
Linear Optimization on Modern GPUs

Daniele G. Spampinato∗ and Anne C. Elster†

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
Email: ∗daniele.spampinato@gmail.com, †elster@idi.ntnu.no

Abstract

Optimization algorithms are becoming increasingly
more important in many areas, such as finance and
engineering. Typically, real problems involve several
hundreds of variables, and are subject to as many con-
straints. Several methods have been developed trying
to reduce the theoretical time complexity. Nevertheless,
when problems exceed reasonable sizes they end up
being very computationally intensive. Heterogeneous
systems composed by coupling commodity CPUs and
GPUs are becoming relatively cheap, highly perform-
ing systems. Recent developments of GPGPU technolo-
gies give even more powerful control over them.
In this paper, we show how we use a revised simplex
algorithm for solving linear programming problems
originally described by Dantzig for both our CPU
and GPU implementations. Previously, this approach
has showed not to scale beyond around 200 variables.
However, by taking advantage of modern libraries such
as ATLAS for matrix-matrix multiplication, and the
NVIDIA CUDA programming library on recent GPUs,
we show that we can scale to problem sizes up to
at least 2000 variables in our experiments for both
architectures. On the GPU, we also achieve an ap-
preciable precision on large problems with thousands
of variables and constraints while achieving between
2X and 2.5X speed-ups over the serial ATLAS-based
CPU version. With further tuning of both the algorithm
and its implementations, even better results should be
achievable for both the CPU and GPU versions.

1. Introduction

Today parallel systems appear as the key answer
to leap over the brick wall of serial performance [1].
With the commercial sector’s demands for video and
gaming, it was foreseen by Elster [2] and others that
graphics processor development would lead to devices

suitable for High Performance Computing (HPC). As
a matter of fact, programming general purpose appli-
cations on a GPU (also known as GPGPU) is now one
of the most discussed topics [3].

1.1. Linear Optimization

Linear optimization is a topic that has been method-
ically studied by operational researchers during the last
70 years. It is becoming a more and more important
task in many different areas, such as finance and
engineering. Both Khachian [4] and Karmarkar [5],
proved that Linear Programming (LP) is in P , finding
a polynomial time algorithm for it. As Greenlaw et
al. [6] shows, we can push the complexity analysis
even further, placing LP in the class of P -complete
problems. From empirical experiences, it seems that
the two classes P and NC are likely not coinciding [6].
P -complete problems appear to be inherently sequen-
tial, meaning that they are feasible problems without
any highly parallel algorithm for their solution.
This paper presents some results obtained implement-
ing a parallel, GPU-supported version of a revised
simplex method algorithm for solving LP problems [7].
To our knowledge, recent studies are still based on
the old GPGPU programming methodology [8], [9]
where the graphics pipeline is used to perform general
purpose computation. These implementations require
applications to be designed taking graphics aspects into
account, and programmed using graphics APIs.
The P-completeness of linear programming might
discourage one from looking for parallel solutions.
However, we decide to continue with our study mainly
because we are convinced that at least some parts of
the algorithm are suitable for parallelism. Also, since
GPUs offload the CPU(s), GPUs may help solve large
LP problems, as well as other problems reducible to
them, more quickly.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357227681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.2. Graphics Processing Units (GPUs)

Graphics hardware is now about 40 years old. It
was initially realized to support activities such as
computer-aided design (CAD) and flight simulations.
A good description of the evolution of graphics
hardware with different references to the literature
can be found in Blythe [3]. Graphics Processing
Units (GPUs) are affordable computing solutions for
speeding up computationally demanding applications,
offering performance peaks in the TFLOPs range. For
instance, the recent NVIDIA S1070 1U computing
server has four GPUs and a total of 960 processor
cores enabling it to perform up to 4 TFLOPs in single
precision. This allows new GPUs to support with
great success several scientific fields [3], [10]–[12].

NVIDIA GPUs. NVIDIA is currently one of the
world’s leading GPU manufacturers. Their NVIDIA
Compute Unified Device Architecture (CUDA) [13]
provides developers with a high-level programming
model that allows developers to take full advantage
of the GPU’s powerful hardware, enabling a larger
productivity of solutions. It is available for NVIDIA
GPU families based on the NVIDIA Tesla architec-
ture. The NVIDIA Tesla architecture is built around
a scalable array of multithreaded Streaming Multi-
processors (SMs). A Tesla multiprocessor consists of
eight Scalar Processor cores (SPs), two special func-
tion units, a multithreaded instruction unit, and on-
chip memory. The SM creates, manages, and executes
concurrent threads in hardware with zero scheduling
overhead [13]. This is an important factor to allow very
fine-grained decomposition of problems by assigning,
for instance, one thread to each data element.
On a GPU we can localize two distinct kinds of
memory, on-chip and device. Shared memory is one
of the on-chip memory spaces which is shared by all
the SPs of a SM. Access times to the shared memory
are comparable to those of a L1-cache on a traditional
CPU. The device memory is high-speed DRAM mem-
ory with higher latency than on-chip memory (typically
hundreds of times slower). The device memory is
subdivided in read-write, noncached (global and local)
and read-only, cached (texture) areas. NVIDIA CUDA
allows the developers to enrich their serial programs
with calls to parallel kernels. Kernels’ code is executed
by a set of threads mapped onto the GPU’s SPs. CUDA
expresses task and data parallelism through the threads
hierarchy. Threads are grouped in 1D, 2D, or 3D
blocks which are organized in 1D or 2D grids. This
organization extends to multidimensional structures.

2. Related Work

Two different attempts to map linear programming
to a GPU before the advent of NVIDIA CUDA can be
found in [8] and [9]. They both develop their solutions
using Cg and OpenGL. Greeff [8] shows how GPU
hardware can be used to solve linear programming
problems using the revised simplex method presented
in Sec. 3.1. The approach, which has partially inspired
our work, is mainly constrained by limitations such as
limited hardware capabilities and a hard-to-approach
programming model. Jung and O’Leary [9] work on
the same problem but with different tools, presenting
a LP solver based on interior point methods [14],
[15]. They use the GPU for some linear algebra
intensive tasks like matrix assembly, Cholesky factor-
ization, and forward and backward substitution. Like
the solution proposed by Greeff, their solutions also
suffer from old GPGPU restrictions. At the time of
our development we were not aware of the work of
Kipfer [16]. He describes a parallel implementation
of the Lemke’s algorithm for collision detection using
NVIDIA CUDA. Lemke’s algorithm is used to solve
Linear Complementarity Problems (LCP) [17]. LCP is
a special case of quadratic programming, which can
be seen as a broader definition of the linear one where
the objective function has quadratic order. Kipfer does
not mention wether his solution can efficiently deal
with linear problems, considering them special cases
of LCP. However, given the singular importance of
linear programming, we feel specific solutions must
be designed to cope explicitly with LP. Kipfer’s results
can also be viewed as one more reason to believe that
recent GPUs coupled with a high level programming
model, are attractive tools for large optimization prob-
lems.

3. Linear Programming

Linear Programming optimizes a linear objective
function fulfilling a specified set of constraints. Bertsi-
mas and Tsitsiklis [18] is considered a good reference
by many operational researchers. The terminology used
in this paper is in accordance with [7].
A linear programming problem is composed by the
following fundamental elements:
• an objective function c(·) : Rn → R, satisfying

the relations c(0) = 0 and c(αx+βy) = αc(x)+
βc(y), ∀x,y ∈ Rn, ∀α, β ∈ R (i.e. linear);

• a finite set of m linear constraints, where ev-
ery constraint is expressed like a(x) on b, with
a(·) : Rn → R, x ∈ Rn, on∈ {≤,=,≥}, and
b ∈ R.



The main goal for a LP problem is to either maximize
or minimize (i.e. optimize) the objective function. A
LP problem is expressed in canonical form in the
following way. Let c and x be vectors in Rn, b a
vector in Rm, and A a matrix in Rm×n, such that

max cx, Ax ≤ b, x ≥ 0. (1)

Other representations are also used. In general, passing
from one representation to another is possible if we
take into account the following set of equivalences:

max cx ≡ −min − cx∑
j

aijxj = bi ≡

{∑
j aijxj ≤ bi∑
j aijxj ≥ bi∑

j

aijxj ≥ bi ≡
∑
j

−aijxj ≤ −bi∑
j

aijxj ≥ bi ≡
∑
j

aijxj − si = bi, si ≥ 0∑
j

aijxj ≤ bi ≡
∑
j

aijxj + si = bi, si ≥ 0.

The term si is called slack variable, since it provides
the right value to fill in the gap between the left- and
the right-side of a constraint.
For the purpose of our work, we focus on a second
possible form, which can be easily derived from the
canonical form using slack variables to augment the
formulation:

max cx, Ax = b, x ≥ 0. (2)

This augmented canonical form turns out useful when
formulating a numerical solution to the problem, since
it allows to manipulate linear transformations instead
of dealing with a set of inequalities.

3.1. Simplex-Based Methods

The simplex method, originally developed by G. B.
Dantzig, was the first practically implemented method
for solving LP problems.
The simplex method is an iterative method that travers-
ing the faces of the feasible region, proceeds stepwise
towards the optimal solution increasing the value of the
objective function at each step. If LP solutions exist,
they lie on vertices of the feasible region. The simplex
algorithm focuses on three main operations applied on
a tableau that summarizes the whole problem:
O1 Determine the pivot column

The algorithm requires to select the biggest
positive value from the vector of the objective
function coefficients.

O2 Determine the pivot equation
Divide the right side (b column) by the corre-
sponding entries in the pivot column. Take as
the pivot equation the one that provides the
smallest ratio.

O3 Elimination by row operation
Determine a new tableau with zeros above
and below the pivot. For example, we may
use the Gauss-Jordan elimination technique.

The implementation of the original simplex method re-
quires specific data structures to keep track of indexes
and to update the tableau at each iteration.
Several methods were developed based on the same
concepts as the simplex method. A revised matrix-
based version of the original simplex method was
developed by Dantzig and Orchard-Hays [19]. Based
on the latter, other revised versions were studied. Mor-
gan [20] presents and compare some important ones,
like the Bartel-Golub’s method, the Forrest-Tomlin’s
method, and the Reid’s method.

3.1.1. The Revised Simplex Method. We present the
algorithm defining a small dictionary in Tab. 1 that
should help understanding the similarities with the
classical simplex method. We define the problem in
augmented canonical form, which provide us with a
system of linear equations. A basis matrix, B, consists
of the columns of A corresponding to the basic vari-
ables, i.e. those variables considered part of a feasible
solution. Note that B is a m × m squared matrix,
since we introduce a slack variable for each constraint.
The m nonzero variables in a basic solution, can be
represented as a vector xB. Similarly, we denote the
coefficients of the objective function corresponding to
the basic variables with the vector cB.
Now, we saw that the simplex algorithm chooses the
pivoting or entering variable by picking up the one that
causes the greatest increase in the objective function.
This is done by selecting the negative entry with the
greatest magnitude in the objective row of the tableau.
Even if the tableau, and in particular the objective
row, is not explicitly represented, we can determine the
entering variable based on the contribution of the non-
basic variables. Such a contribution is estimated corre-
sponding to each variable as zj−cj = cBB−1Aj − cj.
The variable corresponding to the negative difference
with the greatest magnitude is the entering variable, say
xp. So, writing c̃j = cBB−1Aj − cj, we can say that
p = j | c̃j = mint {c̃t} , c̃j < 0. If we cannot find any
negative c̃, means that we have reached the optimum
(no contribution can cause improvement). After having
selected the entering variable, the simplex algorithm
determines the leaving variable. To do this, the up-to-



Table 1. Normal and revised versions of the main
simplex method’s steps

Simplex Method Revised Simplex Method

O1: Determine the entering O1: Select
variable xp based on the xp |c̃p = mint {c̃t} , c̃p < 0

greatest contribution. If c̃p ≥ 0 optimum found.
If no better improvement is
achievable, optimum found.
O2: determine the leaving O2: Compute xB = B−1b

variable xq that provides Compute α = B−1Ap

smallest ratio between known Select
terms and pivotal elements. xq | θq = mint {θt} , αq > 0

If not possible, the problem If α ≤ 0

is unbounded. the problem is unbounded.
O3: update the tableau. O3: Update B.

date basic solution xB is required at each step. Since
all the variables outside the basis are set to zero, the
system of equations can be written as BxB = b.
From the latter we can easily compute xB = B−1b.
Defining α = B−1Ap, the leaving variable, say xq ,
is the one with minimum θ-ratio, where θj = xBj/αj
and q = j | θj = mint {θt} , αj > 0. If α ≤ 0, the
solution is unbounded.
Finally, we have to update the basis represented by B.
In Sec. 4, the algorithm in Fig. 1 presents the revised
simplex method.

4. Implementation Strategy

The algorithm in Fig. 1 shows a refined pseudocode
with the program structure of both our CPU and
GPU implementations. Our main data structures are
matrices and arrays. The LP problem is represented in
the same way for both versions. It consists of three
main data structures: the constraints matrix, the costs
array, and the known terms array. Where possible,
loops have been replaced by algebraic operations on
matrices. An example of this is the computation of the
contributions, which in Algorithm 1 is substituted with
the multiplication e[n] ← [1 y] · [−c;A].
The routines can be categorized as algebraic and nonal-
gebraic. The first group of routines is implemented us-
ing BLAS [21] and NVIDIA CUBLAS [22], while the
second one requires an ad-hoc set of functions. Tab. 2
summarizes how data and routines are implemented in
both the ATLAS-based and the GPU-based versions.
Our kernels mainly work on single elements of the
matrices. Matrices are associated to 2D grids and split
into regular submatrices, associating each submatrix
to a 2D block. Blocks dimensions are multiples of the
warp size.

Require: Matrix A, vectors b and c. Problem in canonical
augmented form.

Ensure: Optimal solution or unbounded problem message

procedure RSM(A,b, c)
/* Initialize data (Range assignements with Matlab-like

notation) */
B[m][m] ← Im
cB[m] ← c[n−m : n− 1]
xB[m] ← 0; Optimum ← ⊥
while !Optimum do

/* Determine the entering variable */
y[m] ← cBB−1

e[n] ← [1 y] · [−c ; A]
Index p ← {j|ej == mint (et)}
xB ← B−1b
if ep ≥ 0 then

Optimum ← >; BREAK
end if
/* Determine the leaving variable */
α[m] ← B−1Ap

for t← 0, m− 1 do
θt ← αt > 0 ? xBt

αt
: ∞

end for
Index q ← {j|θj == mint (θt)}
if α ≤ 0 then

EXIT(”Problemunbounded”); BREAK
end if
/* Update the basis */
E[m][m] ← COMPUTEE(α, q)
B−1 ← EB−1

/* Update basis cost */
cBq ← cp
/* Update basis solution */
xB ← B−1b

end while
if Optimum then

EXIT(xB, z ← xBcB)
end if

end procedure

Figure 1. The revised simplex method algorithm.

Table 2. Data and routines implementation in both
the ATLAS-based and the GPU-based versions

Feature ATLAS-based GPU-based
version version

Matrix/Vector Array in central Array in device
memory memory

Algebraic routine BLAS algebraic CUBLAS
routine algebraic routine

Nonalgebraic routine Ad-hoc routine Ad-hoc routine
supported by or
totally implemented as
CUDA kernels

4.1. Non-Algebraic Routines

4.1.1. Computing Entering and Leaving Variable.
The entering variable is computed using two matrix-



matrix multiplications, an array movement to obtain
non-basic variables contributions, and a minimum
search to look for the minimum contribution. The
leaving variable requires an array movement and a
matrix-matrix multiplication to compute α, an array
traversal to compute θ, and a minimum search to get
the minimum θ element.
Our GPU-based versions are composed by NVIDIA
CUBLAS calls, data movements in global memory,
and minimum searches. The minimum search is imple-
mented as a reduction kernel. Since the search space
is passed through more than once, blocks load their
portion of data in shared memory. Shared memory
accesses are made with an odd stripe to avoid bank
conflicts.

4.1.2. Computing B−1. Dantzig and Orchard-
Hays [19] introduced a technique where B−1 is com-
puted multiplying a matrix E by the actual value of
B−1. E is a m×m matrix depending on entering and
leaving variables. It is obtained starting from a m×m
identity matrix. Let p and q be the entering and leaving
index respectively. We apply the following substitution
to the qth column of Im:

Eiq =

{
− αi

αq
i!=q,

1
αq

i = q.

5. Experimental Results

In this section, some of our results obtained running
the LP solvers are presented. Our experiments are run
on a CPU/GPU heterogeneous system. The CPU is
a 64-bit Intel Core2 Quad (Q9550) 2.83 GHz, with
12 MB cache, and 1333 MHz bus. The GPU is an
NVIDIA GeForce GTX 280. It has 240 streaming
processor cores each working at 1.296 GHz. The card
has a dedicated memory of 1GB connected by a 512-
bit GDDR3 interface with a bandwidth of 141.7 GB/s.
The central system and the GPU communicate through
PCI-Express 2.0. The GPU is connected to a 16-lanes
slot (x16) able to transfer up to 8GB/s. The operating
system used is Ubuntu 8.04 with Linux kernel 2.6.24-
22. Our CPU code is compiled and O3-optimized using
gcc version 4.2.4. The system has a BLAS library
optimized by ATLAS version 3.6.0. ATLAS is not
configured to exploit the multiple cores of the CPU.
The GPU software is developed with NVIDIA CUDA
version 2.0.

5.1. Methodology

Our experiments involve 1000 different LP problems
built upon random values. Problems size grows pro-

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e
 (

s)

Number of variables and constraints

LP Solver Execution Time

CPU
GPU

Figure 2. Elapsed time for the two versions of the
LP solver.

gressively. The largest problem tested has a 2000 ×
4000 constraints matrix. Problems are built with the
same number of constraints and variables. Hence, we
will refer to the number of constraints to express
the dimension of a problem. Additional slack vari-
ables are added to generate a problem in augmented
canonical form. Time was measured with nanosecond
precision using the clock gettime() library call. Both
the architectures are too numerically inaccurate to
allow a direct comparison with zero. For this purpose,
variables are compared with approximated values in
the neighborhood of zero. With the CPU we used
a tolerance with magnitude ε = 10−6, while with
the GPU ε = 10−5. This difference is due to the
incompatibility of the GPU used with the IEEE-754
standard for single precision values.

5.2. Results and Analysis

Fig. 2 shows the elapsed time for the execution
of both versions of the LP solver. It shows a clear
trend during the execution of matrices with less then
900 constraints. After that point it starts alternating
between good and very bad performance. Looking
closer at the execution output, we found that the effect
was due to a lack of precision. For some LP problems
with a near-zero optimal value, the GPU could not
conclude the computation, protracting it (and creating
huge delays) until a NaN result.
In general, optimal values retrieved by the GPU ap-
peared to be identical to those found by the CPU until
the fifth or the sixth decimal digit. The ATLAS-based
solver performed better for problems with less than
900 constraints, producing a gap of approximately 0.9s
between the serial and the NVIDIA CUDA execution



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e
 (

s)

Number of variables and constraints

Entering Variable Search Execution Time

CPU
GPU

Figure 3. Time to search for the entering variable.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e
 (

s
)

Number of variables and constraints

Leaving Variable Search Execution Time

CPU
GPU

Figure 4. Time to search for the leaving variable.

time. We acquired times for the three main task re-
quired by the revised algorithm, i.e. entering variable
search (Fig. 3), leaving variable search (Fig. 4), and
inverse basis updating (Fig. 5). Analysing the data, we
noted that the entering value task performed almost
always worse on the GPU within a range of 0.1s. The
task is composed by an algebraic and a nonalgebraic
subsets of instructions. Since the NVIDIA CUBLAS
routines contribute just 0.004% of the total amount
of time in the NVIDIA CUDA version, we conclude
that the largest delay comes from the entering variable
retrieval. The other two tasks gave better results, in
particular basis updating which always required less
than 10−4s.
Nevertheless, the entering variable retrieval task can-

not be responsible for the 1s gap between ATLAS
and GPU version for small to medium-sized problems.
Even summing up all the retrieved times for all the

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
la

p
se

d
 T

im
e
 (

s)

Number of variables and constraints

Basis Updating Execution Time

CPU
GPU

Figure 5. Time to update and inverse the basis.

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e
e
d
u
p
[t
s/
tp
]

Number of variables and constraints

LP Solver Speedup

Speedup

S
p
e
e
d
u
p
 [

A
tl

a
s-

b
a
se

d
/G

P
U

-b
a
se

d
]

Figure 6. Overall speedup.

three program sub-parts we still end up with a 0.9s
gap. Timing allocation, deallocation, and movement of
data between central memory and device memory, we
realized that those parts exactly represent the reason
of the 0.9s remaining gap. Data was allocated in main
memory using the cudaMallocHost() function in order
to use pinned memory and set everything up for DMA
transfers. With this optimization we saved time in
transferring the data, but to set up the efficient transfer
required a constant latency of 0.9s independently of
the problem size. This latency is hence dominating for
smaller problems.

5.2.1. Speedup Analysis. Fig. 6 shows the overall
speedup, while Fig. 7, 8, 9 the local speedups for
the three main sub-tasks analyzed so far. Fig. 6 shows
a speedup curve growing faster and faster for bigger
problems. It begins with a slow step up until a 0.5
factor around 1400 constraints. From that point the



0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e
e
d
u
p
[t
s
/t
p
]

Number of variables and constraints

Entering Variable Search Speedup

Speedup
S
p
e
e
d
u
p
 [

A
tl

a
s-

b
a
se

d
/G

P
U

-b
a
se

d
]

Figure 7. Local speedup for the entering variable
search task.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e
e
d
u
p
[t
s/
tp
]

Number of variables and constraints

Leaving Variable Search Speedup

Speedup

S
p
e
e
d
u
p
 [

A
tl

a
s-

b
a
se

d
/G

P
U

-b
a
se

d
]

Figure 8. Local speedup for the leaving variable
search task.

speedup factor grows quicker, reaching values between
2X and 2.5X around 2000 constraints. The NVIDIA
CUDA version starts outperforming the serial one for
problems with 1600-1800 constraints.
Notice that the GPU cannot be fully exploited due to

the control flow. Many steps present data-dependency
relations that can affect GPU performance for small
problems. Moreover, there at least two main conver-
gence steps where only a pair of values are transferred,
i.e. where entering and leaving variables are found and
their signs tested.
The basis updating task, in particular, exhibits a
speedup curve that grows for increasing problem di-
mensions. It has to build the E matrix and to multiply it
by B−1. The matrix-matrix multiplication can be done
efficiently both by the serial BLAS and by CUBLAS.
On the other hand, the embarassingly parallel task of

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
e
e
d
u
p
[t
s
/t
p
]

Number of variables and constraints

Basis Updating Speedup

Speedup

S
p
e
e
d
u
p
 [

A
tl

a
s-

b
a
se

d
/G

P
U

-b
a
se

d
]

Figure 9. Local speedup for the basis updating
task.

building E suits the GPU perfectly. We think that the
super-linear speedup showed in Fig. 9 comes from
caching difficulties on the CPU for huge matrices,
together with the high-speed, non-cached memory con-
tribution on the GPU. We are currently looking further
into this issue.

6. Conclusions and Future Work

With LP’s great demand for computing resources,
it is an attractive application area targeting modern
architectures. Previously, Greeff [8] reported that they
were not able to solve problems with more than 200
variables with their GPU-based solution. In this paper,
we showed that modern GPUs and CPUs with BLAS
libraries facilitate linear programming problems with
2000 or more variables, covering the size of a lot
of real world LP problems. Both our ATLAS-based
and NVIDIA CUDA implementations were based on a
common, execution-context independent model of the
solving technique, i.e. we did not rewrite the algorithm
so to favour a specific execution context.
The main advantage given by the NVIDIA CUDA
programming model over previous ones like Cg, is that
it allows programmers to directly concentrate on the
problem decomposition, at the same time giving high-
level control of the hardware capabilities. It is therefore
worth noting that by using NVIDIA CUDA’s environ-
ment, it took almost as much as time to write the CPU
code implementing the ATLAS-based application, as
it took us to write the GPU version. Discovering bugs
and errors in a NVIDIA CUDA kernel is, however,
challenging and required creating extra code to move
partial computations back and forth to the device.



Our GPU CUDA based implementation performed be-
tween 2X and 2.5X better than our ATLAS-based CPU
version for large problems. This is already significant
considering LP P-completeness. Another important
finding is regarding precision. A lack of suffient pre-
cision when, for instance computing the comparisons
that may anticipate the end of the computation, ad-
versely affects performance.

6.1. Current and Future Work

We used different tolerances to approximate zero
with near-zero floating point values. The CPU defeated
the GPU from this point of view, being an order
of magnitude more precise than the graphics unit.
This was because the GPU used was not IEEE 754-
compliant for single-precision values. We are currently
also doing double precision tests. Note that our GPU
implementation is based on the same algorithm used
for the ATLAS-based CPU version. The fact that the
use of the GPU speeds up the solution starting from
certain problem sizes, should motivate a better redefi-
nition of the approach, considering the heterogeneous
execution context directly from the algorithm design
stage. A redesign of the data structures for more
efficient data transfer should also be taken into account.
It would also be interesting to test implementations
based on other recent GPGPU innovations, such as
OpenCL [23]. Alternative solution methods such as
interior point methods, should also be investigated.

Acknowledgment

The authors wishes to thank NVIDIA for their
donations through their Professor Partnership Program.

References

[1] J. L. Manferdelli et al., “Challenges and opportunities
in many-core computing,” Proc. of the IEEE, vol. 96,
no. 5, pp. 808–815, May 2008.

[2] A. C. Elster, “High-performance computing: Past,
present and future,” in PARA 2002, LNCS 2367, J.
Fagerholm et al., Ed. Springer-Verlag, 2002, pp. 433–
444.

[3] D. Blythe, “Rise of the graphics processor,” Proc. of
the IEEE, vol. 96, no. 5, pp. 761–778, May 2008.

[4] L. G. Khachian, “A polynomial time algorithm for
linear programming,” Soviet Mathematics Doklady,
vol. 20, pp. 191–194, 1979, original version in Doklady
Akademii Nauk SSSR, vol. 244, 5, pp. 1093-1096.

[5] N. Karmarkar, “A new polynomial-time algorithm for
linear programming,” Combinatorica, vol. 4, no. 4, pp.
373–395, 1984.

[6] R. Greenlaw et al., Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, 1995.

[7] D. G. Spampinato, “Linear programming with CUDA,”
Norwegian Univ. of Science and Technology, Tech.
Rep., Jan. 2009.

[8] G. Greeff, “The revised simplex algorithm on a GPU,”
Univ. of Stellenbosch, Tech. Rep., Feb. 2005.

[9] J. H. Jung and D. P. O’Leary, “Implementing an interior
point method for linear programs on a CPU-GPU
system,” Electronic Transaction on Numerical Analysis,
vol. 28, pp. 174–189, 2008.

[10] J. D. Owens et al., “GPU computing,” Proc. of the
IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[11] R. Eidissen, “Comparing Cg and CUDA implemen-
tations of selected transform algorithms,” Norwegian
Univ. of Science and Technology, Tech. Rep., Jun.
2008.

[12] L. C. Larsen, “Utilizing GPUs on cluster computers,”
Norwegian Univ. of Science and Technology, Tech.
Rep., 2006.

[13] NVIDIA CUDA Programming Guide Version 2.0,
NVIDIA Corporation.

[14] S. Mehrotra, “On the implementation of a primal-dual
interior point method,” SIAM Journal on Optimization,
vol. 2, pp. 575–601, 1992.

[15] S. J. Wright, Primal-Dual Interior Point Methods.
Society for Industrial and Applied Mathematics, 1997.

[16] P. Kipfer, “LCP algorithms for collision detection using
CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison-
Wesley, 2007, pp. 723–740.

[17] K. J. Murty, Linear Complementarity, Linear and Non-
linear Programming. Heldermann Verlag, 1988.

[18] D. Bertsimas and J. Tsitsiklis, Introduction to Linear
Optimization. Athena Scientific, 1997.

[19] G. B. Dantzig and W. Orchard-Hays, “Alternate algo-
rithm for the revised simplex method: Using a product
form of the inverse,” RAND, Nov. 1953.

[20] S. S. Morgan, “A comparison of simplex method algo-
rithms,” Master’s thesis, Univ. of Florida, Jan. 1997.

[21] “BLAS - basic linear algebra subprograms,”
http://www.netlib.org/blas/, last seen Jan. 2008.

[22] CUDA - CUBLAS Library 2.0, NVIDIA Corporation.

[23] “OpenCL,” http://www.khronos.org/opencl/, last seen
Jan. 2008.


