below the
95% threshold and thus seem rather conservative.

7 Conclusion

We have found that the existing implementations of multiple imputation Predictive Mean Matching gener-
ally lead to overly progressive inferences and why this is so (see section 4). The propagation of parameter
uncertainty, the key idea behind multiple imputation, is the main issue. From there on we have identified
the MIDAS procedure [42] as the only one doing things right in this aspect (see section 4.4.1). It is based
on the ideas of the Approximate Bayesian Bootstrap (see section 2.1.1) and Predictive Mean Matching (see
section 3). In section 5 we have presented our proposed touched up version of MIDAS called MIDAStouch.
The simulation study results (see section 6.2) clearly show that the MIDAS procedure is superior to all other
implementations and that the proposed MIDAStouch implementation is a significant improvement towards
the existing implementation in SAS and thus the ‘golden’ way of doing multiple PMM imputation.

5Due to the relative small number of donors the domain of X is smaller for the donors than it is for the recipients. This is a
case of truncation as described in [18, p38] and the reason for the attenuation bias of the variance point estimate. This effect is
amplified by deviations from the MCAR assumption.
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8 Appendix

8.1 In-sample versus out-of-sample prediction

Consider the univariate case, where both, the donors and the recipients are from the same population. The
mean squared deviation of the donors from the model is

Vdon =
1

nobs
·
nobs∑
i=1

(yi − ˆ̄yobs)
2 (18)

Introducing the true mean by adding 0 = µ− µ gives [5, p26]

Vdon =
1

nobs
·
nobs∑
i=1

((yi − µ)− (ˆ̄yobs − µ))2 (19)

=
1

nobs
·

(
nobs∑
i=1

(yi − µ)2

)
− (ˆ̄yobs − µ)2 (20)

Analogously, the mean squared deviation of the recipients from the model is

Vrec =
1

nmis
·
nmis∑
j=1

((yj − µ)− (ˆ̄yobs − µ))2 (21)

=
1

nmis
·

nmis∑
j=1

(yj − µ)2

+ ˆ̄yobs · (ˆ̄yobs − 2 · ˆ̄ymis)− µ · (µ− 2 · ˆ̄ymis) (22)

Taking the difference and utilizing the homoscedasticity assumption, we get

Vdon − Vrec =
1

nobs
·

(
nobs∑
i=1

(yi − µ)2

)
− 1

nmis
·

nmis∑
j=1

(yj − µ)2

+ 2 · (ˆ̄yobs − ˆ̄ymis) · (µ− ˆ̄yobs) (23)

= 2 · (ˆ̄yobs − ˆ̄ymis) · (µ− ˆ̄yobs) (24)

For a large recipient sample, ˆ̄ymis = E(ˆ̄ymis) = µ holds. Thus,

Vdon − Vrec = −2 · (µ− ˆ̄yobs)
2 ≤ 0 (25)

I.e., as long as the model based on the donor sample differs randomly from the true population model, the
residual variance for the donors is smaller than the one for the recipients. This difference diminishes for
nobs →∞.

8.2 Variance underestimation due to kNN

Suppose that the predictive mean π is within the bounds π ∈ [−.5, .5] and that the distribution of the donors
is discrete and equidistant within this range, so πobs = (−.5,−.5 + 1

nobs−1 , . . . ,−.5 + nobs−1
nobs−1 ). Further suppose

that the recipients are distributed in the exact same way, so πobs = πmis. We denote n = nobs = nmis and
for simplicity allow it to be uneven only. We assume that the predictive mean π also is the characteristic of
interest. This may be the case in a multivariate setting where the fully observed variables perfectly determine
the variable with missing values.

πmis is imputed using πobs leading to πimp. We want to learn about the point estimate for the variance of
πimp as a function of the relative size of the neighborhood that is chosen from randomly for a single recipient.
We define this relative size excluding the exact nearest neighbor as Θ = ( 0

n−1 ,
1

n−1 , . . . ,
n−1
n−1 ). We decompose

the variance in a between and a within component

Tπimp(Θ) = Bπimp(Θ) +Wπimp(Θ) (26)

where B denotes the interrecipient variance and W the intrarecipient variance. It can easily be seen that if
the exact nearest neighbor is chosen the interrecipient variance of πimp will equal the variance of πmis.

Tπimp(Θ = 0) = Bπimp(Θ = 0) = V ar(πmis) (27)

For larger Θ the intrarecipient variance increases according to the variance formula for the discrete uniform
distribution as follows [30, p372].

Wπimp(Θ) = −∆W (Θ) =
Θ2

12
+

Θ

6 · (n− 1)
(28)
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Figure 1: The solid line shows the bias of the point estimate of the variance and the dashed line its derivative,
both plotted against Θ = k−1

nobs
. The bias is zero for k = 1 or k = nnobs and small for small k relative to nobs.

The interrecipient variance can be regarded as the variance of the expectations. The expectation of a uniform
distribution is just the mean of its bounds. Since the range of π is limited to both sides, the interrecipient
variance decreases with increasing Θ. More specifically we see for the left side, i.e. πimis < 0

E

(
πiimp|Θ, πimis <

Θ− 1

2

)
=

Θ− 1

2
(29)

We assume that the mean of π is known to be zero. We can then write based on the left side

V ar(πmis)−Bπimp(Θ) = ∆B(Θ) =
2

n

n−1
2∑
i=1

((πimis)
2 − (E(πiimp))

2) (30)

We now focus just on the part of the left side for which πimis <
Θ−1

2 holds. The rest can be ignored since
all respective elements of the sum in equation (30) are zero. Then, using the assumption of equidistance and
equation (29) we get

∆B(Θ) =
2

n

(n−1)·Θ
2∑
i=1

[(Θ− 1

2

)2

− (Θ− 1) · i
n− 1

+
i2

(n− 1)2
−
(Θ− 1

2

)2
]

(31)

The last term in equations (31) is also the last term in (30) and cancels out. A little bit of rewriting makes
the series obvious that can be used for further simplification [4, p20]

∆B(Θ) =
2

n

(
1−Θ

n− 1

(n−1)·Θ
2∑
i=1

i+
1

(n− 1)2

(n−1)·Θ
2∑
i=1

i2
)

(32)

Some more algebra leads to the third order polynomial

∆B(Θ) =
Θ · (Θ · (n− 1) + 2) · (2 ·Θ · (n− 1)− 3 · n+ 2)

−12 · (n− 1) · n
(33)

Adding ∆W (Θ) gives

∆T (Θ) =
Θ · (Θ− 1) · (Θ · (n− 1) + 2)

6 · n
(34)

with the two obvious roots at Θ = 0 (see equation (27)) and Θ = 1 where Bπimp = 0. The third root does not
exist given the limits for n and Θ. The first derivative is

∂∆T (Θ)

∂Θ
=

3 ·Θ2 · (n− 1)− 2 ·Θ · (n− 3)− 2

6 · n
(35)

For n → ∞ ∆T (Θ) has a minimum at Pmin(Θ = 2
3 ,∆T = − 2

81 ) and a falling inflection point at Pinfl(Θ =
1
3 ,∆T = − 1

81 ). We conclude that the point estimate for the variance of πimp is downward biased for all Θ,
but Θ = 0 and Θ = 1.
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