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Summary
Disease simulation models can be a valuable tool for planning a response to
exotic disease incursions, as they provide a fast, low-cost mechanism for
identifying the likely outcomes of a range of outbreak scenarios and disease
control strategies. To use these tools effectively and with confidence, decision-
makers must understand the simplifications and framing assumptions that
underlie a model’s structure. Sensitivity analysis, the analytical process of
identifying which input variables are the key drivers of the model’s output, is a
crucial process in developing this understanding.
This paper describes the application of a sampling-based sensitivity analysis to
the New Zealand standard model (NZSM). This model is a parameter set
developed for the InterSpread Plus model platform to allow the exploration of
different outbreak scenarios for an epidemic of foot and mouth disease in New
Zealand. Based on 200 iterations of the NZSM, run for a simulation period of 60
days, settings related to farm-to-saleyard movements and the detection of
disease during the active surveillance phase of the epidemic had the greatest
influence on the predicted number of infected premises. A small number of
counter-intuitive findings indicated areas of model design, implementation
and/or parameterisation that should be investigated further. A potentially useful
result from this work would be information to aid the grouping or elimination of
non-influential model settings. This would go some way towards reducing the
overall complexity of the NZSM, while still allowing it to remain fit for purpose.
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Introduction
In countries with good biosecurity controls at their
borders, incursions of exotic diseases such as foot and
mouth disease (FMD) are rare. Thus, predictions of the
likely outcomes of a given outbreak scenario are difficult
because animal health authorities generally have little
experience of disease behaviour, given the (often) unique
geographical distribution of susceptible livestock species
and the way in which farm enterprises interact with each
other. During an incursion of an exotic infectious disease,
such as FMD, a range of strategies may be applied,
including various combinations of culling infected herds,
pre-emptive culling of herds at risk and mass vaccination.

Depending on the speed with which it is implemented,
each strategy is typically accompanied by a range of
positive and negative consequences or ‘knock-on effects’
for various participants in the agricultural sector. Timely
and informed decisions must be made about which control
and eradication strategies should be adopted at a time of
crisis. In this environment, it is important that the evidence
used to inform decision-making is transparent in its
assumptions and that decisions taken about a particular
course of action are able to incorporate differing views,
value judgements and framing assumptions (22). 

Regardless of discipline, the fundamental objective of
modelling is to provide an accurate representation (as



opposed to replication) of a system of interest (22). A
model that meets these objectives provides a low-cost and
quick mechanism for identifying the likely outcome of a
range of complex situations and scenarios. This, in turn,
improves understanding of the system as a whole and can
be used as an aid for decision-making (7, 9). 

In animal health, infectious disease models have 
the potential to combine knowledge of the population at
risk, epidemiological characteristics of the infectious agent,
and the logistics of control efforts and their economic
consequences, making them a valuable tool for supporting
decision-making (29). This said, a lack of transparency 
in the way that models work and their framing
assumptions can result in decision-makers losing
confidence in their outputs and, consequently, not using
them to their full potential. On the other hand, decision-
makers may ignore or be unaware of the key
simplifications inherent in a model, and may place too
much confidence in its outputs, resulting in inappropriate
(‘risky’) decision-making (15). The only way to mitigate
these potential problems is to increase the decision-maker’s
awareness of:

– what the whole modelling process entails

– what constitutes good practice for using models

– how the results of models should be viewed

– what sorts of questions users should be asking of
modellers.

This amounts to specifying good model practice in terms
of development, reporting and critical review 
(13). Sensitivity analysis, the analytical process 
of identifying which input variables are key drivers of the
model’s output, should be regarded as a key component
of good model practice.

InterSpread Plus (IS+) (23, 28) is a simulation model 
of infectious disease designed for use with domestic animal
populations. Within the IS+ framework, the unit of interest
is the farm: a defined location in space containing one 
or more of the animal species susceptible to the disease 
of interest. InterSpread Plus is a state-transition model 
(5, 14), with a set of defined states in which farms may 
be at a given point in time:

– susceptible

– infected

– clinical

– detected

– immune.

The structure of IS+ allows for a range of model
definitions, from relatively simple spread models with few
parameters (for instance, a single, local spread mechanism
using a radial transmission kernel) to more complex

models, with a range of spread mechanisms (e.g. local,
airborne, and direct- and indirect-contact transmission
pathways). It also provides the ability to apply a range of
control strategies, including: resource-constrained
depopulation, surveillance, movement controls, tracing
activities and vaccination. The settings used to define each
of the parameters needed to drive an IS+ model vary but,
in general, require either numeric values declared as point
estimates, defined distributions and/or look-up tables. 

In 2005, the New Zealand Ministry of Agriculture and
Forestry commissioned the development of a set of IS+
parameters to best represent the behaviour of an FMD
epidemic if the virus entered the country, causing an
outbreak. The intention was that this parameter set,
termed the ‘New Zealand standard model’ (NZSM) (27),
would be used to provide decision support before, and at
the time of, an epidemic of FMD. The NZSM incorporates
the known epidemiology of the disease with current
knowledge of animal movement patterns between farms
and/or saleyards (animal markets) in New Zealand. This
allows researchers to explore different outbreak scenarios
to compare size, duration or economic impacts under
different control and surveillance strategies.

This paper describes the application of a sampling-based
sensitivity analysis technique to the NZSM. The authors’
aim was to contribute to the corroboration of the NZSM by
identifying those settings in the model that had the greatest
influence on the predicted number of infected premises in
a simulated outbreak of FMD in New Zealand.

Materials and methods
The settings used in the NZSM model can be placed into
two broad categories: 

– those settings defining how disease spreads from one
location to another 

– settings defining how the disease will be controlled,
once it has been detected.

The settings defining disease spread include details of:

– off-farm movement events (their frequency and the
distance over which they occur)

– local spread (the probability of infection occurring on
destination premises at given space-time separations from
an infected source)

– characteristics of the FMD virus being modelled 
(e.g. the number of days from infection to the onset of
clinical signs, and the number of days from infection to the
onset of infectiousness).
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To produce a set of data suitable for sensitivity analysis, the
authors made a random draw from each uniform
distribution to generate appropriate settings for each of the
107 settings of interest. For settings defined as look-up
tables, a number between one and four was selected at
random and the details for the corresponding look-up
table were selected. A vector of length k was generated
(composed of samples for each of the k = 107 input
settings in the NZSM) and these values were then used as
the settings for a single model run. At the conclusion of the
single model run, the total predicted number of infected
premises after a simulation period of 60 days was
calculated and stored. This process was repeated 
200 times, generating a matrix comprising 108 columns
(the settings for the 107 input settings plus the single
numeric value representing the predicted number of
infected premises) and 200 rows (the number of model
runs).

Sensitivity analyses were performed by calculating 
partial rank correlation coefficients (PRCCs) for each 
input parameter and the outcome variable, using the
approach described by Iman and Conover (10), Iman and
Helton (11) and Iman et al. (12). The significance of a non-
zero PRCC value was tested by computing a t test statistic
which approximated a student’s t distribution with 
N-2 degrees of freedom, where N equalled the number 
of model runs.
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The settings defining disease control include:

– details of the intensity of surveillance

– the timing, extent and effectiveness of movement
restrictions, tracing activities and depopulation of farm
premises.

Three distinct movement restrictions are defined within
the NZSM: 

– a national animal movement standstill for 14 days 

– an infected-zone standstill (covering the affected region
of the country) 

– a 10-km surveillance zone standstill around detected
infected premises. 

In total, the NZSM is composed of 107 individual settings
within 51 parameters. Details of these parameters and 
the settings within each parameter are provided in Tables I
to IV. 

The approach adopted for the sensitivity analysis described
in this paper closely follows the methodology used 
by Blower and Dowlatabadi (2). In their 1994 paper,
Blower and Dowlatabadi conducted a sensitivity analysis of
a deterministic model of human immunodeficiency virus.
Their model comprised 34 differential equations
containing 20 parameters. These authors assigned a
probability density function to each of the 20 parameters
and used Latin hypercube sampling (11, 16) to sample
from each distribution, ensuring that the entire range of
possible values in the distribution was represented. The
authors took a slightly different approach, since many 
of the input parameters in the NZSM were themselves
defined as probability distributions. For the authors’
analyses, the lower and upper bounds of the range of
biologically plausible settings for each parameter of each
probability distribution defined within the NZSM were
specified. These bounds were then used to define the lower
and upper bounds of a uniform distribution. For example,
if the number of off-farm movements per day from a dairy
farm was parameterised using a Poisson distribution with
mean � = 0.04 (equivalent to, on average, one off-farm
movement event every 25 days), the authors specified the
plausible range of values for � as 0.01 to 0.1. That is, they
believe that a single movement from a dairy farm might
occur as infrequently as every 100 days (� = 0.01) or as
frequently as every 10 days (� = 0.1). Settings defined as
empirical distribution functions were entered into the
model as look-up tables, and a set of three alternative
candidate table definitions were defined. As an example,
the probability that disease will be detected on a farm as a
function of the number of days since the onset of clinical
signs and three candidate distributions is shown in 
Figure 1.

Fig. 1
Line plot showing the probability that a pig or dairy farm will be
detected as positive for the disease, as a function of the number
of days since the onset of clinical signs
The solid line shows the settings used in the New Zealand standard
model (NZSM). The dashed lines show the three candidate settings
used in the sensitivity analyses
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Table I
Details of the ten parameters defining farm-to-farm and farm-to-saleyard movements within the New Zealand standard model
Also shown are the settings used in the New Zealand standard model and candidate settings for the sensitivity analysis 

Parameter Setting in NZSM Candidate settings

1. Pastoral livestock, high risk to farm:
Number per time period Poisson (� = 0.03) � = uniform (0, 0.1)  
Number of direct contacts Constant n = 1 n = uniform (0, 5)  
Probability of transmission Table (6, 11, 16; 0.525, 0.8, 1)(a) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

2. Dairy, high risk to farm:    
Number per time period Poisson (� = 0.042) �= uniform (0, 0.1)  
Number of direct contacts Constant n = 1 n = uniform (0, 5)
Probability of transmission Table (6, 11, 16; 0.62, 0.8, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

3. Dry grazing, high risk to farm:
Number per time period Poisson (�= 0.1152) � = uniform (0,1)  
Number of direct contacts Constant n = 1 n = uniform (0, 5)  
Probability of transmission Table (6, 11, 16; 0.673, 0.8, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

4. Pig breeding, high risk to farm:
Number per time period Poisson (�= 0.131) �= uniform (0, 1)  
Number of direct contacts Constant n = 1 n = uniform (0, 5)  
Probability of transmission Table (6, 11, 16; 0.458, 0.8, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

5. Medium risk to farm:
Number per time period Poisson (� = 0.4743) � = uniform (0, 1)  
Number of direct contacts Constant n = 1 n = uniform (0, 5)  
Probability of transmission Constant n = 0.05 n = uniform (0, 0.1) 
6. Low risk to farm:
Number per time period Poisson (� = 0.0595) � = uniform (0, 0.1)  
Number of direct contacts Constant n = 1 n = uniform (0, 5)  
Probability of transmission Constant n = 0.01 n = uniform (0, 0.1)  
7. Pastoral livestock to saleyard:
Number per time period Poisson (� = 0.0135) � = uniform (0, 0.1)  
Number of secondary contacts Poisson (� = 1.942) � = uniform (0, 5)  
Probability of transmission Table (6, 11, 16; 0.458, 0.776, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

8. Dairy to saleyard:    
Number per time period Poisson (� = 0.005) � = uniform (0, 0.1)  
Number of secondary contacts Poisson (� = 1.942) � = uniform (0, 5) 
Probability of transmission Table (6, 11, 16; 0.458, 0.776, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

9. Dry grazing to saleyard:   
Number per time period Poisson (� = 0.003) � = uniform (0, 0.01)
Number of secondary contacts Poisson (� = 1.942) � = uniform (0, 5)
Probability of transmission Table (6, 11, 16; 0.458, 0.776, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

10. Pig breeding to saleyard:    
Number per time period Poisson (� = 0.036) � = uniform (0, 0.1)  
Number of secondary contacts Poisson (� = 1.942) � = uniform (0, 5)  
Probability of transmission Table (6, 11, 16; 0.458, 0.776, 1) 6, 11, 16; 0.12, 0.52, 1

6, 11, 16; 0.25, 0.62, 1
6, 11, 16; 0.525, 0.8, 1
6, 11, 16; 0.7, 0.88, 1

NZSM: New Zealand standard model 
a) Table (6,11,16; 0.525, 0.8,1) is interpreted as:

6 11 16
0.525 0.8 1

This specifies the probability that a destination farm will be infected, given the difference in the number of days between the onset of clinical signs on the source farm and the time when the
movement occurs. In the above example, if an off-farm movement occurs from an infected farm six days after the onset of clinical signs, the probability that transmission will occur is 0.525
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Table II
Details of the six parameters defining surveillance before and after detection of the outbreak within the New Zealand standard model
Also shown are the settings used in the New Zealand standard model and candidate settings for the sensitivity analysis 

Parameter Setting in NZSM Candidate settings

1. Background surveillance:
All farm types selection probability Constant n = 1 n = uniform (0, 1)
Pastoral livestock detection probability Table(a)

Dairy detection probability Table(a)

Dry grazing detection probability Table(a)

Pig detection probability Table(a)

2. Self report surveillance:
All farm types selection probability Constant n = 1 n = uniform (0, 1)
Pastoral livestock detection probability Table(a)

Dairy detection probability Table(a)

Dry grazing detection probability Table(a)

Pig detection probability Table(a)

3. Surveillance following HR contact:
All farm types selection probability Constant n = 1 n = uniform (0, 1)
Beef cattle detection probability Constant n = 1 n = uniform (0, 1)
Dairy cattle detection probability Constant n = 1 n = uniform (0, 1)
Deer detection probability Constant n = 1 n = uniform (0, 1)
Goats detection probability Constant n = 1 n = uniform (0, 1)
Pigs detection probability Constant n = 1 n = uniform (0, 1)
Sheep detection probability Constant n = 1 n = uniform (0, 1)
4. Surveillance following MR contact:
All farm types selection probability Constant n = 0.9 n = uniform (0, 1)
Beef cattle detection probability Constant n = 1 n = uniform (0, 1)
Dairy cattle detection probability Constant n = 1 n = uniform (0, 1)
Deer detection probability Constant n = 1 n = uniform (0, 1)
Goats detection probability Logistic (0.25, 0.8, 0.74, 1.7)(b) 0.25, 0.2, 0.74, 1.7

0.25, 0.4, 0.74, 1.7
0.25, 0.6, 0.74, 1.7
0.25, 0.8, 0.74, 1.7
0.25, 1.0, 0.74, 1.7

Pigs detection probability Constant n = 1 n = uniform (0, 1)
Sheep detection probability Logistic (0.25, 0.8, 0.74, 1.7)(b) 0.25, 0.2, 0.74, 1.7

0.25, 0.4, 0.74, 1.7
0.25, 0.6, 0.74, 1.7
0.25, 0.8, 0.74, 1.7
0.25, 1.0, 0.74, 1.7

5. Surveillance following LR contact:
All farm types selection probability Constant n = 0.5 n = uniform (0, 1)
Beef cattle detection probability Constant n = 1 n = uniform (0, 1)
Dairy cattle detection probability Constant n = 1 n = uniform (0, 1)
Deer detection probability Constant n = 1 n = uniform (0, 1)
Goats detection probability Logistic (0.25, 0.8, 0.74, 1.7)(b) 0.25, 0.2, 0.74, 1.7

0.25, 0.4, 0.74, 1.7
0.25, 0.6, 0.74, 1.7
0.25, 0.8, 0.74, 1.7
0.25, 1.0, 0.74, 1.7

Pigs detection probability Constant n = 1 n = uniform (0, 1)
Sheep detection probability Logistic (0.25, 0.8, 0.74, 1.7)(b) 0.25, 0.2, 0.74, 1.7

0.25, 0.4, 0.74, 1.7
0.25, 0.6, 0.74, 1.7
0.25, 0.8, 0.74, 1.7
0.25, 1.0, 0.74, 1.7

6. Surveillance following patrol visit:
All farm types selection probability Constant n = 1 n = uniform (0, 1)
Beef cattle detection probability Constant n = 1 n = uniform (0, 1)
Dairy cattle detection probability Constant n = 1 n = uniform (0, 1)
Deer detection probability Constant n = 1 n = uniform (0, 1)
Goats detection probability Logistic (0.25, 0.8, 0.74, 1.7)(b) 0.25, 0.2, 0.74, 1.7

0.25, 0.4, 0.74, 1.7
0.25, 0.6, 0.74, 1.7
0.25, 0.8, 0.74, 1.7
0.25, 1.0, 0.74, 1.7

Pigs detection probability Constant n = 1 n = uniform (0, 1)
Sheep detection probability Logistic (0.25, 0.8, 0.74, 1.7)(b) 0.25, 0.2, 0.74, 1.7

0.25, 0.4, 0.74, 1.7
0.25, 0.6, 0.74, 1.7
0.25, 0.8, 0.74, 1.7
0.25, 1.0, 0.74, 1.7

a) See Fig. 1 for details LR: low risk

b) Logistic (a,b, c, d) = a + c MR: medium risk
1+exp [– b (x – m)] NZSM: New Zealand standard model

HR: high risk
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Table III
Details of the eight parameters defining tracing efficiency within the New Zealand standard model 
Also shown are the settings used in the New Zealand standard model and candidate settings for the sensitivity analysis 

Parameter Setting in NZSM Candidate settings

1. Pastoral livestock, high risk:
Probability of forgetting a movement off the property Constant n = 0.11 n = uniform (0, 1)
Delays in tracing a movement off the property Table (0.5, 1; 0,1)(a) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

Probability of forgetting a movement onto the property Constant n = 0.082 n = uniform (0, 1)
Delays in tracing a movement onto the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75,1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

2. Dairy high risk:
Probability of forgetting a movement off the property Constant n = 0.11 n = uniform (0, 1)
Delays in tracing a movement off the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

Probability of forgetting a movement onto the property Constant n = 0.082 n = uniform (0, 1)
Delays in tracing a movement onto the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

3. Dry grazing:
Probability of forgetting a movement off the property Constant n = 0.11 n = uniform (0, 1)
Delays in tracing a movement off the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

Probability of forgetting a movement onto the property Constant n = 0.082 n = uniform (0, 1)
Delays in tracing a movement onto the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

4. Pig breeding:
Probability of forgetting a movement off the property Constant n = 0.11 n = uniform (0, 1)
Delays in tracing a movement off the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

Probability of forgetting a movement onto the property Constant n = 0.082 n = uniform (0, 1)
Delays in tracing a movement onto the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

5. Medium risk:
Probability of forgetting a movement off the property Constant n = 0.212 n = uniform (0, 1)
Delays in tracing a movement off the property BetaPert (a = 1, b = 2, c = 3) b = uniform (1, 3)
Probability of forgetting a movement onto the property Constant n = 0.194 n = uniform (0, 1)
Delays in tracing a movement onto the property BetaPert (a = 1, b = 2, c = 3) b = uniform (1, 3)
6. Low risk:
Probability of forgetting a movement off the property Constant n = 0.36 n = uniform (0, 1)
Delays in tracing a movement off the property BetaPert (a = 2, b = 3, c = 4) b = uniform (2, 4)
7. Dairy tanker:
Probability of forgetting a movement off the property Constant n = 0.014 n = uniform (0, 1)
Delays in tracing a movement off the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

Probability of forgetting a movement onto the property Constant n = 0.014 n = uniform (0, 1)
Delays in tracing a movement onto the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

8. Saleyard, high risk:
Probability of forgetting a movement off the property Constant n = 0.063 n = uniform (0, 1)
Delays in tracing a movement off the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

Probability of forgetting a movement onto the property Constant n = 0.058 n = uniform (0, 1)
Delays in tracing a movement onto the property Table (0.5, 1; 0, 1) 0.5, 1; 0, 1

0.25, 0.75, 1.00; 0, 1, 2
0.25, 0.50, 0.75, 1; 0, 1, 2, 3

NZSM: New Zealand standard model
a) Table (0.5, 1; 0, 1) is interpreted as:

0.5 1
0 1

This specifies the number of time periods it takes to trace the specified movement type in the specified direction. In the above example, 50% of movements will be traced on the same day as
the day of detection and 100% will be traced within one day of detection
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Since PRCCs indicate the degree of monotonicity between
two variables, care was taken to ensure that only those
settings monotonically related to the output variable were
used. A monotonic relationship is one in which an
outcome variable moves in only one direction (up or
down) as an explanatory variable increases, but the
relationship is not necessarily (but can be) linear. Plots of
the number of infected premises as a function of the
simulated setting values were generated to identify 
those settings where the monotonicity assumption was
satisfied (11). 

Partial rank correlation coefficients provide two 
useful pieces of information. First, the sign of the PRCC
indicates the qualitative relationship between the input
setting and the output: positive PRCCs arise 
when increases in the value of an input setting result in
increases in the output variable; negative PRCCs arise
when increases in the value of an input setting result 
in decreases in the output variable. Secondly, the

Table IV
Details of the three parameters defining the efficacy of movement restrictions and the single
parameter defining resources available for depopulation within the New Zealand standard model
Also shown are the settings used in the New Zealand standard model and candidate settings for the sensitivity
analysis

Parameter Setting in NZSM Candidate settings

1. Probability restriction HR movements:

Initial standstill Constant n = 0.914 n = uniform (0, 1)

Inside infected zone Constant n = 0.942 n = uniform (0, 1)

Inside surveillance zone Constant n = 0.951 n = uniform (0, 1)

Outside control area Constant n = 0.951 n = uniform (0, 1)

2. Probability restriction MR movements:

Initial standstill Constant n = 0.604 n = uniform (0, 1)

Inside infected zone Constant n = 0.804 n = uniform (0, 1)

Inside surveillance zone Constant n = 0.850 n = uniform (0, 1)

Outside control area Constant n = 0.850 n = uniform (0, 1)

3. Probability restriction LR movements:

Initial standstill Constant n = 0.238 n = uniform (0, 1)

Inside infected zone Constant n = 0.390 n = uniform (0, 1)

Inside surveillance zone Constant n = 0.520 n = uniform (0, 1)

Outside control area Constant n = 0.520 n = uniform (0, 1)

4. Depopulation number per time period:

Pastoral livestock Triangular (a = 0, b = 0, c = 5) b = uniform (0, 5)

Dairy Triangular (a = 0, b = 1, c = 3) b = uniform (0, 3)

Dry grazing Triangular (a = 0, b = 0, c = 3) b = uniform (0, 3)

Pig Triangular (a = 0, b = 0, c = 3) b = uniform (0, 3)

HR: high risk MR: medium risk
LR: low risk NZSM: New Zealand standard model

magnitude of the PRCC indicates the importance of 
the input setting in contributing to the value 
of the outcome variable. The further the PRCC from zero, 
the greater the influence of the variable on the outcome.
Thus, the relative importance of each of the input 
settings can be directly evaluated by comparing their 
PRCC values.

Results
For these analyses, the population of interest comprised
farms located in the North Island of New Zealand. Each
outbreak was initiated by seeding infection into a single
farm located in the lower half of the North Island. The
median predicted number of infected premises (based on
200 iterations) after 60 days was 7 (minimum 1; maximum
99). The median outbreak duration was 22 days
(minimum 1; maximum 60). 
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Scatterplots of the predicted number of infected premises
as a function of the simulated values for each setting
showed that the assumption of monotonicity held for all
107 settings evaluated, and that the sampling technique
provided a set of candidate values that were adequately
distributed across the plausible range of values for a given
setting (results not presented). 

Details of settings within the parameters defining farm-to-
farm and farm-to-saleyard movements, surveillance before
and after detection of the outbreak, tracing and movement
restrictions are shown in Tables I, II, III and IV, respectively.
Table IV also provides details of the parameters defining
resources available for depopulation. Partial rank
correlation coefficient values for settings related 
to movement, surveillance, tracing and movement
restrictions, and depopulation resources are shown in
Figures 2, 3, 4 and 5, respectively. In Figures 2 to 5, PRCC
values significantly greater or less than zero are indicated
by solid circles. 

Of all the movement settings used in the NZSM, farm-to-
saleyard movements collectively had the greatest influence
on the predicted number of infected places at 60 days 
(Fig. 2). The settings defining the frequency of movement
events off pastoral livestock and pig-breeding farms to
saleyards per time period; the number of secondary
contacts generated from movements of pastoral livestock,
dairy, dry-grazing and pig-breeding farms to saleyards; and
the probability of disease transmission from the
movements of pastoral livestock, dairy, dry-grazing and
pig-breeding farms had PRCC values that were positive
and statistically significant at the alpha level of 0.05. Other
movement types with significant PRCCs included the
frequency of high-risk movements off dairy and dry-
grazing farms; the frequency of medium-risk movements
(off all farm types), and the probability of transmission
after high-risk movements off dry-grazing and pig-
breeding farms.

In the NZSM, the ‘background’ surveillance setting defined
the degree of pre-epidemic surveillance for FMD that
would ultimately result in detection of the first infected
premises and initiation of control activities. Increases in the
probability of detection during background surveillance on
dry and pastoral livestock enterprises decreased the
predicted number of infected premises (Fig. 3). Increases
in the probability of detection on dry-grazing and pig-
breeding farms that self-report the presence of disease
significantly decreased the number of infected premises.
Increases in the probability of detection in enterprises
involving beef cattle, pigs and deer, which received low-
and medium-risk contacts, decreased the predicted
number of infected premises. Increases in the probability
of detection on deer farms receiving low-risk contacts were
associated with a significant increase in the predicted
number of infected premises. 

Partial rank correlation coefficient values for each of the
monitored tracing parameters are shown in Figure 4.
Increases in the probability of forgetting movement events
off and onto pastoral livestock farms were associated with
a decrease in predicted epidemic size. Increases in the
delay in tracing high-risk movements onto dairy and pig-
breeding farms were also associated with a decrease in
predicted epidemic size. Increases in the probability of
forgetting off-farm low-risk movements and on-farm dairy
tanker movements were associated with an increase in
predicted epidemic size.

For control activities, increases in the proportion of
restricted high-risk movements inside the infected zone,
high-risk movements out of the control area, and low-risk
movements within defined surveillance areas significantly
decreased the predicted number of infected premises 
(Fig. 5). Increases in the probability of medium-risk
movements being restricted during the initial standstill
period, and increases in the probability of medium-risk
movements being restricted outside the control area, were
associated with an increase in the predicted number of
infected premises. 

HR: high risk
LR: low risk
MR: medium risk
nDC: number of direct contacts

nPT: number per time period
nSC: number of secondary contacts  
PoT: probability of transmission

Fig. 2
Partial rank correlation coefficients for settings within the ten
parameters defining farm-to-farm and farm-to-saleyard
movements within the New Zealand standard model
Solid circles (•) identify settings whose partial rank correlation
coefficient values were significant at the alpha level of 0.05
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Fig. 3
Partial rank correlation coefficients for settings within the six parameters defining surveillance within the New Zealand standard
model
Solid circles (•) identify those settings whose partial rank correlation coefficient values were significant at the alpha level of 0.05

Bground: background
dP: detection probability 
HR: high risk

LR: low risk
MR: medium risk
PV: patrol visit

sP: selection probability

Discussion
On the whole, the authors’ findings made biological sense
and provided indirect confidence that the NZSM
parameter set provides an appropriate indication of the
way FMD might spread if it were introduced into the farm
animal population in New Zealand. Collectively, the
settings defining farm-to-saleyard animal movements had
the greatest influence on the predicted number of infected
premises (Fig. 2): a finding consistent with analyses of the
data from the FMD outbreak that occurred in the United
Kingdom in 2001 (8, 19, 30). This implies that efforts
taken to accurately record the frequency of farm-to-
saleyard movements, the number of secondary contacts
and estimates of the probability of disease transmission
following a movement event should enhance the accuracy
of NZSM predictions. 

To the best of the authors’ knowledge, the work of Sanson
(25) is the only study to document details of farm-to-
saleyard movements of livestock in New Zealand. Given
the impact of farm-to-saleyard movement patterns on
model output, it is essential that the frequency and

distance estimates provided by studies of this type are
updated regularly, since the propensity of livestock owners
to shift animals to saleyards will vary over time and depend
on the slaughter value of individual animals, as well as the
costs of grazing, transport and seasonal conditions.
Implementation of the National Animal Identification and
Tracing System (www.nait.co.nz) and routine analysis of
data recorded by this system would partly meet this
requirement. Additional studies would still be required,
however, to provide an estimate of disease transmission
probabilities when a movement takes place.

Nine of the ten detection probability surveillance settings
had significant PRCC values that were negative. This
means that increases in the probability of detection were
associated with a decrease in the predicted number 
of infected premises. A single setting, the probability of
detection on premises with deer after a low-risk contact,
had a positive PRCC (Fig. 3). This finding was counter-
intuitive. 

Detailed analyses of the model’s behaviour – i.e. following
the step-by-step sequence of infection events following
low-risk movement events onto farms with deer – would



be an obvious approach for investigating this anomaly
further. This is an example of another benefit of the
sensitivity analysis process. By identifying counter-intuitive
model behaviour, a sensitivity analysis allows us to identify
specific areas of the model that should be investigated in
detail for possible errors in design, implementation and/or
parameterisation. 

Sensitivity analysis of the tracing parameters related to
high-risk pastoral livestock and dairy-farm movements
also presented findings that were counter-intuitive.
Analyses to clarify the mechanism of these effects, using an
approach similar to that described above, are required to
investigate these anomalies further. An additional
explanation is that the number of simulation days specified
(n = 60) was insufficient to allow the full effect of changes
in tracing efficacy to be reflected in model output. 

Increases in the probability of restricting high-risk
movements inside the infected zone and outside the
control area were associated with a decrease in the

predicted number of infected premises (Fig. 5). This
finding is consistent with the known biology of FMD (24).
Increases in the probability of restricting medium-risk
movements during the initial standstill period and outside
the control area were associated with an increase in the
predicted number of infected premises. This was yet
another finding that was counter-intuitive. Further
analyses are required to investigate this.

If a model is non-linear or non-additive, the influence of a
variable will change at different points in the input space
due to interactions with other variables. In these situations,
where linearity and additivity cannot be assumed, local
sensitivity methods are inappropriate. Global approaches
that are independent of the model, or at least assume
monotonicity rather than linearity or independence,
should be used (18, 21). Global methods involve
simultaneous adjustments, which allow the entire
parameter domain, or at least a substantial area of the
domain, to be analysed. A range of global techniques have
been described to explore the behaviour of models used in
economics, engineering, chemistry and physics. These
techniques include ‘elementary effects’ methods (for
example, that of Campolongo et al. [3], based on the so-
called ‘Morris’ method [17]); variance-based methods, and
sampling-based methods, using parametric tests of ranked
data of the type described in this study (2). Of this group,
the most suitable approaches for complex disease
simulation models include the elementary effects methods
and sampling-based methods using parametric tests of
ranked data.

Type II errors (the failure to identify a factor of
considerable influence on the model) are recognised as
potential problems when using parametric tests of ranked
data (A. Saltelli, personal communication). An alternative
would be to use an elementary effects approach, such as
the adapted Morris method (3). The Morris method is no
more computationally demanding than the method
described here and has the advantage of being more
resilient to type II errors. A benefit of applying multiple
sensitivity analysis techniques to the same model is that the
combined knowledge provides a more detailed picture of
how the parameters interact and contribute to model
output uncertainty, and thus results in deeper insight into
the model’s behaviour (4).

Although good practices are well established for sensitivity
analysis of models used in chemical engineering,
biostatistics and risk analysis (13, 20), the uptake of these
techniques appears to be relatively poor in the wider
scientific community. Sensitivity analysis is an important
component of good scientific practice and should be
regarded as an integral part of model development, rather
than as an additional and non-essential set of analyses (20).
The approach described in this paper should be seen as
one element that contributes to the corroboration of IS+
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Fig. 4
Partial rank correlation coefficients for settings within the
eight parameters defining efficacy of tracing within the New
Zealand standard model
Solid circles (•) identify those settings whose partial rank correlation
coefficient values were significant at the alpha level of 0.05

dT: tracing delay (days)
HR: high risk
LR: low risk

MR: medium risk
pF: probability of forgetting an on- or off-
farm movement



and the NZSM, in the context of a specific problem and
particular management scenarios. Other approaches that
are currently being applied are the multiple model
comparisons of similar outbreak scenarios (6, 26) and
continuous seeking of expert opinion. 

Simulation models of disease in human and animal
populations are typically composed of a series of logical
processes that allow a response (usually the presence or
absence of disease at a given location) to be predicted as a
function of a set of defined decision rules (1). These
models can be tactically useful as they follow a logical,
biologically valid process that is flexible and can
incorporate a high degree of detail (29). Although the flow
of logic in disease simulation models tends to be
straightforward, attempts to incorporate a high level of
detail make it difficult for developers to provide a concise
description of a model’s overall design to non-technical
personnel. This is particularly the case with ‘generic’
simulation models (i.e. those designed to simulate a range
of infectious disease conditions, such as IS+), since these
often incorporate settings that may not be directly
applicable to a given disease scenario of interest. Thus, a
balance needs to be struck between complexity and
simplification to ensure that simulation models provide
sufficient information about the system under investigation
without being so complex that they cannot be widely
understood.

The analyses presented in this paper represent the first of a
number of steps that may be applied to refine the NZSM.
A potentially useful result of this work would be
information that informs the grouping of non-influential
settings (e.g. the low- and medium-risk movement
parameters). This would go some way towards reducing
the overall complexity of the NZSM, while still allowing it
to remain fit for its purpose. This simplified model would
potentially offer greater transparency to decision-makers
but retain the benefits of the parent model’s complexity.
Results from the simplified model could be compared with
the fully parameterised version for validation.

Several other possibilities should be considered for further
work. In particular, it is important to carry out sensitivity
analyses at various times during the simulation; for
example, at the time the disease is first detected, then at
regular intervals throughout the control and eradication
phase of the epidemic. This process would identify how
the sensitivity of the model changes during the simulation
period, quantifying the way in which prediction precision
changes over time and the effect of time on both the values
of the PRCC and their relative rankings. 
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Fig. 5
Partial rank correlation coefficients for settings within the three parameters defining efficacy of movement restrictions, and the
single parameter defining the resources required for depopulation, within the New Zealand standard model
Solid circles (•) identify those settings whose partial rank correlation coefficient values were significant at the alpha level of 0.05

HR: high risk
LR: low risk
MR: medium risk

nT: number of herds able to be processed per time period (days)
pR: probability of restriction
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Analyse de la sensibilité du modèle standard 
pour la fièvre aphteuse appliqué en Nouvelle-Zélande

K. Owen, M.A. Stevenson & R.L. Sanson

Résumé
Les modèles de simulation des maladies présentent un grand intérêt au moment
de planifier les activités de riposte en cas d’incursion d’une maladie exotique,
car ils offrent un mécanisme permettant d’identifier de manière rapide et peu
onéreuse les effets probables de divers scénarios d’apparition de foyers ainsi
que des stratégies de prophylaxie envisageables. Pour une utilisation efficace et
raisonnée de ces instruments, les décideurs doivent être parfaitement
conscients des simplifications et des hypothèses initiales qui sous-tendent la
structure d’un modèle. L’analyse de la sensibilité d’un modèle est un processus
analytique visant à déterminer quelles sont les variables d’entrée qui ont le plus
d’influence sur les données de sortie du modèle. Il s’agit d’une étape
indispensable pour bien comprendre le fonctionnement d’un modèle.
Les auteurs rapportent un exemple d’analyse de la sensibilité axée sur
l’échantillonnage appliquée pour évaluer le modèle standard néo-zélandais
(NZSM) pour la fièvre aphteuse. Le modèle réunit un ensemble de paramètres
développés pour la plate-forme de modélisation InterSpread Plus afin d’explorer
différents scénarios d’apparition de foyers lors d’une épidémie de fièvre
aphteuse en Nouvelle-Zélande. A l’issue de 200 itérations du modèle NZSM
couvrant une période de simulation de 60 jours, les paramètres ayant exercé la
plus grande influence sur les projections du nombre d’exploitations infectées
étaient les mouvements d’animaux entre les exploitations et les lieux de vente,
d’une part, et le fait que la maladie ait été détectée précocement au cours de la
phase de surveillance active de l’épidémie, d’autre part. L’analyse a également
conduit à des constatations déroutantes qui ont fait ressortir les aspects qu’il
conviendrait d’approfondir concernant la conception et la mise en œuvre du
modèle ainsi que le choix des paramètres utilisés. L’un des résultats les plus
utiles de ce travail serait d’obtenir des informations permettant de regrouper et
d’éliminer les paramètres dont l’influence est nulle. Cela permettrait de réduire
un peu la complexité globale du modèle NZSM, tout en conservant les
caractéristiques qui le rendent apte à l’emploi qui lui est assigné.

Mots-clés
Analyse de sensibilité – Épidémiologie – Fièvre aphteuse – Modèle de simulation de
maladie – Modèle standard néo-zélandais – Modélisation – Nouvelle-Zélande.

Análisis de sensibilidad del modelo estándar 
de la fiebre aftosa neozelandés

K. Owen, M.A. Stevenson & R.L. Sanson

Resumen
Los modelos de simulación de enfermedades pueden ser una herramienta útil
para planificar la respuesta a la penetración de enfermedades exóticas, pues
ofrecen un mecanismo rápido y barato para determinar las probables
consecuencias de hipotéticos brotes y eventuales estrategias de lucha. Para
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utilizar esas herramientas eficazmente y con un alto grado de confianza los
responsables de adoptar decisiones deben entender las simplificaciones 
y premisas que subyacen a la estructura de un modelo. El análisis de
sensibilidad, proceso analítico que consiste en discernir cuáles son las variables
de partida que en lo esencial van a determinar los resultados del modelo, es un
proceso fundamental para adquirir tal comprensión.
Los autores describen la aplicación al modelo estándar neozelandés de 
un análisis de sensibilidad basado en un muestreo. Dicho modelo consiste en un
conjunto de parámetros definidos para el programa genérico InterSpread Plus
con el fin de poder evaluar distintas hipótesis de brote epidémico de fiebre
aftosa en Nueva Zelanda. Atendiendo a los resultados de 200 pases del modelo
efectuados durante un periodo de simulación de 60 días, los parámetros con
mayor influencia en el número predicho de explotaciones infectadas eran los
relativos al movimiento de animales entre la explotación y el punto de venta 
y a la detección de la enfermedad durante la fase de vigilancia activa de la
epidemia. Se obtuvieron asimismo unas pocas conclusiones contrarias 
al sentido común, lo que indica que se deben analizar más a fondo ciertos
aspectos de la concepción, aplicación y/o parametrización del modelo. Un
resultado posiblemente útil de esta labor sería la obtención de información que
ayudara a agrupar o eliminar especificaciones del modelo carentes de
influencia, lo que hasta cierto punto reduciría la complejidad global del modelo
sin por ello reducir su grado de idoneidad.
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