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Abstract 
The prediction of fault-prone modules in a large software system 
is an important part in software evolution. Since prediction 
models in past studies have been constructed and used for 
individual systems, it has not been practically investigated 
whether a prediction model based on one system can also predict 
fault-prone modules accurately in other systems. Our expectation 
is that if we could build a model applicable to different systems, it 
would be extremely useful for software companies because they 
do not need to invest manpower and time for gathering data to 
construct a new model for every system. 

In this study, we evaluated the applicability of prediction models 
between two software systems through two experiments. In the 
first experiment, a prediction model using 19 module metrics as 
predictor variables was constructed in each system and was 
applied to the opposite system mutually. The result showed 
predictors were too fit to the base data and could not accurately 
predict fault-prone modules in the different system. On the basis 
of this result, we focused on a set of predictors showing great 
effectiveness in every model; and, in consequent, we identified 
two metrics (Lines of Code and Maximum Nesting Level) as 
commonly effective predictors in all the models. In the second 
experiment, by constructing prediction models using only these 
two metrics, prediction performance were dramatically improved. 
This result suggests that the commonly effective model applicable 
to more than two systems can be constructed by focusing on 
commonly effective predictors. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
reliability, statistical method. 

 

General Terms 

Reliability 
Keywords 
fault-prone module, metrics, prediction, software measurement, 
software reliability 

1. Introduction 
It is nothing new to say that quality is an important attribute of 
software systems. If a failure occurs while software is doing 
critical tasks, it may cause serious damage not only to the 
company who relies on the software but also to the company who 
is responsible in maintaining the software. Therefore, keeping up 
the reliability of software throughout its long-term evolution is a 
crucial work for the company who maintains it. However, testing 
and reviewing all the modules in large-scale software is very 
expensive. In order to lessen the cost of maintenance, a method 
for selecting modules that should be tested and/or reviewed is 
needed. One way to achieve this is to identify fault-prone 
modules in advance by using prediction models so that we can 
focus on the modules that need intensive testing and hence detect 
faults more efficiently. 
In order to detect fault-prone modules, many studies have 
proposed prediction models using various analysis methods based 
on software product metrics. Selby and Porter proposed a decision 
tree approach to classify low-quality modules based on 
information theory and Huffman Coding [9]. Takahashi and his 
colleagues improved the tree construction algorithm by using AIC 
(Akaike’s Information Criteria) [12]. Ohlsson and Alberg 
identified fault-prone modules in telephone switching software 
using multiple regression analysis [7]. They evaluated the 
accuracy of several models using Alberg Diagram. Pighin and 
Zamolo classified fault-prone modules using discriminant analysis 
[8]. Takabayashi and his colleagues predicted fault-prone 
modules using a neural network model [11]. Khoshgoftaar and 
Allen analyzed effective metrics to classify fault-prone modules 
using logistic regression analysis [4]. 

 

 

Most of these results showed that there is a close relationship 
between module metrics and its quality, and that all of these 
prediction models could predict fault-prone modules at high 
accuracy. However, metrics and analysis methods used in these 
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of them is shown in Table 1. 
Software 1(referred as S1) is application software for some public 
institute. The first version was released about more than 20 years 
ago. Then it has been updated and changed many times to fix 
faults and to add new functionality till today. Besides of such 
occasional modifications, it has been renewed a few times due to 
changing its platform. At that time, some modules were 
abandoned and rewritten often in a different programming 
language because they became too old and complex by 
modifications over a long term. So, each module of today’s 
version is written in either of two languages. Both of these are 
specific to its platform (mainframe) and it is not known in public. 
For the sake of convenience, we call them “Lang A” and “Lang 
B”, respectively. Lang A has been mainly used in the early days 
and its syntax looks like that of PL/I. Lang B is an expansion of 
COBOL and used in later development. Many developers prefer 
Lang B to Lang A because it is newer and is more familiar to 
them than Lang A. The characteristics of these two languages are 
so different that we regard each module written in each language 
as a different software system. 
Software 2(S2) is utility software. Each module of S2 is written in 
COBOL. Recently, when an old software system in our company 
needed to change its platform on account of a customer, S2 was 
developed for converting a database from old platform to new one. 
So S2 is operated on mainframe, but it is not legacy software. 
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Figure 1 Overview of Experiment 1 



Table 2 List of Module Metrics 

Category Metric Name Abbreviated Name
Size SLOC(Source Lines Of Code) SLOC

Condition Maximum Cyclomatic Number MAX_CYC
Cyclomatic Number / SLOC N_CYCLO

Jump Statements / SLOC N_JUMP
Loop Statements / SLOC N_LOOP

Nest Maximum Nesting Level MAXNST
Total Nesting Level / SLOC N_NSTSUM

Data Structure Number of Declared Variables / SLOC N_VDESUM
Number of Variable Uses / SLOC N_VREFS

Number of Variable Defines / SLOC N_VASSUM
Understandability (1-Comment Lines) / SLOC N_COMM
Module Cohesion Number of Procedure Calls / SLOC N_INCSUM
Module Coupling Number of External Module Calls / SLOC N_EXCSUM

Number of External Variable Defines / SLOC N_EXASS
Number of External Variable Uses / SLOC N_EXREF

Number of Macro References / SLOC N_MACROS
Number of Parameters PARAMS

The size of each system is very different. S1 is considerably 
larger than S2. Also, the timings of collecting fault data are 
different: in maintenance phase for S1 and in testing phase for S2. 
That is to say, S1 and S2 have quite different characteristics in 
their language, size, functionality and detected faults; and 
furthermore, modules in S1 have two different characteristics in 
written languages. 

2.1 Experiment 1 
2.1.1 Procedure 
The procedure of the first experiment is shown in Figure 1. Each 
step of this procedure is explained in the followings. 
1. Measure module metrics and collect fault data 
The list of module metrics used in our study is shown in Table 2. 
All of these metrics are often used in other studies to evaluate 
module’s complexity from various points of view, which include 
size metrics, software science metrics [2], McCabe’s cyclomatic 
complexity metrics [5], and module cohesion metrics [6]. We 
measured these metrics in each module using a tool developed by 
ourselves. Since some of them were highly correlated with SLOC, 
so we normalized them by dividing by SLOC. Fault data were 

manually collected from failure reports. 
2. Construct prediction models for each software system. 
As a prediction model, we used linear discriminant analysis 
whose dependent variable is a category variable (its value is 
“Fault-Prone” or “Fault-Free”) and independent variables are 
module metrics. We constructed prediction models for each of S1 
and S2. As mentioned in the previous section, each module of S1 
has different characteristics in its written language, so we divided 
modules of S1 into two sets by its language and constructed 
prediction models for each set. That is, three prediction models 
were constructed: two models (Model 1A, 1B) from S1 and one 
model (Model 2) from S2. 
3. Predict fault-proneness of modules using constructed models 
We applied each module of one software into the prediction 
model constructed from another software to evaluate the 
effectiveness of the prediction model between different software: 
modules of S1 were applied into Model 2 and modules of S2 
applied into Model 1A and 1B. 
4. Evaluate the prediction performance. 
The predicted modules can be categorized into four segments 
shown in Table 3. Each nij means the number of modules mapped 
into the corresponding segment. We used the following measures 
derived from Table 3 to evaluate the prediction performance. 
These measures were used in previous studies [1]. Table 3 Two-class Classification Performance Matrix 
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2.2 Experiment 2 ・ Correctness 
This is a percentage of modules that were predicted as “Fault-
Prone” and actually included one or more faults. If this value is 
low, that means the model is predicting more modules as “Fault-
Prone” but they really are not faulty. It is defined as: 

2.2.1 Motivation 
From the prediction model constructed using discriminant 
analysis, we can not only predict fault-prone modules but also 
examine how effective each predictor variable (module metric) in 
the discriminant function is to predicting a fault-prone module by 
examining within-groups correlations of each variable with the 
canonical variable [10]. 
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・ Completeness 
Table 5 shows the within-groups correlations of each predictor 
variable in each model. The name of each metric is the same as 
Table 2. Only top 5 of predictor variables sorted by correlation 
value are listed. In every model, the most effective metric is 
SLOC. For other metrics, the rank of effectiveness is different. 
However, in each model, there is the borderline (double line in the 
table) at which the correlation value remarkably decreases: 0.5274 
to 0.3852 in Model 1A, 0.6265 to 0.3570 in Model 1B and 0.6559 
to 0.4956 in Model 2. 

This is a percentage of modules including one or more faults and 
was predicted as “Fault-Prone”. If this value is low, this means 
that more faulty modules are mis-predicted as “Fault-Free”. It is 
defined as: 
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2.1.2 Result and Consideration 
The result of experiment 1 is shown in Table 4. The upper table is 
the result of applying modules of S1 into Model B and the lower 
is the result of applying modules of S2 into Model 1A and 1B.  

We took metrics ranked above the border as the effective metrics 
in each model and investigated in detail. Then, we could find that 
MAXNST was the second metric that is effective in all models. 
From this result, we assumed that these two metrics (SLOC and 
MAXNST) would be commonly effective metrics independent of 
characteristics of software and that other metrics would be 
effective but specific to each software system. 

As a whole, Completeness showed pretty good results, however, 
Accuracy and Correctness were pretty bad. Especially, in the 
result of S2 (the lower table of Table 4), Completeness showed 
100%. In fact, this is because all modules were predicted as 
“Fault-Prone”. Similarly, almost all modules were predicted as 
“Fault-Prone” in S1. As a result, despite of the goodness of 
Completeness, the model could not predict fault-prone modules 
effectively in both software systems. 

2.2.2 Procedure 
We conducted the second experiment similar to the procedure of 
experiment 1 except using only two metrics mentioned in 
previous section as the predictor variables in model construction. 
Other components of the experiment such as model construction 
method and measures to evaluate the prediction result are the 
same as experiment 1.  

S1

Accurac
Correctne

Completen

S2
Accurac

Correctne
Completen
Table 4 Result of Experiment 1
2.2.3 Result and Consideration 
Modules written

in Lang A
Modules written

in Lang B
y 16.30% 56.29%
ss 13.60% 10.22%
ess 92.45% 71.97%

The prediction results of experiment 2 are shown in Table 6. 
Accuracy was drastically improved in all models, whereas, 
Completeness and Correctness were worse instead. However, 
considering the lower ratio of actual fault-prone modules in all 
modules, these results seem to be better than results of experiment 
1. We will consider these results in detail in next section. 

3. Discussions Model 1A Model 1B
y 16.20% 16.20%
ss 16.20% 16.20%
ess 100% 100%

In order to investigate whether the two metrics listed in 
experiment 2 are commonly effective or not, we evaluated results 
of both experiments by another measure: module-order model [3]. 
In this measure, predicted modules are listed in decreasing order 
of their fault-proneness so that the fault-prone modules are 

Table 5 Within-groups correlations of each predictor variable with the canonical variable 

SLOC 0.6928 SLOC 0.8689 SLOC 0.7816
N_VEXASS 0.6102 MAXNST 0.6265 N_VASSU 0.7479
N_VREFS 0.5582 M 0.357 MAXNST 0.6559
MAXNST 0.5274 N_VEXASS 0.3144 N_VREFS 0.4956
N_CYCLO 0.3852 N_VASSU 0.2232 N_COMM 0.4531

Model 2Model 1A Model 1B



emerged at the beginning. When we extract some fixed number of 
modules (e.g. only 10% of whole modules) from the beginning of 
the list, we could evaluate the performance of a prediction model 
by the number of faulty modules included in the extracted 
modules. 
The results by module-order model are shown in Figure 2 and 
Figure 3. They are illustrated by diagrams similar to Alberg 
Diagram [7]. Their x-axis mean the ratio of modules placed in 
decreasing order of the fault-proneness and y-axis mean 
accumulated ratio of extracted modules with faults. Thin lines are 
plotted results of experiment 1 and bold lines are plotted result of 
experiment 2. Straight lines with one fold mean the ideal results 
(it would be shaped if all fault-prone modules are exactly listed in 
the higher rank of the result). So this means that the more convex 
to upper left the shape is, the better the prediction performance is. 
From Figure 2, we can find that the prediction performance of 
module listed in upper rank is better for the result of experiment 2 
than the one of experiment 1. And in Figure 3, the difference is 
very clear. Prediction performances were dramatically improved 
in experiment 2. 
That is to say, prediction performance was improved by using 
only commonly effective metrics (SLOC and MAXNST). We 
guess the reason is that prediction models constructed using all 
the metrics fit to the base data too much, so that they cannot 
predict fault-prone modules in other software. 
Considering selected metrics, SLOC is the most effective metrics 
in all the prediction models. This has been often said before, 
however, it is not enough. In this research, we could make it clear 
that there is another metric (Maximum Nesting Level), which is 
commonly effective to predict fault-prone modules. 

4. Conclusion 
In this research, we experimentally evaluated the applicability of 
reliability prediction models between different software systems. 
Prediction models based on many metrics were too fit to the base 
data so that prediction performance for other software was very 
bad. By using only commonly effective metrics, prediction 
performance was drastically improved. 
We believe that this result is very useful to predict fault-prone 
modules in newly developed software by constructing the 

prediction model based on commonly effective metrics. By 
conducting similar studies using more metrics, we will be able to 
identify more metrics that are commonly effective to fault-
proneness. 

Table 6 Results of Experiment 2 

S1 Modules written
in Lang A

Modules written
in Lang B

Accuracy 83.91% 67.34%
Correctness 24.11% 22.40%

Completeness 66.67% 53.58%
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Figure 2 results by module-order model (Model 1A and 1B) 

 
 
 
 
 

Model 2 (Lang B)
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Model 2 (Lang A)
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Figure 3 Results by module-order model (Model 2 for Lang A and B) 
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