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Abstract

An explicit functional integral solution for the logistic map is presented. Furthermore, the
discrete nature of this equation is used to explicitly calculate the corresponding Radon–Nikodym
derivatives. This enables us to represent the solution as a multidimensional integral. c© 1999
Published by Elsevier Science B.V. All rights reserved.

The logistic map, xn+1 = qxn(1− xn), is one of the most famous recurrent equations
in multidisciplinary science. Its importance for understanding of chaos was recognized
about 40 years ago and it was studied numerically in great detail in many studies. Its
only analytic solution known is written in terms of in�nite-dimensional matrices [1,4].
In this paper we present a new analytic solution for the logistic equation. In order to

reach this goal we exploit a known functional integral solution of a special nonlinear
equation [2].
We �rst use a discrete analog of the Green function, the Green sequence, gn. Fol-

lowing a standard procedure one can rewrite the original equation as

xn+1 − qxn =−qx2n with x0 = x (1)

and consider the RHS as an inhomogeneity. Then the solution of an homogeneous part
reads

gn+1 − qgn = 0; g0 = 1; ⇒ gn = qn ;

and, thus Eq. (1) becomes

xn = xqn −
n−1∑
k=0

qn−kx2k or xqn = xn +
n−1∑
k=0

qn−kx2k : (2)
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Eq. (2) is a quasi-linear operator equation, b = a + L(a · a) ≡ a + Aa, its solution
can be written as [2]

a=
∫
X
up−f1 (u+ Bu)pB2 (u)�(du) ; (3)

where

f ≡
∫
X
upA3 (u)(p

−b
1 (u+ Au)− 1)�(du) ;

Bu ≡ −2
∫
X
L(u · z)pA3 (z)�(dz) :

In our case b= xqn, Aa=
∑n−1

k=0 q
n−kx2k and L(u · z)=

∑n−1
k=0 q

n−kukzk . As a measure
� one can take the Gauss measure with a vanishing mean value. Notations p1; 2; 3 stand
for Radon–Nikodym derivatives [3]: pc1(x) = d�c=d�(x) under the shift x → y = x + c
by element c ∈ X , pL2(x) = d�L=d�(x) under linear transformation x → y= x+ Lx and
pA3 (x) = d�A=d�(x) under nonlinear transformation x → y = x + Ax = x + L(x · x). The
operation x1 · x2 = x, x1; x2; x ∈ X is just a usual product for scalar functions x1 and
x2. If x1 and x2 are vectors then x is a vector with components that are products of
corresponding components of x1 and x2.
Being of a discrete nature Eq. (2) is a very special case of an operator equation.

Therefore, the functional Gauss measure degenerates to a product of usual ones

�(du) =
n∏
j=0

{
1√
2�
exp

(
−1
2
u2j

)
duj

}
: (4)

This observation simpli�es drastically all the expressions for Radon–Nikodym deriva-
tives. Namely, using standard de�nitions [3] one gets

p−f
1 (u+ Bu) = exp

{
n∑
k=0

fk(u+ Bu)k − 1
2

n∑
k=0

f2k

}
(5)

and

p−y
1 (v+ Av) = exp


x

n∑
j=0

q j
(
vj +

j−1∑
l=0

q j−lv2l

)
− 1
2
x2

n∑
j=0

q2j


 ; (6)

pB2 (u) = exp

{
−1
2

n∑
k=0

(Bu)2k −
n∑
k=0

(Bu)kuk + Tr B

}
; (7)

pA3 (v) = exp


−

n∑
j=0

vj

j−1∑
l=0

q j−lv2l −
1
2

n∑
j=0

( j−1∑
l=0

q j−lv2l

)2
 : (8)

Using Eqs. (8) and (6) one writes down

(Bu)k =−2
∫
L(u · z)pA3 (z)�(d z) (9)
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and

fk =
∫
vkpA3 (v)[p

−y
1 (v+ Av)− 1]�(dv) : (10)

Finally, Eqs. (9), (10) and (7) enable us to rewrite Eq. (3) as

xn =
∫
unp

−f
1 (u+ Bu)pB2 (u)�(d u) : (11)

Thus, the solution of the logistic map is written by means of usual (while stubborn)
multiple integrals.
Considering that Ref. [2] is hardly available for a general reader and has a disturbing

misprint we decided to give here the derivation of its main result, Eq. (3).
The Gauss measure with a vanishing mean value, �, has two basic properties:∫

X �(d x) = 1 and
∫
X Lx �(d x) = 0, where L is a linear mapping. The de�nitions of

p1; 2; 3 were given in the body of this paper.
Consider the equation

y = x + L(x · x) = x + Ax ; (12)

where x ∈ X – unknown and y ∈ X – a known element from a functional space X .
Let us take two elements x1 and x2 and calculate appropriate y1 and y2, i.e.

y1 = x1 + L(x1 · x1); y2 = x2 + L(x2 · x2) :
Combining these equalities one gets

y1 + y2 = x1 + x2 + L(x1 · x1 + x2 · x2) ;
or

y1 + y2 = x1 + x2 + L((x1 + x2) · (x1 + x2))− 2L(x1 · x2) :
Let x = Ry be a solution of Eq. (12). Then

Ry1 + Ry2 = y1 + y2 − L((x1 + x2) · (x1 + x2)) + 2L(x1 · x2) :
Inserting the sum x1 + x2 instead of x into Eq. (12)

R(y1 + y2) = y1 + y2 − L((x1 + x2) · (x1 + x2))
and combining the last two equations we obtain

R(y1 + y2) = Ry1 + Ry2 − 2L(Ry1 · Ry2)
and, therefore,∫

X
R(y1 + y2)�(dy2) = Ry1 +

∫
X
Ry2�(dy2)− 2

∫
X
L(Ry1 · Ry2)�(dy2) :

(13)

We now transform the left-hand side of Eq. (13) by shifting the integration variable
by −y1 and then performing a nonlinear transform:∫

X
R(y1 + y2)�(dy2) =

∫
X
R(z)p−y1

1 (z)�(dz) =
∫
X
up−y11 (u+ Au)pA3 (u)�(du) :
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In a similar manner one applies a nonlinear variable transform x+Lx to the right-hand
side of Eq. (13):

Ry1 +
∫
X
Ry2�(dy2)− 2

∫
X
L(Ry1 · Ry2)�(dy2)

=Ry1 +
∫
X
upA3 (u)�(du)− 2

∫
X
L(Ry1 · u)pA3 (u)�(du) :

Thus Eq. (13) takes the form of linear operator equation:

(I + B)a= f ; (14)

where the operator B and the vector f have been de�ned above and a ≡ Ry1.
Now it is a matter of direct veri�cation to prove that a de�ned by Eq. (3) obeys

Eq. (14).
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