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Abstract. We consider the problem of assigning radii to a given set of
points in the plane, such that the resulting set of circles is connected, and
the sum of radii is minimized. We show that the problem is polynomially
solvable if a connectivity tree is given. If the connectivity tree is unknown,
the problem is NP-hard if there are upper bounds on the radii and open
otherwise. We give approximation guarantees for a variety of polynomial-
time algorithms, describe upper and lower bounds (which are matching
in some of the cases), provide polynomial-time approximation schemes,
and conclude with experimental results and open problems.

Keywords: intersection graphs, connectivity problems, NP-hardness prob-
lems, approximation, upper and lower bounds

1 Introduction

We consider a natural geometric connectivity problem, arising from assigning
ranges to a set of center points. In a general graph setting, we are given a weighted
graph G = (V,E). Each vertex v ∈ V in the graph is assigned a radius rv, and
two vertices v and w are connected by an edge fvw in the connectivity graph
H = (V, F ), if the shortest-path distance d(v, w) in G does not exceed the sum
rv+rw of their assigned radii. In a geometric setting, V is given as a set of points
P = {p1, . . . , pn} in the plane, and the respective radii ri correspond to circular
ranges: two points pi, pj have an edge fij in the connectivity graph, if their circles
intersect. The Connected Range Assignment Problem (CRA) requires an
assignment of radii to P , such that the objective function R =

∑
i r
α
i , α = 1 is

minimized, subject to the constraint that H is connected.
Problems of this type have been considered before and have natural motiva-

tions from fields including networks, robotics, and data analysis, where ranges
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have to be assigned to a set of devices, and the total cost is given by an objective
function that considers the sum of the radii of circles to some exponent α. The
cases α = 2 or 3 correspond to minimizing the overall power; an example for
the case α = 1 arises from scanning the corresponding ranges with a minimum
required angular resolution, so that the scan time for each circle corresponds to
its perimeter, and thus radius.

In the context of clustering, Doddi et al. [7], Charikar and Panigraphy [5],
and Gibson et al. [9] consider the following problems. Given a set P of n points
in a metric space, metric d(i, j) and an integer k, partition P into a set of at most
k clusters with minimum sum of a) cluster diameters, b) cluster radii. Thus, the
most significant difference to our problem is the lack of a connectivity constraint.
Doddi et al. [7] provide approximation results for a). They present a polynomial-
time algorithm, which returns O(k) clusters that are O(log(nk ))-approximate. For
a fixed k, transforming an instance into a min-cost set-cover problem instance
yields a polynomial-time 2-approximation. They also show that the existence
of a (2 − ε)-approximation would imply P = NP . In addition, they prove that
the problem in weighted graphs without triangle inequality cannot be efficiently
approximated within any factor, unless P = NP . Note that every solution to
b) is a 2-approximation for a). Thus, the approximation results can be applied
to case a) as well. A greedy logarithmic approximation and a primal-dual based
constant factor approximation for minimum sum of cluster radii is provided by
Charikar and Panigraphy [5]. In a more geometric setting, Bilò et al. [3] provide
approximation schemes for clustering problems.

Alt et al. [1] consider the closely related problem of selecting circle centers
and radii such that a given set of points in the plane are covered by the circles.
Like our work, they focus on minimizing an objective function based on

∑
i r
α
i

and produce results specific to various values of α. The minimum sum of radii
circle coverage problem (with α = 1) is also considered by Lev-Tov and Peleg
[10] in the context of radio networks. Again, connectivity is not a requirement.

The work of Clementi et al. [6] focuses on connectivity. It considers minimal
assignments of transmission power to devices in a wireless network such that
the network stays connected. In that context, the objective function typically
considers an α > 1 based on models of radio wave propagation. Furthermore,
in the type of problem considered by Clementi et al. the connectivity graph
is directed; i.e. the power assigned to a specific device affects its transmission
range, but not its reception range. This is in contrast to our work in which we
consider an undirected connectivity graph. See [8] for a collection of hardness
results of different (directed) communication graphs.

Carmi et al. [4] prove that an Euclidean minimum spanning tree is a constant-
factor approximation for a variety of problems including the Minimum-Area
Connected Disk Graph problem, which equals our problem with the different ob-
jective of minimizing the area of the union of disks, while we consider minimizing
the sum of the radii (or perimeters) of all circles.

In this paper we present a variety of algorithmic aspects of the problem. In
Section 2 we show that for a given connectivity tree, an optimal solution can be
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computed efficiently. Section 3 sketches a proof of NP-hardness for the problem
when there is an upper bound on the radii. Section 4 provides a number of
approximation results in case there is no upper bound on the radii. In Section 5
we present a PTAS for the general case, complemented by experiments in Section
6. A concluding discussion with open problems is provided in Section 7.

2 CRA for a Given Connectivity Tree

For a given connectivity tree, our problem is polynomially solvable, based on the
following observation.

Lemma 1. Given a connectivity tree T with at least three nodes. There exists
an optimal range assignment for T with ri = 0 for all leaves pi of T .

Proof. Assume an optimal range assignment for T has a leaf pi ∈ P with radius
ri > 0. The circle Ci around pi with radius ri intersects circle Cj around pi’s
parent pj with radius rj . Extending Cj to rj := dist(pi, pj) while setting ri := 0
does not increase the solution value R =

∑
pi∈P ri. ut

Direct consequences of Lemma 1 are the following.

Corollary 1. There is an optimal range assignment satisfying Lemma 1 and
rj > 0 for all pj ∈ P of height 1 in T (i.e., each pj is a parent of leaves only).

Corollary 2. Consider an optimal range assignment for T satisfying Lemma 1.
Further let pj ∈ P be of height 1 in T . Then rj ≥ maxpi is child of pj

{dist(pi, pj)}.

These observations allow a solution by dynamic programming. The idea is to
compute the values for subtrees, starting from the leaves. Details are omitted.

Theorem 1. For a given connectivity tree, CRA is solvable in O(n).

3 Range Assignment for Bounded Radii

Without a connectivity tree, and assuming an upper bound of ρ on the radii,
the problem becomes NP-hard. In this extended abstract, we sketch a proof of
NP-hardness for the graph version of the problem; for the geometric version, a
suitable embedding (based on Planar 3SAT) can be used.

Theorem 2. With radii bounded by some constant ρ, the problem CRA is NP-
hard in weighted graphs.

See Figure 1 for the basic construction. The proof uses a reduction from
3Sat. Variables are represented by closed “loops” at distance ρ that have two
feasible connected solutions: auxiliary points ensure that either the odd or the
even points in a loop get radius ρ. (In the figure, those are shown as bold black
or white dots. The additional small dots form equilateral triangles with a pair
of black and white dots, ensuring that one point of each thick pair needs to be
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Fig. 1. Two variable gadgets connected to the same clause gadget. “True” and “False”
vertices marked in bold white or black; auxiliary vertices are indicated by small dots;
the clause vertex is indicated by a triangle. Connectivity edges are not shown.

chosen, so a minimum-cardinality choice consists of all black or all white within
a variable.) Additional “connectivity” edges ensure that all variable gadgets are
connected. Each clause is represented by a star-shaped set of four points that is
covered by one circle of radius ρ from the center point. This circle is connected
to the rest of the circles, if and only if one of the variable loop circles intersects
it, which is the case if and only if there is a satisfying variable.

4 Solutions with a Bounded Number of Circles

A natural class of solutions arises when only a limited number of k circles may
have positive radius. In this section we show that these k-circle solutions already
yield good approximations; we start by giving a class of lower bounds.

Theorem 3. A best k-circle solution may be off by a factor of (1 + 1
2k+1−1

).

...

Fig. 2. A class of CRA instances that need k + 1 circles in an optimal solution.

Proof. Consider the example in Fig. 2. The provided solution r is optimal, as
R :=

∑
ri = dist(p0,pn)

2 . Further, for any integer k ≥ 2 we have d1 = 2·
∑k−2
i=0 2i+

2k−1 < 2 · 2k + 2k−1 = d2. So the radius rk+1 cannot be changed in an optimal
solution. Inductively, we conclude that exactly k+ 1 circles are needed. Because
we only consider integer distances, a best k-circle solution has cost Rk ≥ R+ 1,
i.e., Rk

R ≥ 1 + 1
2k+1−1

. ut
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In the following we give some good approximation guarantees for CRA using
one or two circles.

Lemma 2. Let P a longest (simple) path in an optimal connectivity graph, and
let em be an edge in P containing the midpoint of P. Then

∑
ri ≥ max{ 1

2 |P|, |em|}.

This follows directly from the definition of the connectivity graph which for any
edge e = pupv in P requires ru + rv ≥ |e|.

Theorem 4. A best 1-circle solution for CRA is a 3
2 -approximation, even in

the graph version of the problem.

Proof. Consider a longest path P = (p0, . . . , pk) of length |P| = dP(p0, . . . , pk) :=∑k−1
i=0 |pipi+1| in the connectivity graph of an optimal solution. Let R∗ :=

∑
r∗i

be the cost of the optimal solution, and em = pipi+1 as in Lemma 2. Let d̄i :=
dP(pi, . . . , pk) and d̄i+1 := dP(p0, . . . , pi+1). Then min{d̄i, d̄i+1} ≤ d̄i+d̄i+1

2 =
dP(p0,...,pi)+2|em|+dP(pi+1,...,pk)

2 = |P|
2 + |em|

2 ≤ R∗+ R∗

2 = 3
2R
∗. So one circle with

radius 3
2R
∗ around the point in P that is nearest to the middle of path P covers

P , as otherwise there would be a longer path. ut

Fig. 3. A lower bound of 3
2

for 1-circle solutions.

Fig. 3 shows that this bound is tight. Using two circles yields an even better
approximation factor.

Theorem 5. A best 2-circle solution for CRA is a 4
3 -approximation, even in

the graph version of the problem.

Proof. Let P = (p0, . . . , pk) be a longest path of length |P| = dP(p0, . . . , pk) :=∑k−1
i=0 |pipi+1| in the connectivity graph of an optimal solution with radii r∗i .

Then R∗ :=
∑
r∗i ≥ 1

2 |P|. We distinguish two cases; see Fig. 4.
Case 1. There is a point x on P at a distance of at least 1

3 |P| from both
endpoints. Then there is a 1-circle solution that is a 4

3 -approximation.
Case 2. There is no such point x. Then two circles are needed. One of

them is placed at a point in the first third of P, and the other circle is placed
at a point in the last third of P. Let em = pipi+1 be defined as in Lemma 2.
Further, let di := dP(p0, . . . , pi), and let di+1 := dP(pi+1, . . . , pk). Then |em| =
|P| − di − di+1 and di, di+1 <

1
3 |P|.
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... ...

... ...

Fig. 4. The two 4
3
-approximate 2-circle solutions constructed in the proof of Theorem 5:

(Top) case 2a; (bottom) case 2b.

Case 2a. If |em| < 1
2 |P| then di + di+1 = |P| − |em| > 1

2 |P| > |em|. Set
ri := di and ri+1 := di+1, then the path is covered. Since di, di+1 <

1
3 |P| we

have ri + ri+1 = di + di+1 <
2
3 |P| ≤

4
3R
∗ and the claim holds.

Case 2b. Otherwise, if |em| ≥ 1
2 |P| then di + di+1 ≤ 1

2 |P| ≤ |em|. Assume
di ≥ di+1. Choose ri := di and ri+1 := |em| − di. As di+1 ≤ |em| − di the path
P is covered and ri + ri+1 = di + (|em| − di) = |em|, which is the lower bound
and thus the range assignment is optimal. ut

If all points of P lie on a straight line, the approximation ratio for two circles
can be improved.

Lemma 3. Let P be a subset of a straight line. Then there is a non-overlapping
optimal solution, i.e., one in which all circles have disjoint interior.

Proof. An arbitrary optimal solution is modified as follows. For every two over-
lapping circles Ci and Ci+1 with centers pi and pi+1, we decrease ri+1, such that
ri + ri+1 = dist(pi, pi+1), and increase the radius of Ci+2 by the same amount.
This can be iterated, until there is at most one overlap at the outermost circle Cj
(with Cj−1). Then there must be a point pj+1 on the boundary of Cj : otherwise
we could shrink Cj contradicting optimality. Decreasing Cj ’s radius rj by the
overlap l and adding a new circle with radius l around pj+1 creates an optimal
solution without overlap. ut

Theorem 6. Let P a subset of a straight line g. Then a best 2-circle solution
for CRA is a 5

4 -approximation.

Proof. According to Lemma 3 we are, w.l.o.g., given an optimal solution with
non-overlapping circles. Let p0 and pn be the outermost intersection points of the
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Fig. 5. A non-overlapping optimal solution.

optimal solution circles and g. W.l.o.g., we may further assume p0, pn ∈ P and
R∗ :=

∑
ri = dist(p0,pn)

2 (otherwise, we can add the outermost intersection point
of the outermost circle and g to P , which may only improve the approximation
ratio). Let pi denote the rightmost point in P left to the middle of p0pn and
let pi+1 its neighbor on the other half. Further, let di := dist(p0, pi), di+1 :=
dist(pi+1, pn) (See Fig. 5). Assume, di ≥ di+1. We now give 5

4 -approximate
solutions using one or two circles that cover p0pn.

Case 1. If 3
4R
∗ ≤ di then 5

4R
∗ ≥ 2R∗ − di = dist(pi, pn). Thus, the solution

consisting of exactly one circle with radius 2R∗ − di centered at pi is sufficient.
Case 2. If 3

4R
∗ > di ≥ di+1 we need two circles to cover p0pn with 5

4R
∗.

Fig. 6. A 5
4
-approximate 2-circle solution with di < 3

4
R∗. The cross marks the position

of the optimal counterpart p∗i to pi and the grey area sketches Ai.

Case 2a.The point pi could be a center point of an optimal two-circle solution
if there was a point p∗i with dist(Ci, p∗i ) = dist(p∗i , pn) = R∗ − di. So in case
there is a p′i ∈ P that lies in a 1

4R
∗-neighborhood of such an optimal p∗i we get

dist(Ci, p′i),dist(p′i, pn) ≤ R∗ − di + 1
4R
∗ (see Fig. 6). Thus, r(pi) := di, r(p′i) :=

R∗ − di + 1
4R
∗ provides a 5

4 -approximate solution.
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Case 2b. Analogously to Case 2a, there is a point p′i+1 ∈ P within a 1
4R
∗-

range of an optimal counterpart to pi+1. Then we can take r(pi+1) := di+1,
r(p′i+1) := R∗ − di+1 + 1

4R
∗ as a 5

4 -approximate solution.
Case 2c. Assume that there is neither such a p′i nor such a p′i+1. Because

di, di+1 are in ( 1
4R
∗, 3

4R
∗), we have 1

4R
∗ < R∗− dj < 3

4R
∗ for j = i, i+ 1, which

implies that there are two disjoint areas Ai, Ai+1, each with diameter equal to
1
2R
∗ and excluding all points of P . Because pi, the rightmost point on the left

half of p0pn, has a greater distance to Ai than to p0, any circle around a point
on the left could only cover parts of both Ai and Ai+1 if it has a greater radius
than its distance to p0. This contradicts the assumption that p0 is a leftmost
point of a circle in an optimal solution. The same applies to the right-hand side.
Thus, Ai ∪ Ai+1 must contain at least one point of P , and therefore one of the
previous cases leads to a 5

4 -approximation. ut

Fig. 7. A lower bound of 5
4

for 2-circle solutions.

Fig. 7 shows that the bound is tight. We believe that this is also the worst
case when points are not on a line. Indeed, the solutions constructed in the proof
of Theorem 6 cover a longest path P in an optimal solution for a general P . If
this longest path consists of at most three edges, pi(=: p′i+1) and pi+1(=: p′i) can
be chosen as circle centers, covering all of P . However, if P consists of at least
four edges, a solution for the diameter may produce two internal non-adjacent
center points that do not necessarily cover all of P .

5 Polynomial-Time Approximation Schemes

We now consider the problem in which each of the n points of P = {p1, . . . , pn}
has an associated upper bound, r̄i, on the radius ri that can be assigned to pi.

5.1 Unbounded Radii

We begin with the case in which r̄i =∞, for each i. Consider an optimal solution,
with radius r∗i associated with input point pi. We first prove a structure theorem
that allows us to apply the m-guillotine method to obtain a PTAS. The following
simple lemma shows that we can round up the radii of an optimal solution, at a
small cost to the objective function:
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Lemma 4. Let R∗ =
∑
i r
∗
i be the sum of radii in an optimal solution, D∗.

Then, for any fixed ε > 0, there exists a set, Dm, of n circles of radii ri centered
on points pi, such that (a). ri ∈ R = {D/mn, 2D/mn, . . . ,D}, where D is the
diameter of the input point set P and m = d2/εe; and (b).

∑
i ri ≤ (1 + ε)R∗.

Disks centered at the points P of radii in the setR = {D/mn, 2D/mn, . . . ,D}
will be referred to as Rε,P -circles, or R-circles, for short, with the understand-
ing that ε and P will be fixed throughout our discussion. Consider the arrange-
ment of all R-circles. We let Ix (resp., Iy) denote the x-coordinates of the
left/right (resp., y-coordinates of the top/bottom) extreme points of these cir-
cles. (Specifically, Ix = {xpi

± j(D/mn) : 1 ≤ i ≤ n, 0 ≤ j ≤ mnr̄i/D} and
Iy = {ypi ± j(D/mn) : 1 ≤ i ≤ n, 0 ≤ j ≤ mnr̄i/D}.)

We say that a set D of n R-circles is m-guillotine if the bounding box,
BB(D), of D can be recursively partitioned into a rectangular subdivision by
axis-parallel “m-perfect cuts” that are defined by coordinates Ix and Iy, with the
finest subdivision consisting of a partition into rectangular faces each of which
has no circle of D strictly interior to it. An axis-parallel cut line ` is m-perfect
with respect to D and a rectangle ρ if ` intersects at most 2m circles of D that
have a nonempty intersection with ρ.

Key to our method is a structure theorem, which shows that we can transform
an arbitrary set D of circles centered on points P , having a connected union and
a sum of radii R, into an m-guillotine set of R-circles, Dm, having sum of radii
at most (1 + ε)R∗. More specifically, we show (proof deferred to the full paper):

Theorem 7. Let D be a set of circles of radii ri centered at points pi ∈ P , such
that the union of the circles is connected. Then, for any fixed ε > 0, there exists
an m-guillotine set Dm of n R-circles such that the union of the circles Dm is
connected and the sum of the radii of circles of Dm is at most (1+(C/m))

∑
i ri.

Here, m = d1/εe and C is a constant.

A detailed proof can be found in the full version of the paper.
We now give an algorithm to compute a minimum-cost (sum of radii) m-

guillotine set of R-circles whose union is connected. The algorithm is based on
dynamic programming. A subproblem is specified by a rectangle, ρ, with x- and
y-coordinates among the sets Ix and Iy, respectively, of discrete coordinates.
The subproblem includes specification of boundary information, for each of the
four sides of ρ. Specifically, the boundary information includes: (i) O(m) “portal
circles”, which are R-circles intersecting the boundary, ∂ρ, of ρ, with at most
2m circles specified per side of ρ; and, (ii) a connection pattern, specifying which
subsets of the portal circles are required to be connected within ρ. There are a
polynomial number of subproblems, for any fixed m. For a given subproblem,
the dynamic program optimizes over all (polynomial number of) possible cuts
(horizontal at Iy-coordinates or vertical at Ix-coordinates), and choices of up to
2m R-circles intersecting the cut bridge, along with all possible compatible con-
nection patterns for each side of the cut. The result is an optimal m-guillotine
set of R-circles such that their union is connected and the sum of the radii
is minimum possible for m-guillotine sets of R-circles. Since we know, from the
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structure theorem, that an optimal set of circles centered at points P can be con-
verted into an m-guillotine set of R-circles centered at points of P , whose union
is connected, and we have computed an optimal such structure, we know that
the circles obtained by our dynamic programming algorithm yield an approxi-
mation to an optimal set of circles. In summary, we have shown the following
result:

Theorem 8. There is a PTAS for the min-sum radius connected circle problem
with unbounded circle radii.

5.2 Bounded Radii

We now address the case of bounded radii, in which circle i has a maximum
allowable radius, r̄i < ∞. The PTAS given above relied on circle radii being
arbitrarily large, so that we could increase the radius of a single circle to cover the
entire m-span segment. A different argument is needed for the case of bounded
radii.

We obtain a PTAS for the bounded radius case, if we make an additional
assumption: that for any segment pq there exists a connected set of circles,
centered at points of pi ∈ P and having radii ri ≤ r̄i, such that p and q each lie
within the union of the circles and the sum of the radii of the circles is O(|pq|).

Here, we only give a sketch of the method, indicating how it differs from the
unbounded radius case. The PTAS method proceeds as above in the unbounded
radius case, except that we now modify the proof of the structure theorem by
replacing each m-span bridge ambm by a shortest connected path of R-circles.
We know, from our additional assumption, that the sum of the radii along such
a shortest path is O(|ambm|), allowing the charging scheme to proceed as before.
The dynamic programming algorithm changes some as well, since now the sub-
problem specification must include the “bridging circle-path”, which is specified
only by its first and last circle (those associated with the bridge endpoints am
and bm); the path itself, which may have complexity Ω(n), is implicitly specified,
since it is the shortest path (which we can assume to be unique, since we can
specify a lexicographic rule to break ties).

Theorem 9. There is a PTAS for the min-sum radius connected circle problem
with bounded circle radii, assuming that for any segment pq, with p and q within
feasible circles, there exists a (connected) path of feasible circles whose radii are
O(|pq|).

6 Experimental Results

It is curious that even in the worst case, a one-circle solution is close to be-
ing optimal. This is supported by experimental evidence. In order to generate
random problem instances, we considered different numbers of points uniformly
distributed in a 2D circular region. For each trial considering a single distri-
bution of points, we enumerated all possible spanning trees using the method
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Fig. 8. Ratios of the average over all enumerated trees and of the best 1-circle tree to
the optimal

∑
ri. Results were averaged over 100 trials for each number.

described in [2], and recorded the optimal value with the algorithm mentioned
in Section 2. This we compared with the best one-circle solution; as shown in
Fig. 8, the latter seems to be an excellent heuristic choice. These results were
obtained in several hours using an i7 PC.

7 Conclusion

A number of open problems remain. One of the most puzzling is the issue of
complexity in the absence of upper bounds on the radii. The strong performance
of the one-circle solution (and even better of solutions with higher, but limited
numbers of circles), and the difficulty of constructing solutions for which the
one-circle solution is not optimal strongly hint at the possibility of the problem
being polynomially solvable. Another indication is that our positive results for
one or two circles only needed triangle inequality, i.e., they did not explicitly
make use of geometry.

One possible way may be to use methods from linear programming: modeling
the objective function and the variables by linear methods is straightforward;
describing the connectivity of a spanning tree by linear cut constraints is also
well known. However, even though separating over the exponentially many cut
constraints is polynomially solvable (and hence optimizing over the resulting
polytope), the overall polytope is not necessarily integral. On the other hand,
we have been unable to prove NP-hardness without upper bounds on the radii,
even in the more controlled context of graph-induced distances. Note that some
results were obtained by means of linear programming: the tight lower bound
for 2-circle solutions (shown in Fig. 7) was found by solving appropriate LPs.

Other open problems are concerned with the worst-case performance of heuris-
tics using a bounded number of circles. We showed that two circles suffice for a
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4
3 -approximation in general, and a 5

4 -approximation on a line; we conjecture that
the general performance guarantee can be improved to 5

4 , matching the existing
lower bound. Obviously, the same can be studied for k circles, for any fixed k; at
this point, the best lower bounds we have are 7

6 for k = 3 and 1+ 1
2k+1 for general

k. We also conjecture that the worst-case ratio f(k) of a best k-circle solution
approximates the optimal value arbitrarily well for large k, i.e., limk→∞ f(k) = 1.

Acknowledgments. A short version of this extended abstract appears in the in-
formal, non-competitive European Workshop on Computational Geometry. This
work was started during the 2009 Bellairs Workshop on Computational Geom-
etry. We thank all other participants for contributing to the great atmosphere.
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