
Identifying the neuroretinal rim boundary using dynamic contours

D.T. Morris*, C. Donnison

Department of Computation, UMIST, PO Box 88, Manchester M60 1QD, UK

Received 15 January 1996; received in revised form 26 January 1998; accepted 23 February 1998

Abstract

The neuroretinal rim forms the outer boundary of the optic nerve head: that region of the retina where blood vessels and nerve fibres pass
out of the eye. It is normally a circular structure, but is known to change shape due to nerve damage in glaucoma. Its shape can therefore be
used in the diagnosis and assessment of the treatment of this disease. Automatically finding the boundary would be useful as it would allow
reliable quantitative shape measurements to be made. However, it is a difficult problem as the boundary is ill defined and partially obscured
by blood vessels. In this paper we present an algorithm that successfully identifies the boundary using dynamic contours (snakes). The
success of the algorithm is very dependent on preprocessing the image to enhance the contrast between the retina and the optic nerve head.
We therefore describe the preprocessing in some detail. The algorithm has been tested on numerous images and found to be successful, as
judged by an optometrist, in every case.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The blood vessels and nerve fibres serving the retina are
located on the eye’s inner surface. They pass through the
eye at the optic nerve head (the ‘blind spot’). This structure
is sensitive to increases in intraocular pressure (IOP) such as
are associated with glaucoma: as the IOP increases, nerve
cells at the optic nerve head are killed and the patient
eventually notices a loss of sight, unless the IOP is reduced
surgically or by medication.

At present there is no means of knowing what specific
level of IOP the eye can tolerate without further damage.
Clinicians treating glaucoma therefore rely on using drugs
to reduce the IOP whilst examining the patient regularly. If
the symptoms become worse, the dosage is increased. This
regime can limit the loss of vision but cannot guarantee
correct treatment. Further, since the treatment requires con-
stant re-establishing of baseline IOP and visual function,
progressive loss of vision is almost inevitable.

A more accurate means of assessing the treatment would
be to assess the optic nerve head directly. This is the most
sensitive and definite indicator of glaucoma in its early
stages and can also give a quantification of the treatment’s
results as the disease progresses. The importance of quanti-
fying the nerve head’s shape is recognised in the numerous

attempts that have been made at automating the measure-
ment, the most accurate and popular at present being those
using the Scanning Laser Ophthalmoscope (SLO) [1].
Investigations also continue into using simpler instrumenta-
tion [2,3]. The SLO generates a high resolution volume
image of reflectivities within the retina. From this the
optic nerve head boundary can be traced with considerable
accuracy. Although SLO approaches are attractive in this
respect, they have the drawback that an SLO is an extremely
expensive piece of equipment. The approaches using
simpler instrumentation, whilst appearing attractive, have
not yet demonstrated success, but since an ophthalmologist
is able to recognise glaucoma from an image of the optic
nerve, it should be possible to do so automatically. We
believe that it is these approaches that will be more widely
adopted, once successful algorithms have been developed.

Whatever data are used, the measurements must be made
with no human intervention since inter-observer variability
is comparable to inter-class differences [4], an observation
that lends weight to the received wisdom that three experts
will give three different diagnoses.

Some of the difficulties experienced in delineating the
structure of the optic nerve head may be appreciated from
Fig. 1 which shows a white light image of a healthy retina;
the data collection methodology has been described else-
where [5]. Regions within the nerve head and on the retina
may be readily identified, localising the boundary between
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them is harder since it is not sharp and, more importantly, it
is obscured in many places by the blood vessels that supply
the retina. Whereas it is an apparently simple task for an
expert to trace the boundary, interpolating where necessary,
traditional boundary-following algorithms have not suc-
ceeded in this as they do not make full use of the edge
smoothness and continuity properties that the expert uses.

Kass et al. [6] suggested the dynamic contour (snake)
approach to implement these properties. Conceptually, the
dynamic contour attempts to shrink a boundary to image
features. The algorithm’s major advantage is that it is able
to bridge discontinuities in the image feature being located:
it is this property that makes the dynamic contour attractive
in the present application. Since the original publication, the
formulation of the algorithm has been made more efficient
and robust [7–9].

The contour is shrunk with length and stiffness con-
straints, i.e. the final contour should be as short and straight
as possible. Shrinking is opposed by constraints derived
from the image data which are dependent on the type of
boundary being located. For example, if a local maximum
(watershed) was being traced, the constraint could be
derived as a weighted sum of the local grey values; if a
contour was being followed, the constraint would be derived
from the image gradient. The algorithm allows the relative
influences of these three factors (length, stiffness, image
feature) to be varied and thus allows the user to tune the
snake to a particular shape of boundary.

As mentioned above, many attempts have been made to
locate the nerve head boundary using other algorithms, but
only Lee and Brady [10] have used the snake. For some
reason, they omitted the stiffness criterion from their
formulation, consequently the snake they derived bulged

inwards where the boundary was obscured. In an attempt
to reduce this effect, they expended considerable effort in
attempting to remove blood vessels from their data, but have
not as yet reported success. In our implementation, we have
included this factor, we have also minimised the energy
function differently.

Whilst locating discontinuous boundaries using snakes is
not novel, determining what preprocessing is required to
make a robust algorithm is. It is the purpose of this paper
to present the preprocessing we have used in this particular
application, to discuss our implementation of the dynamic
boundary location technique and to present sample results of
analysing clinical data.

2. Preprocessing

Capturing images of the optic nerve head was not a
simple task. Although the details of how this was done
have been described elsewhere, they will be summarised
here for completeness. The data capture equipment con-
sisted of a video camera attached to a Zeiss fundus camera.
The output of the video camera could be digitised using a
Data Translation board driven by a PC. The major problem
in capturing data was in illuminating the retina adequately.
To do this, the patient’s pupil was dilated and when a satis-
factory image was seen through the fundus camera, the
patient’s eye was illuminated by a photographic flash and
the video image captured. This usually resulted in satisfac-
tory images, although the image brightness was variable
and, on occasion, the patient reacted to the flash fast enough
that the optic nerve head was not captured. It was essentially
the problem of variable and poor illumination that had to be
overcome by preprocessing. Without preprocessing it was
observed that the dynamic contour shrank too far into the
interior of the nerve head.

It was the aim of the preprocessing stage to yield a high
contrast image, with grey level gradients enhanced. The
snake will be shrunk from the outer regions of this image
onto the enhanced outer edges of the required region
where they exist and will interpolate where they do not.
Preprocessing consisted of three steps. Firstly, the image
was equalised by histogram equalisation, giving results
such as Fig. 2: the histogram equalised version of Fig. 1.
Equalisation was found to be a useful method of enhancing
the difference between the bright nerve head region and the
darker surrounding retinal region of the image. Secondly,
images were thresholded to remove pixels that are definitely
not part of the nerve head, the image’s median was used as
the threshold: grey values below it were set to zero since it
was assumed that they corresponded to non-optic nerve
head pixels. The threshold was set deliberately low to ensure
that all of the nerve head pixels were selected, at the cost of
including some retinal pixels. Although thresholding added
an extra dimension of complexity, it also removed any
superfluous image detail that could cause the snake to

Fig. 1. Sample optic nerve head image.
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become attached to erroneous features; this step should
therefore been thought of as a precaution.

Our goal in preprocessing was to enhance the edge detail
in the images. This was achieved by applying a pyramid
edge detector to the equalised (contrast enhanced) image.
Pixels in a layer of the pyramid data structure were com-
puted as the average of groups of four pixels in the layer
below. Pixel averaging tended to prevent future examination
of the spurious edge-points arising from noise in the
equalised image, it was therefore preferable to enhance
the image’s edges in this way rather than use straight-
forward edge enhancement. The optimum pyramid size
was determined by balancing minimum processing time
(achieved using large pyramids) with maximum accuracy
(obtained from small pyramids); bearing in mind that a
minimum image size is required by edge detection
algorithms. Empirical testing suggested that creating more
than five levels did not lead to an obvious reduction in
processing time whilst using more highly condensed data
led to portions of edge data being missed. A pyramid of five
layers (in addition to the base layer) was chosen to provide a
compromise between speed and accuracy; this fifth level
contained 163 16 pixels. Fig. 3 shows the pyramid
generated using Fig. 2 as the base. Although the diagram
shows all the layers it is possible to compute, only the five
lowest are used.

Comparison of edge detecting templates did not reveal
any significant differences between the results given by any
of the simple 23 2 and 33 3 operators. The Sobel operator
was therefore implemented. The pyramid was examined
using this operator in the normal fashion: starting at the
highest level, if the edge detector gave a result greater
than some threshold, the equivalent pixels in the layer

below were examined until either the base layer was reached
or the edge magnitudes fell below the threshold. The choice
of threshold could have a significant effect on the final
result. A small threshold was necessary to guarantee that
the optic nerve was detected; however, this considerably
increased the processor time required as more candidate
edges were generated. Conversely, a large threshold mini-
mised the time required to detect the boundary but reduced
the amount that the edge contour was enhanced. Fig. 4 is
typical of the results obtained.

Fig. 2. Histogram equalised version of Fig. 1. Fig. 3. Pyramid representation of image data.

Fig. 4. Preprocessed image data.
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3. Dynamic boundary location

The dynamic boundary can be represented as a parametric
curve,C, by:

C(s) ¼ (x(s), y(s)) 0 # s# 1 (1)

It moves under three influences: its length and curvature are
to be minimised whilst an image property summed along its
length is maximised. Since we are fitting the snake to an
object’s boundary, we have used edge strength,f(x,y), as the
image property. The edge strength summed along the snake
may be written as:

I (s) ¼
∑s¼ 1

s¼ 0
f (x(s), y(s)) ds (2)

Requiring that the snake’s length is minimised is equivalent
to minimising the rate of change of distance assvaries. This
is equivalent to minimising the expression:

L(s) ¼

∫s¼ 1

s¼ 0

dx
ds

� �2

þ
dy
ds

� �2� �
ds (3)

Finally, we require the snake’s curvature to be minimised.
This gives the snake stiffness properties. Without it, the
snake will contract like an elastic band: where the boundary
is obscured, the snake will interpolate a straight line, or even
bulge inwards. With this property the snake will exhibit
continuity of gradient (c1 continuity) across the boundary.
In essence, this property minimises the rate of change of
tangents:

B(s) ¼

∫s¼ 1

s¼ 0

d2x

ds2

� �2

þ
d2y

ds2

� �2
 !

ds (4)

Eqs. (2)–(4) describe the energy terms of the snake. They
may be grouped into a single functional to give:

E(snake) ¼ a(s)B(s) þ b(s)L(s) ¹ I (s) (5)

The termsa(s) andb(s) are weighting factors that allow the
stiffness and elasticity of the snake to be altered relative to
the importance of the image information. Whilst they
have been written as functions ofs, we, and most other
investigators, have kept them constant.

Welsh et al. [11] showed that Eq. (5) is equivalent to
finding a curve(x̂, ŷ) satisfying:

¹
d

ds2 a(s)
d2x̂

ds2

� �
þ

d
ds

b(s)
dx̂
ds

� �
þ 1

2

]f
]x
l(x̂, ŷ) ¼ 0 (6)

¹
d

ds2 a(s)
d2ŷ

ds2

� �
þ

d
ds

b(s)
dŷ
ds

� �
þ 1

2

]f
]y
l(x̂, ŷ) ¼ 0 (7)

and some specific boundary conditions.
Kass et al. [6] and Waite and Welsh [12] present methods

of solving these equations. Following Waite and Welsh, we
have used finite differences in which Taylor’s theorem was

used to derive approximations to the differential and double
differential of a function in terms of finite differences. Sub-
stituting these in Eqs. (6) and (7) gave a pair of systems of
equations for finding thex andy coordinates that minimised
the energy function of the snake. The minimisation
equations were, in turn, solved by grouping like terms and
rewriting them in matrix form:

Bþ 1
g
I

� �
x(kþ 1)

nþ 1 ¼ ¹ Axk
n þ 1

g
x(kþ 1)

n þ f (xn,yn) (8)

Bþ 1
g
I

� �
y(kþ 1)

nþ 1 ¼ ¹ Ayk
n þ 1

g
y(kþ 1)

n þ f (xn,yn) (9)

where(Bþ 1
g
I ) is a band matrix that may be expressed as a

product of Cholesky factorsLLT by which the coordinates of
points on the snake may be iterated by first solving Eq. (10)
followed by Eq. (11) for thex coordinates (and a similar pair
for the y values):

Lx̃(kþ 1)
nþ 1 ¼ ¹ Ax̃(k)

n þ 1
g
x̃(kþ 1)

n þ f (xn,yn) (10)

LTx̃(kþ 1)
nþ 1 ¼ ¹ x̃(kþ 1)

nþ 1 (11)

The Cholesky algorithm is numerically very stable and has
the additional advantage that the matrix decomposition need
only be performed once per snake initialisation: it therefore
leads to a rapid solution.

The snake was initialised as a spline curve. In the current
experimental system, the control points can be interactively
edited: adding, removing or moving points as required. The
only requirement of the spline was that it lay entirely outside
the optic nerve head region; in a future, automatic, version,
we shall achieve this by initialising the snake to coincide
with the image boundary. Two versions of the boundary-
locating software have been implemented: for images of
complete nerve heads and images in which the nerve head
overlaps the image border.

4. Implementation and results

The software has been implemented on a PC using the
WATCOM C compiler. This was used in preference to
Borland’s or the Microsoft compilers as it provides support
for the IBM 8514 graphics driver. This was used in prefer-
ence to the standard VGA drivers as it allows higher resolu-
tion images to be displayed, and the display to be updated
rapidly without flicker. The user interface allows the spline
to be placed and the image to be preprocessed interactively,
the snake parameters (a andb) to be altered and the various
intermediate images to be displayed or not.

Once the image has been preprocessed satisfactorily and
the snake initialised, the snake was allowed to iterate to its
final location. Typically, 10 to 20 iterations were required.
Once the image has been preprocessed and the initial matrix
decomposition performed, each iteration may be performed
in less than one second using a 486DX computer.
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Fig. 5 shows the results of processing the original image
of Fig. 1. (Values of 40 and 180 were used for the stiffness
and elasticity parameters.) It is particularly important to
note that the snake’s location coincides with the boundary
indicated by an optometrist (any differences are insignifi-
cant compared to the inter-optometrist differences, see Cox
and Wood [4]). Whilst this may not be too important an
observation in the light of the comments made about differ-
ent optometrist’s interpretations of the boundary, it does
lend support to the claim that the algorithm gives a reason-
ably accurate boundary. Further, it will do this consistently,
unlike the optometrists! Also worthy of note is the detected
boundary’s continuity (in the sense that the boundary has no
gaps and its curvature is continuous) where the true
boundary is obscured.

Fig. 6 shows the results of applying the algorithm with the
same parameter values as before to a poorly exposed image,
not typical of the images we would normally accept for
processing. The snake has failed to locate the boundary in
the upper right quadrant; the result is included to demon-
strate the sensitivity of the snake algorithm to the pre-
processing applied to the image. The preprocessing is the
subject of further research.

5. Conclusions and discussion

We have implemented an experimental system to demon-
strate the usefulness of the dynamic boundary location
method in finding the outline of the optic nerve head. Two
initial conclusions may be drawn:

• the power of the algorithm in locating unclear and
possibly discontinuous boundaries is illustrated,

• measurements of the optic nerve head’s dimensions may in
future be made independently of any expert, thus reducing
the variability of measurements.We have shown the impor-
tance of preprocessing the image to enhance the features
that are used in defining the boundary.

In the near future we plan to modify the software to per-
form the boundary detection automatically. Now that the
algorithm for doing this has been determined, this simply
requires altering the snake’s initialisation. Cox and Wood
[5] have suggested that the lateral (side) boundaries of the
nerve head change shape as glaucoma progresses. The snake
accurately locates the boundary in this region; we are
hopeful that this approach will ultimately be successful in
automatically quantifying the effects of glaucoma.

There are further structures within the optic nerve head
that require localising, in particular the cup boundary, since
the structure’s shape is significant in glaucoma. We plan to
use the same methods to detect this as we have used in
detecting the disk boundary, but will initialise the snake to
the disk instead of the image boundary.

We finally intend to investigate the usefulness or other-
wise of allowing the values ofa and b to vary along the
length of the snake. Possibilities here could be to make them
vary according to the snake’s local radius of curvature or
local image properties.

In parallel with these activities, we are testing the accu-
racy and usefulness of the algorithm(s) using a set of retinal
images collected by Cox and Wood [4].
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