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Abstract

We present a new parameter-free algorithm for online linear optimization over any Hilbert
space. It is theoretically optimal, with regret guarantees as good as with the best possible
learning rate. The algorithm is simple and easy to implement. The analysis is given via
the adversarial coin-betting game, Kelly betting and the Krichevsky-Trofimov estimator.
Applications to obtain parameter-free convex optimization and machine learning algorithms
are shown.

1. Introduction

We consider the Online Linear Optimization (OLO) setting (Cesa-Bianchi and Lugosi, 2006;
Shalev-Shwartz, 2011) over a Hilbert space H. In each round t, an algorithm chooses a point
wt ∈ H and then receives a loss vector `t ∈ H. The algorithm’s goal is to keep its regret
small, defined as the difference between its cumulative loss and the cumulative loss of a
fixed strategy u ∈ H, i.e.,

RegretT (u) =
T∑
t=1

〈`t, wt〉 −
T∑
t=1

〈`t, u〉 .

where 〈·, ·〉 is the inner product in H.
OLO is a basic building block of many machine learning problems. For example, Online

Convex Optimization (OCO) is a problem analogous to OLO where the linear function
u 7→ 〈`t, u〉 is generalized to an arbitrary convex function ft(u). OCO is solved through a
reduction to OLO by feeding the algorithm `t = ∇ft(wt) (Shalev-Shwartz, 2011). Batch and
stochastic convex optimization can also be solved through a reduction to OLO by taking
the average of w1, w2, . . . , wT (Shalev-Shwartz, 2011).

To achieve optimal regret, most of the existing online algorithms (e.g. Online Gradient
Descent, Hedge) require the user to set the learning rate to an unknown/oracle value. Re-
cently, new parameter-free algorithms have been proposed for OLO/OCO (Chaudhuri et al.,
2009; Chernov and Vovk, 2010; Streeter and McMahan, 2012; Orabona, 2013; McMahan
and Abernethy, 2013; McMahan and Orabona, 2014; Luo and Schapire, 2014; Orabona,
2014; Luo and Schapire, 2015; Koolen and van Erven, 2015). These algorithms adapt to
the characteristics of the optimal predictor, without the need to tune parameters. However,
their design and underlying intuition is still a challenge.
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Our contributions are as follows. We connect algorithms for OLO with coin betting.
Namely, we show that an algorithm for OLO can be viewed as an algorithm for betting on
outcomes of adversarial coin flips. The wealth the algorithm can generate for the betting
problem is connected to the regret in OLO setting. This insight allows us to design novel
parameter-free algorithms, which are extremely simple and natural. We also show some
applications of our results to convex optimization and machine learning, as well as some
empirical results.

2. How to Tune the Learning Rates?

Denote by ‖·‖ =
√
〈·, ·〉 the induced norm in H and assume that ‖`t‖ ≤ 1. Consider

OLO over a Hilbert Space H. Online Gradient Descent (OGD) with learning rate η satis-
fies (Shalev-Shwartz, 2011)

∀u ∈ H RegretT (u) ≤ ‖u‖
2

2η
+
ηT

2
. (1)

It is obvious that the optimal tuning of the learning rate depends on the unknown norm of
u.

The simple choice η = 1√
T

leads to an algorithm that satisfies

∀u ∈ H RegretT (u) ≤ 1

2

(
1 + ‖u‖2

)√
T . (2)

However, in this bound the dependency on ‖u‖ is suboptimal: The quadratic dependency
can be replaced by an (almost) linear dependency. Starting from (1), if we choose the
learning rate η = D√

T
, we get a family of algorithms parameterized by D ∈ [0,∞) that

satisfy
∀u ∈ H : ‖u‖ ≤ D =⇒ RegretT (u) ≤ D

√
T . (3)

Instead of a family of algorithms parameterized by D ∈ [0,∞) satisfying the bound (3), one
would like to have a single algorithm (without any tuning parameters) satisfying

∀u ∈ H RegretT (u) ≤ ‖u‖
√
T . (4)

Notice that (4) is stronger than (3) in the following sense: A single algorithm satisfying (4)
implies (3) for all values of D ∈ [0,∞). However, a family of algorithms {AD : D ∈ [0,∞)}
parameterized by D where AD satisfies (3), does not yield a single algorithm that satisfies
(4). Finally, note that (4) has better dependency on ‖u‖ than (2).

Better guarantees are indeed possible. In fact, there have been a lot of work on algo-
rithms that satisfy a slightly weaker version of (4) (Streeter and McMahan, 2012; Orabona,
2013; McMahan and Abernethy, 2013; McMahan and Orabona, 2014; Orabona, 2014).
Namely, their regret satisfies

∀u ∈ H RegretT (u) ≤
(
O(1) + polylog(1 + ‖u‖) ‖u‖

)√
T . (5)

It can be shown that for OLO over Hilbert space the extra poly-logarithmic factor is neces-
sary (McMahan and Abernethy, 2013; Orabona, 2013). Algorithms satisfying (5) are called
parameter-free, since they do not need to know D, yet they have an optimal dependency on
‖u‖.

76



Parameter-Free Convex Learning through Coin Betting

Algorithm 1 Algorithm for OLO over Hilbert space H based on Krichevsky-Trofimov
estimator
1: for t = 1, 2, . . . do

2: Predict with wt ← −1
t

(
1−

∑t−1
i=1〈`i, wi〉

)∑t−1
i=1 `i

3: Receive loss vector `t ∈ H such that ‖`t‖ ≤ 1
4: end for

3. Parameter-Free Algorithm From Coin Betting

Here, we present our new parameter-free algorithm for OLO over a Hilbert space H,
stated as Algorithm 1. We would like to stress the extreme simplicity of the algorithm.
The theorem below upper bounds its regret in the form of (5), the proof can be found
in Orabona and Pál (2016).

Theorem 1 (Regret Bound for Algorithm 1) Let {`t}∞t=1 be any sequence of loss vec-
tors in a Hilbert space H such that ‖`t‖ ≤ 1. Algorithm 1 satisfies

∀T ≥ 0 ∀u ∈ H RegretT (u) ≤ ‖u‖
√
T ln

(
1 + 24T 2 ‖u‖2

)
+ 1 .

We now explain how Algorithm 1 is derived from the Krichevsky-Trofimov solution to
the adversarial coin-betting problem.

Adversarial Coin Betting. Consider a gambler making repeated bets on the outcomes
of adversarial coin flips. The gambler starts with an initial endowment of 1 dollar. In each
round t, he bets on the outcome of a coin flip ct ∈ {−1, 1}, where +1 denotes heads and −1
denotes tails. The outcome ct is chosen by an adversary. The gambler can bet any amount
on either heads or tails. However, he cannot borrow any additional money. If he loses, he
loses the betted amount; if he wins, he gets the betted amount back and, in addition to
that, he gets the same amount as a reward. We encode the gambler’s bet in round t by a
single number βt ∈ [−1, 1]. The sign of βt encodes whether he is betting on heads or tails.
The absolute value encodes the betted amount as the fraction of his current wealth. Let
Wealtht be gambler’s wealth at the end of round t. It satisfies

Wealth0 = 1 and Wealtht = (1 + ctβt) Wealtht−1 for t ≥ 1 . (6)

Note that since βt ∈ [−1, 1], gambler’s wealth stays always non-negative.

Kelly Betting and Krichevsky-Trofimov Estimator. For sequential betting on i.i.d.
coin flips, the optimal strategy has been proposed by Kelly (1956). The strategy assumes
that the coin flips {ct}∞t=1, ct ∈ {+1,−1}, are generated i.i.d. with known probability of
heads. If p ∈ [0, 1] is the probability of heads, the Kelly bet is βt = 2p − 1. He showed
that, in the long run, this strategy will provide more wealth than betting any other fixed
fraction (Kelly, 1956).

For adversarial coins, Kelly betting does not make sense. Krichevsky and Trofimov
(1981) proposed to replace p with an estimate: After seeing coin flips c1, c2, . . . , ct−1, use the
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Algorithm 2 SGD algorithm based on KT estimator

Require: Convex functions f1, f2, . . . , fN and desired number of iterations T
1: Initialize Wealth0 ← 1 and θ0 ← 0
2: for t = 1, 2, . . . , T do
3: Set wt ←Wealtht−1

θt−1

t
4: Select an index j at random from {1, 2, . . . , N} and compute `t = ∇fj(wt−1)
5: Update θt ← θt−1 − `t
6: Update Wealtht ←Wealtht−1−〈`t, wt〉
7: end for
8: Output wT = 1

T

∑T
t=1wt

empirical estimate kt =
1/2+

∑t−1
i=1 1[ci=+1]
t . Their estimate is commonly called KT estimator1

and it results in the betting strategy βt = 2kt − 1 =
∑t−1

i=1 ci
t . Krichevsky and Trofimov

showed that this strategy guarantees almost the same wealth that one would obtain knowing
in advance the fraction of heads. Namely, if we denote by Wealtht(β) the wealth of the
strategy that bets the fraction β in every round, then the wealth of the Krichevsky-Trofimov
betting strategy satisfies

∀β ∈ [−1, 1] Wealtht ≥
Wealtht(β)

2
√
t

. (7)

Moreover, this guarantee is optimal up to constant multiplicative factors (Cesa-Bianchi and
Lugosi, 2006).

From betting to OLO. In Algorithm 1, the “coin outcome” is the vector ct ∈ H
where ct = −`t and algorithm’s wealth is Wealtht = 1 +

∑t
i=1〈ci, wi〉 = 1 −

∑t
i=1〈`i, wi〉.

The algorithm explicitly keeps track of its wealth and it bets “vectorial fraction” βt =∑t−1
i=1 ci
t = −

∑t−1
i=1 `i
t of its current wealth. The regret bound (Theorem 1) is a consequence

of Krichevsky-Trofimov lower bound (7) on the wealth and the duality between regret and
wealth. For more details, see Orabona and Pál (2016).

4. From Online Learning to Convex Optimization and Machine Learning

The result in Section 3 immediately implies new algorithms and results in convex optimiza-
tion and machine learning. We will state some of them here, see Orabona (2014) for more
results.

Convex Optimization. Consider an empirical risk minimization problem of the form

F (w) =
1

N

N∑
i=1

fi(w), (8)

1. Compared to the standard maximum likelihood estimate
∑t−1

i=1 1[ci=+1]

t−1
, KT estimator “shrinks” slightly

towards 1
2
.
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where fi : Rd → R, i = 1, . . . , N are convex.2 It is immediate to transform Algorithm 1 into
a Stochastic Gradient Descent (SGD) algorithm for this problem, obtaining Algorithm 2.
In Algorithm 2, ∇fj(w) denotes a subgradient of fj at a point w. We assume that the norm
of the subgradient of fj is bounded by 1.

Beside the simplicity of the Algorithm 2, it has the important property is that it does
not have a learning rate to be tuned, yet it achieves the optimal convergence rate. In fact,
denoting by ŵ = arg minw F (w) the optimal solution of (8), the following theorem states
the rate of convergence of Algorithm 2.

Theorem 2 The average wT produced by Algorithm 2 is an approximate minimizer of the
objective function (8):

E [F (wT )]− F (ŵ) ≤ ‖ŵ‖√
T

√
log(1 + 24T 2 ‖ŵ‖2) +

1

T
.

Note that in the above theorem, T can be larger (multiple epochs) or smaller than N .

Machine Learning. In machine learning, the minimization of a function (8) is just a
proxy to minimize the true risk over an unknown distribution. For example, fi(w) can
be of the form fi(w) = f(w,Xi, Yi) where {(Xi, Yi)}Ni=1 is a sequences of labeled samples
generated i.i.d. from some unknown distribution and f(w,Xi, Yi) is the logistic loss of a
weight vector w on a sample (Xi, Yi). A common approach to have a small risk on the test
set is to minimize a regularized objective function over the training set:

FReg
λ (w) = λ ‖w‖2 +

1

N

N∑
i=1

f(w,Xi, Yi) . (9)

This problem is strongly convex, so there are very efficient methods to minimize it, hence we
can assume to be able to get the minimizer of FReg

λ with arbitrary high precision. Yet, this

is not enough. In fact, we are rarely interested in the value of the objective function FReg
λ or

its minimizer, rather we are interested in the true risk of a solution w, that is E[f(w,X, Y )],
where (X,Y ) is an independent “test” sample from the same distribution from which the
training set {(Xi, Yi)}Ni=1 came from. Hence, in order to get a good performance we have to
select a good regularization parameter. In particular, from Sridharan et al. (2009) we get

E[f(ŵλ, X, Y )]−E[f(w∗, X, Y )] ≤ O
(
λ ‖w∗‖2 +

1

λN

)
, (10)

where w∗ = arg minw E[f(w,X, Y )] and ŵλ = arg minw F
Reg
λ (w). From bound (10), it

is clear that the optimal value of λ depends on the ‖w∗‖ that is unknown. Yet another
possibility is to select the optimal learning rate and/or the number of epochs of SGD to
directly minimize E[f(w∗, X, Y )]. However, all these methods are equivalent (Lin et al.,
2016) and they still require to tune at least one parameter. We would like to stress that
this is not just a theoretical problem: Any practitioner knows how painful it is to find the
right regularization for the problem at hand.

2. The Algorithm 2 can also be implemented and analyzed with kernels (Orabona, 2014).
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Algorithm 3 Averaging algorithm based on KT estimator

Require: Sample (X1, Y1), (X2, Y2), . . . , (XN , YN )
1: Initialize Wealth0 ← 1 and θ0 ← 0
2: for i = 1, 2, . . . , N do
3: Set wi ←Wealthi−1

θi−1

i

4: Compute `i = ∂f(w,Xi,Yi)
∂w |w=wi

5: Update θi ← θi−1 − `i
6: Update Wealthi ←Wealthi−1−〈`i, wi〉
7: end for
8: Output wN = 1

N

∑N
i=1wi

Assuming we would know ‖w∗‖, we could set λ = 1
‖w∗‖

√
N

to achieve the worst-case

optimal bound

E[f(ŵλ, X, Y )]−E[f(w∗, X, Y )] ≤ O
(
‖w∗‖√
N

)
. (11)

However, we can get the same guarantee without knowing ‖w∗‖ or the optimal λ, by doing
a single pass over the data set. More precisely, we derive Algorithm 3 from Algorithm 1
by applying the standard online-to-batch reduction (Shalev-Shwartz, 2011). The algorithm
makes only a single pass over the dataset and it does not have any tuning parameters. Yet,
it has almost the same guarantee (11) without knowing ‖w∗‖ or the optimal regularization
parameter λ or the learning rate, or any other tuning parameter.

Theorem 3 Assume that (X,Y ), (X1, Y1), (X2, Y2), . . . , (XN , YN ) are i.i.d. The output wN
of Algorithm 3 satisfies

E[f(wN , X, Y )]−E[f(w∗, X, Y )] ≤ ‖w
∗‖√
N

√
log(1 + 24N2 ‖w∗‖2) +

1

N
.

Comparing this guarantee to the one in (11), we see that, just paying a sub-logarithmic
price, we obtain the optimal convergence rate and we remove all the parameters.

5. Empirical Evaluation

We have also run a small empirical evaluation to show that the theoretical difference between
classic learning algorithms and parameter-free ones is real and not just theoretical. In
Figure 1, we have used three regression datasets,3 and solved the OCO problem through
OLO. In all the three cases, we have used the absolute loss and normalized the input vectors
to have L2 norm equal to 1.

The dataset were split in two parts: 75% training set and the remaining as test set. The
training is done through one pass over the training set and the final classifier is evaluated on
the test set. We used 5 different splits of training/test and we report average and standard
deviations.

3. Datasets available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Figure 1: Test loss versus learning rate parameter of SGD (in log scale), compared with the parameter-free
Algorithm 3.

We have run SGD with different learning rates and shown the performance of its last
solution on the test set. For Algorithm 3, we do not have any parameter to tune so we just
plot its test set performance as a line.

From the empirical results, it is clear that the optimal learning rate is completely data-
dependent. It is also interesting to note how the performance of SGD becomes very unstable
with large learning rates. Yet our parameter-free algorithm has a performance very close to
the unknown optimal tuning of the learning rate of SGD.
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