
Evaluating the Applicability of Reliability Prediction
Models between Different Software

Shin-ichi Sato
NTT DATA Corporation

3-3-3, Toyosu, Koto-ku, Tokyo,
Japan, 135-6033
+81-3-5546-8384

satousnb@nttdata.co.jp

Akito Monden
Nara Institute of Science and

Technology
8916-5, Takayama, Ikoma, Nara,

Japan, 630-0101
+81-743-72-5312

akito-m@is.aist-nara.ac.jp

Ken-ichi Matsumoto
Nara Institute of Science and

Technology
8916-5, Takayama, Ikoma, Nara,

Japan, 630-0101
+81-743-72-5312

matumoto@is.aist-nara.ac.jp

Abstract
The prediction of fault-prone modules in a large software system
is an important part in software evolution. Since prediction
models in past studies have been constructed and used for
individual systems, it has not been practically investigated
whether a prediction model based on one system can also predict
fault-prone modules accurately in other systems. Our expectation
is that if we could build a model applicable to different systems, it
would be extremely useful for software companies because they
do not need to invest manpower and time for gathering data to
construct a new model for every system.

In this study, we evaluated the applicability of prediction models
between two software systems through two experiments. In the
first experiment, a prediction model using 19 module metrics as
predictor variables was constructed in each system and was
applied to the opposite system mutually. The result showed
predictors were too fit to the base data and could not accurately
predict fault-prone modules in the different system. On the basis
of this result, we focused on a set of predictors showing great
effectiveness in every model; and, in consequent, we identified
two metrics (Lines of Code and Maximum Nesting Level) as
commonly effective predictors in all the models. In the second
experiment, by constructing prediction models using only these
two metrics, prediction performance were dramatically improved.
This result suggests that the commonly effective model applicable
to more than two systems can be constructed by focusing on
commonly effective predictors.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability, statistical method.

General Terms

Reliability
Keywords
fault-prone module, metrics, prediction, software measurement,
software reliability

1. Introduction
It is nothing new to say that quality is an important attribute of
software systems. If a failure occurs while software is doing
critical tasks, it may cause serious damage not only to the
company who relies on the software but also to the company who
is responsible in maintaining the software. Therefore, keeping up
the reliability of software throughout its long-term evolution is a
crucial work for the company who maintains it. However, testing
and reviewing all the modules in large-scale software is very
expensive. In order to lessen the cost of maintenance, a method
for selecting modules that should be tested and/or reviewed is
needed. One way to achieve this is to identify fault-prone
modules in advance by using prediction models so that we can
focus on the modules that need intensive testing and hence detect
faults more efficiently.
In order to detect fault-prone modules, many studies have
proposed prediction models using various analysis methods based
on software product metrics. Selby and Porter proposed a decision
tree approach to classify low-quality modules based on
information theory and Huffman Coding [9]. Takahashi and his
colleagues improved the tree construction algorithm by using AIC
(Akaike’s Information Criteria) [12]. Ohlsson and Alberg
identified fault-prone modules in telephone switching software
using multiple regression analysis [7]. They evaluated the
accuracy of several models using Alberg Diagram. Pighin and
Zamolo classified fault-prone modules using discriminant analysis
[8]. Takabayashi and his colleagues predicted fault-prone
modules using a neural network model [11]. Khoshgoftaar and
Allen analyzed effective metrics to classify fault-prone modules
using logistic regression analysis [4].

Most of these results showed that there is a close relationship
between module metrics and its quality, and that all of these
prediction models could predict fault-prone modules at high
accuracy. However, metrics and analysis methods used in these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357226638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

e

Name S1
Platform Mainframe
Languag
e

Two Hardware
(Lang A and Lan
3,858 Modules (1
Lang A: 1,995 M
Lang B: 1,863 M

Fault
data

In the 7 years a
released

Size

studies are various and different case by case. Furt
of results of these studies were validated on only a
system. This indicates that a prediction model
software system is not necessarily effective for
systems to predict fault-prone modules. Our expec
we could build a model applicable to different sys
be extremely useful for software companies becau
need to invest manpower and time for gathering da
a new model for every system.
In this study, we conducted an experimental resea
the applicability of fault-prone module prediction m
different software. We conducted two experime
collected from two industrial software systems. As
experiments, we identified two metrics that a
effective to predict fault-prone modules for differen
evaluated the applicability of prediction models bet
software.
In the rest of this paper, we explain our experim
their results in Section 2. In Section 3, we have a di
the results in detail, and finally summarize the pape

2. Our Approach
We conducted an experiment to evaluate the a
prediction models using data collected from
software systems that were developed in NTT DAT

Each module of S1
(for each language)

•Module Metrics Values
•Fault Data

Each module of S2
•Module Metrics Values

•Fault Data

1. Measure module metrics and Collect fault
Table 1 Profile of Target Softwar
S2
Mainframe

Specific Languages
g B)

COBOL

.8MSLOC)
odules
odules
fter the systems was During unit testing and integration

testing

500 Modules (157KSLOC)

hermore, most
single software
based on one
other software
tation is that if
tems, it would
se they do not
ta to construct

rch to evaluate
odel between

nts using data
 a result of the
re commonly
t software and
ween different

ents and show
scussion about
r in Section 4.

pplicability of
two industrial
A. The profile

of them is shown in Table 1.
Software 1(referred as S1) is application software for some public
institute. The first version was released about more than 20 years
ago. Then it has been updated and changed many times to fix
faults and to add new functionality till today. Besides of such
occasional modifications, it has been renewed a few times due to
changing its platform. At that time, some modules were
abandoned and rewritten often in a different programming
language because they became too old and complex by
modifications over a long term. So, each module of today’s
version is written in either of two languages. Both of these are
specific to its platform (mainframe) and it is not known in public.
For the sake of convenience, we call them “Lang A” and “Lang
B”, respectively. Lang A has been mainly used in the early days
and its syntax looks like that of PL/I. Lang B is an expansion of
COBOL and used in later development. Many developers prefer
Lang B to Lang A because it is newer and is more familiar to
them than Lang A. The characteristics of these two languages are
so different that we regard each module written in each language
as a different software system.
Software 2(S2) is utility software. Each module of S2 is written in
COBOL. Recently, when an old software system in our company
needed to change its platform on account of a customer, S2 was
developed for converting a database from old platform to new one.
So S2 is operated on mainframe, but it is not legacy software.

Discriminant
Analysis

Reliability Prediction
Model 1A, 1B

Discriminant
Analysis

Reliability Prediction
Model 2

Fault-Prone

Fault-Free

Fault-Prone

Fault-Free

Fault-Prone

Fault-Free

Fault-Prone

Fault-Free

 data 2. Construct prediction models

3. Predict fault-proneness of modules

4. Evaluate the performance

Figure 1 Overview of Experiment 1

Table 2 List of Module Metrics

Category Metric Name Abbreviated Name
Size SLOC(Source Lines Of Code) SLOC

Condition Maximum Cyclomatic Number MAX_CYC
Cyclomatic Number / SLOC N_CYCLO

Jump Statements / SLOC N_JUMP
Loop Statements / SLOC N_LOOP

Nest Maximum Nesting Level MAXNST
Total Nesting Level / SLOC N_NSTSUM

Data Structure Number of Declared Variables / SLOC N_VDESUM
Number of Variable Uses / SLOC N_VREFS

Number of Variable Defines / SLOC N_VASSUM
Understandability (1-Comment Lines) / SLOC N_COMM
Module Cohesion Number of Procedure Calls / SLOC N_INCSUM
Module Coupling Number of External Module Calls / SLOC N_EXCSUM

Number of External Variable Defines / SLOC N_EXASS
Number of External Variable Uses / SLOC N_EXREF

Number of Macro References / SLOC N_MACROS
Number of Parameters PARAMS

The size of each system is very different. S1 is considerably
larger than S2. Also, the timings of collecting fault data are
different: in maintenance phase for S1 and in testing phase for S2.
That is to say, S1 and S2 have quite different characteristics in
their language, size, functionality and detected faults; and
furthermore, modules in S1 have two different characteristics in
written languages.

2.1 Experiment 1
2.1.1 Procedure
The procedure of the first experiment is shown in Figure 1. Each
step of this procedure is explained in the followings.
1. Measure module metrics and collect fault data
The list of module metrics used in our study is shown in Table 2.
All of these metrics are often used in other studies to evaluate
module’s complexity from various points of view, which include
size metrics, software science metrics [2], McCabe’s cyclomatic
complexity metrics [5], and module cohesion metrics [6]. We
measured these metrics in each module using a tool developed by
ourselves. Since some of them were highly correlated with SLOC,
so we normalized them by dividing by SLOC. Fault data were

manually collected from failure reports.
2. Construct prediction models for each software system.
As a prediction model, we used linear discriminant analysis
whose dependent variable is a category variable (its value is
“Fault-Prone” or “Fault-Free”) and independent variables are
module metrics. We constructed prediction models for each of S1
and S2. As mentioned in the previous section, each module of S1
has different characteristics in its written language, so we divided
modules of S1 into two sets by its language and constructed
prediction models for each set. That is, three prediction models
were constructed: two models (Model 1A, 1B) from S1 and one
model (Model 2) from S2.
3. Predict fault-proneness of modules using constructed models
We applied each module of one software into the prediction
model constructed from another software to evaluate the
effectiveness of the prediction model between different software:
modules of S1 were applied into Model 2 and modules of S2
applied into Model 1A and 1B.
4. Evaluate the prediction performance.
The predicted modules can be categorized into four segments
shown in Table 3. Each nij means the number of modules mapped
into the corresponding segment. We used the following measures
derived from Table 3 to evaluate the prediction performance.
These measures were used in previous studies [1]. Table 3 Two-class Classification Performance Matrix

・ Accuracy

n22n21

n12

Fault-ProneFault-Free

Fault-Prone

Fault-Free n11

Prediction Results

Actual
Results n22n21

n12

Fault-ProneFault-Free

Fault-Prone

Fault-Free n11

Prediction Results

Actual
Results

This is a percentage of correctly predicted modules about both of
fault-free modules and fault-prone modules. It is defined as:

100
22211211

2211 ×

+++

+
nnnn

nn

2.2 Experiment 2 ・ Correctness
This is a percentage of modules that were predicted as “Fault-
Prone” and actually included one or more faults. If this value is
low, that means the model is predicting more modules as “Fault-
Prone” but they really are not faulty. It is defined as:

2.2.1 Motivation
From the prediction model constructed using discriminant
analysis, we can not only predict fault-prone modules but also
examine how effective each predictor variable (module metric) in
the discriminant function is to predicting a fault-prone module by
examining within-groups correlations of each variable with the
canonical variable [10].

100
2212

22 ×

+ nn

n

・ Completeness
Table 5 shows the within-groups correlations of each predictor
variable in each model. The name of each metric is the same as
Table 2. Only top 5 of predictor variables sorted by correlation
value are listed. In every model, the most effective metric is
SLOC. For other metrics, the rank of effectiveness is different.
However, in each model, there is the borderline (double line in the
table) at which the correlation value remarkably decreases: 0.5274
to 0.3852 in Model 1A, 0.6265 to 0.3570 in Model 1B and 0.6559
to 0.4956 in Model 2.

This is a percentage of modules including one or more faults and
was predicted as “Fault-Prone”. If this value is low, this means
that more faulty modules are mis-predicted as “Fault-Free”. It is
defined as:

100
2221

22 ×

+ nn

n

2.1.2 Result and Consideration
The result of experiment 1 is shown in Table 4. The upper table is
the result of applying modules of S1 into Model B and the lower
is the result of applying modules of S2 into Model 1A and 1B.

We took metrics ranked above the border as the effective metrics
in each model and investigated in detail. Then, we could find that
MAXNST was the second metric that is effective in all models.
From this result, we assumed that these two metrics (SLOC and
MAXNST) would be commonly effective metrics independent of
characteristics of software and that other metrics would be
effective but specific to each software system.

As a whole, Completeness showed pretty good results, however,
Accuracy and Correctness were pretty bad. Especially, in the
result of S2 (the lower table of Table 4), Completeness showed
100%. In fact, this is because all modules were predicted as
“Fault-Prone”. Similarly, almost all modules were predicted as
“Fault-Prone” in S1. As a result, despite of the goodness of
Completeness, the model could not predict fault-prone modules
effectively in both software systems.

2.2.2 Procedure
We conducted the second experiment similar to the procedure of
experiment 1 except using only two metrics mentioned in
previous section as the predictor variables in model construction.
Other components of the experiment such as model construction
method and measures to evaluate the prediction result are the
same as experiment 1.

S1

Accurac
Correctne

Completen

S2
Accurac

Correctne
Completen
Table 4 Result of Experiment 1
2.2.3 Result and Consideration
Modules written

in Lang A
Modules written

in Lang B
y 16.30% 56.29%
ss 13.60% 10.22%
ess 92.45% 71.97%

The prediction results of experiment 2 are shown in Table 6.
Accuracy was drastically improved in all models, whereas,
Completeness and Correctness were worse instead. However,
considering the lower ratio of actual fault-prone modules in all
modules, these results seem to be better than results of experiment
1. We will consider these results in detail in next section.

3. Discussions Model 1A Model 1B
y 16.20% 16.20%
ss 16.20% 16.20%
ess 100% 100%

In order to investigate whether the two metrics listed in
experiment 2 are commonly effective or not, we evaluated results
of both experiments by another measure: module-order model [3].
In this measure, predicted modules are listed in decreasing order
of their fault-proneness so that the fault-prone modules are

Table 5 Within-groups correlations of each predictor variable with the canonical variable

SLOC 0.6928 SLOC 0.8689 SLOC 0.7816
N_VEXASS 0.6102 MAXNST 0.6265 N_VASSU 0.7479
N_VREFS 0.5582 M 0.357 MAXNST 0.6559
MAXNST 0.5274 N_VEXASS 0.3144 N_VREFS 0.4956
N_CYCLO 0.3852 N_VASSU 0.2232 N_COMM 0.4531

Model 2Model 1A Model 1B

emerged at the beginning. When we extract some fixed number of
modules (e.g. only 10% of whole modules) from the beginning of
the list, we could evaluate the performance of a prediction model
by the number of faulty modules included in the extracted
modules.
The results by module-order model are shown in Figure 2 and
Figure 3. They are illustrated by diagrams similar to Alberg
Diagram [7]. Their x-axis mean the ratio of modules placed in
decreasing order of the fault-proneness and y-axis mean
accumulated ratio of extracted modules with faults. Thin lines are
plotted results of experiment 1 and bold lines are plotted result of
experiment 2. Straight lines with one fold mean the ideal results
(it would be shaped if all fault-prone modules are exactly listed in
the higher rank of the result). So this means that the more convex
to upper left the shape is, the better the prediction performance is.
From Figure 2, we can find that the prediction performance of
module listed in upper rank is better for the result of experiment 2
than the one of experiment 1. And in Figure 3, the difference is
very clear. Prediction performances were dramatically improved
in experiment 2.
That is to say, prediction performance was improved by using
only commonly effective metrics (SLOC and MAXNST). We
guess the reason is that prediction models constructed using all
the metrics fit to the base data too much, so that they cannot
predict fault-prone modules in other software.
Considering selected metrics, SLOC is the most effective metrics
in all the prediction models. This has been often said before,
however, it is not enough. In this research, we could make it clear
that there is another metric (Maximum Nesting Level), which is
commonly effective to predict fault-prone modules.

4. Conclusion
In this research, we experimentally evaluated the applicability of
reliability prediction models between different software systems.
Prediction models based on many metrics were too fit to the base
data so that prediction performance for other software was very
bad. By using only commonly effective metrics, prediction
performance was drastically improved.
We believe that this result is very useful to predict fault-prone
modules in newly developed software by constructing the

prediction model based on commonly effective metrics. By
conducting similar studies using more metrics, we will be able to
identify more metrics that are commonly effective to fault-
proneness.

Table 6 Results of Experiment 2

S1 Modules written
in Lang A

Modules written
in Lang B

Accuracy 83.91% 67.34%
Correctness 24.11% 22.40%

Completeness 66.67% 53.58%

References
[1] Basili R. V., Condon E. S., Emam E. K., Hendrick, B. R. and

Melo, W., “Characterizing and Modeling the Cost of Rework
in a Library of Reusable Software Components”, In
Proceedings on the 19th International Conference on
Software Engineering, pp. 282-291, 1997. S2 Model 1A Model 1B

Accuracy 76.60% 84.20%
Correctness 36.76% 51.56%

Completeness 61.73% 40.74%

[2] Halstead, M. H., “Elements of Software Science”,
ELSEVIER COMPUTER SCIENCE LIBRARY, 1977.

[3] Khoshgoftaar, T. M. and Allen, E. B., “A Comparative Study
of Ordering and Classification of Fault-Prone Software
Modules”, Empirical Software Engineering, Vol. 4, 159-186,
1999.

[4] Khoshgoftaar, T. M. and Allen, E. B., “Logistic Regression
Modeling of Software Quality, International Journal of
Reliability”, Quality and Safety Engineering, Vol. 6, No. 4,
pp. 303-317, 1999.

[5] McCabe, T. J., 1976. A Complexity Measure, IEEE
Transactions on Software Engineering, Vol. SE-2, 308-320.

[6] Marciniak. J. 1994. Encyclopedia of Software Engineering,
John Wiley & Sons Inc., New York.

[7] Ohlsson, N. and Alberg, H., “Predicting Fault-Prone
Software Modules in Telephone Switches, IEEE
Transactions on Software Engineering”, Vol. 22, No. 12, pp.
886-894, 1996.

[8] Pighin, M. and Zamolo, R., “A Predictive Metric Based on
Discriminant Statistical Analysis”, In Proceedings on the
19th International Conference on Software Engineering, pp.
262-270, 1997.

[9] Selby, R. W. and Porter, A. A., “Learning from Examples:
Generation and Evaluation of Decision Trees for Software
Resource Analysis”, IEEE Transactions on Software
Engineering, Vol. 14, No. 12, pp. 1743-1757, 1988.

[10] SPSS Inc., “SPSS Base 10.0 Application Guide”, 1999.

[11] Takabayashi, S., Monden, A., Sato, S., Matsumoto, K. and
Torii, K., ”The detection of fault-prone program using a
neural network”, In Proceedings on the International
Symposium on Future Software Technology '99.

[12] Takahashi, R., Muraoka, Y. and Nakamura, Y. “Building
Software Quality Classification Trees: Approach,
Experimentation, Evaluation”, In Proceedings on the 8th
International Symposium on Software Reliability
Engineering (ISSRE '97), pp. 222-233, 1997.

Model 1A

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%

% of Accumulated Modules

%
 o

f D
et

ec
te

d
Fa

ul
t-P

ro
ne

 M
od

ul
es

Model 1B

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

% of Accumulated Modules

%
 o

f D
et

ec
te

d
Fa

ul
t-P

ro
ne

M
od

ul
es

Figure 2 results by module-order model (Model 1A and 1B)

Model 2 (Lang B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%

% of Accumulated Modules

%
 o

f D
et

ec
te

d
Fa

ul
t-P

ro
ne

 M
od

ul
es

Model 2 (Lang A)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%

% of Accumulated Modules

%
 o

f D
et

ec
te

d
Fa

ul
t-P

ro
ne

 M
od

ul
es

Figure 3 Results by module-order model (Model 2 for Lang A and B)

	Introduction
	Our Approach
	Experiment 1
	Procedure
	Result and Consideration

	Experiment 2
	Motivation
	Procedure
	Result and Consideration

	Discussions
	Conclusion
	References

