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Abstract 

This paper presents two different artificial neural 
network approaches for phoneme recognition for 
text-to-speech applications: Staged 
Backpropagation Neural Networks and Self- 
Organizing Maps. Several current commercial 
approaches rely on an exhaustive dictionary 
approach for text-to-phoneme conversion. 
Applying neural networks for phoneme mapping 
for text-to-speech conversion creates a fast 
distributed recognition engine. This engine not 
only supports the mapping of missing words on the 
database, but it can also mitigate contradictions 
related to different pronunciations for the same 
word. The ANNs presented in this work were 
trained based on the 2000 most common words in 
American English. Performance metrics for the 
5000, 7000 and 10000 most common words in 
English were also estimated to test the robustness 
of these neural networks. 

1 Introduction 

This paper describes two different artificial neural 
network (ANN) approaches for text-to-speech 
conversion: Staged Backpropagation Neural 
Networks (SBPNNs) and Self-organizing Maps 
(SOMs). Both neural networks can be applied to 
large general texts and build on the pioneering 
work of Sejnowski and Rosenberg (i.e., NetTalk 
[lO]). 

NetTalk uses a single neural network to deal with 
all phoneme cases. The work presented in this 
paper is different in the sense that multiple stages 
were applied and, that a different alignment 
structure for the mapping between letters-to- 
phonemes was used for the backpropagation as 
well as the SOM neural networks. 

In both SBPNNs and the SOMs, the first neural 
network stage distinguishes between single and 
dual phoneme cases (i.e., one letter is mapped to 
two phonemes). In the second stage two different 
neural networks are used in parallel to deal with 
one and two-phoneme cases separately. 

Several current commercial methods for text-to- 
phoneme conversion rely on an exhaustive 
dictionary approach. However, not all words are 
included in the dictionaries and therefore the 
phoneme recognition performance is 
compromised. One common approach to mitigate 
this problem is to mine a database for determining 
the best matches between the word's syllables and 
those contained in the database. However, this 
process requires large amounts of memory. 

The use of soft computing in lieu of hard 
computing to implement text-to-speech conversion 
is a matter of trade-off. Applying neural networks 
for phoneme mapping for text-to-speech 
conversion creates a fast distributed recognition 
engine. This engine not only supports the mapping 
of missing words in the database, but it also reduce 
contradictions related to different pronunciations 
for the same word. 

NetTalk introduced a slicing window where the 
letter to be mapped to phonemes are placed in the 
middle of the window (i.e., central window 
positioning [2]). In the alignment approach 
presented in this paper the window positioning 
structure is changed to Second Position 
Asymmetric Windowing (SPAW), where the 
number of spaces before and after the object letter 
(i.e., the letter which will be mapped to a 
phoneme) are not equal. It is called "Second 
Position" because the object letter is located in the 
second space from the middle of a central window 
(Fig. 1). Second Position Asymmetric Windowing 
will be labeled "N-M SPAW" for notation 
purposes, where N and M refer to the number of 
spaces before and after the central window 
position. This concept will be explained in more 
detail later in this paper. Central Third ~ Position Position ~ 
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Fig 1. Different Windowing Positions 

The human brain uses sets of semantic rules or 
routes to read. Two different lines of study for 
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analyzing these semantic rules have been 
proposed: the single and the dual semantic route. 
The single route uses only a dictionary based 
lookup procedure (lexical route) for text-to- 
phoneme conversion. The dual route uses a letter 
to phoneme rule procedure (nonlexical route) in 
addition to the dictionary lookup procedure. 
Following the NetTalk approach, only the single 
semantic route was used in this work. 

This paper is organized as follows: section 2 
introduces the text-to-phoneme conversion 
approach, section 3 describes the staged 
backpropagation and SOM neural network models 
and discuss the neural networks performance, and 
in section 4 the conclusions are summarized. 

2 The Text-to-Phoneme Conversion 

Three fundamental issues need to be addressed for 
text-to-phoneme mapping with staged neural 
networks: training data, window alignment, and 
context. 

The 2000 most common American English words 
[14] were selected for developing a text-to- 
phoneme staged neural network and performance 
metrics were estimated for the 5000, 7000 and 
10000 most common words in American English. 
The 1000 most common words in American 
English were also used in order to compare our 
results with NetTalk [10]. We used the 1000 most 
common words from the CUE practice set [13], 
which is different from the 1000 most commonly 
words used by NetTalk, based on The Webster's 
Pocket Dictionary. The Carnegie Mellon 
Pronouncing Dictionary (CMPD) was utilized for 
generating a windowed training dataset [12]. 
CMPD is a publicly available web-based machine- 
readable pronunciation dictionary for North- 
American English that contains over 100,000 
words and their phonetic transcriptions. The 
implemented CMPD phoneme set contained 39 
phonemes, for which the vowels may carry lexical 
stress (0 for no stress, 1 for primary stress, and 2 
for secondary stress). As of yet, voice stress- 
related features were not implemented. A 40th 
phoneme was added to represent the blank or 
punctuation marks. The staged networks are 
trained based on the 2000 most common words in 
American English. 

Window alignment is important because a unique 
map from text to phonemes is needed to generate 
the training/test sets for the neural network. Words 
are sliced starting with the first letter in the 

window and shifted to the left until the whole 
word has been passed by. This implies that the 
number of pattern per word will be equal to 
number of letters in the word. Issues related to the 
choice for the appropriate window size are 
discussed by Bullinaria [4]. Bullinaria considered 
only central windowing. The first issue relates to 
the proper choice for the window size in order to 
accommodate any long-range dependencies. A 
large window size implies that many units and 
connections would be vastly underutilized because 
of the prevalence of empty window spaces. The 
use of a series of recurrent connections in lieu of a 
sliding window was also addressed by Bullinaria 
[3], but did not offer any improvement in 
performance. 

Different arrangements for central windowing and 
Second Position Asymmetric Windows (SPAW) 
alignments were investigated. Sometimes two 
different phonemes can be mapped from the same 
information window. This is considered an 
inconsistency. The main idea is to explore how 
much information (spaces) is needed in order to 
minimize the number of inconsistencies per 
arrangement. Inconsistencies are counted for 
different window representations of the objective 
letter for both central and SPAW alignments (Fig. 
2). It has been found that Second Position 
Asymmetric Windowing alignments lead to fewer 
inconsistencies. A SPAW representation requires 
also less information (i.e., shorter window size). 

Pronunciation of a particular letter or string of 
letters depends on the context. Therefore, context 
information should be used to generate 
pronunciation rules with a realistic generalization 
of unknown words and non-words [5]. Context 
related issues were not taken into consideration in 
this study. 

1000 . . . . . . . . . . . . . . . . . .  ] 
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Fig. 2. Number of  Inconsistencies found in the 
2000 Most Common Words in American English 
using both Central and SAPW Windowing 
Alignments. 
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3 The Staged Neural Network Model 

For both neural network approaches, a categorical 
representation (or class representation) was used to 
represent the input information. This categorical 
representation assigns to each window space a set 
of  26 binary values, one for each letter of  the 
English alphabet (i.e., a window with 7 spaces 
results in 182 inputs for the neural network). For 
the phoneme output representation 40 categorical 
values were used (one for each phoneme and the 
40 th neuron represents the blank space). For the 
Backpropagation ANN, output values were 
encoded as 0.1 or 0.9 to avoid saturation problems. 

Initially the neural networks were trained on 80 
percent of  the 2000 words considered and tested 
on the remaining 20 percent. This results in a 
training set of  10,251 patterns when all the 
possible window positions are considered (Fig. 2). 
For the set of  phonemes used in this study, 0.83% 
of  the samples were cases in which the match 
between letters and phonemes was not one-to-one 
(single phoneme case) but one-to-two (dual 
phoneme case) [ 1 ]. 

First attempts to deal with dual phoneme cases 
used one or two slabs of  40 categorical neurons for 
representing the phonemes. However, for the 
Backpropagation ANN, no successful networks 
resulted from this approach (i.e., overall 
recognition was around 77%, but none of  the two- 
phoneme cases was really recognized). Hence, it 
was decided to follow a staged neural network 
approach. The neural network in the first stage 
distinguished between single and dual phoneme 
cases. The second stage consists of  two parallel 
neural networks to deal with the one and the two- 
phoneme cases separately. 

3.1 Backpropagation Neural Network 

Different neural network configurations (i.e., 
windowing, number of  neurons in hidden layer, 
and number of  hidden layers) were tested to obtain 
the best model for the text-to-phoneme mapping 
for both stages. Different combinations of  inputs, 
alignment structures, size, and outputs 
configurations were analyzed for each neural 
network (Fig. 4). For the In'st stage, all window 
sizes were tested. However, for the ANN's for the 
single phoneme case in the second stage, only 
large windows were used (4-6 and 5-6 SPAW and 
11 and 13 central windowing). All neural networks 
trained were halted using an early stopping 
criterion. 

The ftrst stage ANN initially utilized two 
categorical output neurons with target values [0 1 ] 
or [ 1 0] depending on whether the outcome was a 
single or dual phoneme. The best neural network 
employed a 1-4 SPAW window and one hidden 
layer with 11 neurons. It was able to recognize 
100% and 67% of  single and dual cases, 
respectively. A second approach used 40 neurons 
in the output layer. For this approach a 1-5 SPAW 
and a neural network with two hidden layers (43 
and 67 neurons, respectively) was able to reach 
100% recognition for both single and dual 
phoneme cases. 

For the second stage different ANN's with 
different window sizes were considered as well. 
Based on the results obtained for the In'st stage, 
only one output layer with 40 neurons and 
categorical inputs were used for the second stage. 
For the single phoneme case ANN, a 4-7 SPAW 
and two hidden layers was large enough to 
accommodate all long-range dependencies. 
Different numbers of  neurons were tried for both 
layers. A weak optimum was found with 67 and 91 
neurons for the first and second hidden layer, 
respectively. This ANN achieved 97% accuracy 
for a test set using 20 percent of  the 2000 most 
common words in American English. The best net 
for the dual phoneme case used a 3-5 SPAW and 
two hidden layers (with 43 and 67 neurons, 
respectively) and achieved 100% accuracy. 

Sejnowski, and Rosenberg trained NetTalk using 
the 1000 most commonly occurring words from 
the Webster's Pocket Dictionary based on 
frequency counts in the Brown corpus [10]. The 
best performance achieved was 98% on the 1000 
word corpus, and 80% and 91% without and with 
additional training on the 20,012 words in the 
Webster's corpus, respectively. The word corpus 
used in this paper, which is based on the CMPD 
[12] dictionary from Carnegie Mellon University 
and other word frequency counts referred in the 
Carnagie Mellon's web site ([13] and [14]), were 
different to the one used by NetTalk. For the 1000 
most common words, the difference in words was 
approximately 200 (The recognition reached was 
99%). 

In order to test the robustness of  the staged neural 
network model, performance metrics are compared 
for the 2000, 5000, 7000 and 10000 most common 
words in American English obtained from [12], 
[13] and [14] (Table II). For the first staged neural 
network, the recognition level was 100% for the 
2000 and 5000 most common words. However, for 
the 7000 and 10000 most common words the first 
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stage performance was 99% due to the presence of  
a new phoneme case. Once that case was 
introduced into the training process, the 
recognition level was 100% again. Also, many of 
the new words do not contain dual phoneme cases, 
which contributes to the robustness of  the first 
stage of  the model. 

For the second stage single case neural network 
there is a decrease in the level of  recognition for 
the ANN trained on the 2000 most frequent words, 
resulting in 94%, 91% and 85% recognition for the 
5000, 7000 and 10000 most common words in 
American English, respectively [ 1 ]. 

Table 1I. Staged Backpropagation ANN 
Performance Results. 

Training Performance over the Most 
Set Common Words in American ~ !nglish . . . .  

2 0 0 0 ,  5000 i 7000 10000 

2000 97% i 94*/0 I 91./o 85% 

. . . . . . .  ~ " - ~ 92*/0 S4% 5000 (98%) i 95% 

7000 (94%) I (91%) 89% , 82% 

Not©: Corpus and word frequency counts wcx¢ obtained from the 
CMPD, and the LOB and ACL._DCI corpus. 

3.2 Self-organizing Maps 

The SOM is used for its visualization capabilities 
in order to explore relationships between letters 
and phonemes and to see whether phoneme 
clusters can be clearly delineated. 

Self-Organizing Maps (SOM) were developed by 
Professor T. Kohonen of  Helsinki University in 
Finland [6]. A SOM is an unsupervised 
feedforward neural network trained by competitive 
learning. The neurons are usually arranged on a 
virtual 2-D grid and the self-organizing 
characteristics of  Kohonen's training algorithm 
cause likewise inputs (molecules) to activate 
nearby neurons on the Kohonen map. 

The SOM is a topology-preserving map from a 
high-dimensional input descriptor space to a two- 
dimensional grid or plane. A SOM describes 
relative faithfully the distribution of data points 
embedded in a high-dimensional space onto a 
plane. The property of  preserving topology 
implies that a SOM groups similar input data to 
nearby neurons in the map. Therefore, the SOM 
can serve as a visual clustering tool for high- 
dimensional data. 

The SOMs were generated with Viscovery, a 
commercial software package for SOM 
visualization [11]. Viscovery does not impose a 
limit to the number of samples or variables and 

exhibits outstanding visualization options. Key 
SOM (heuristic) parameter settings for Viscovery 
are the size of the map, the map ratio, the map 
tension and the variable priority. The size of  the 
map determines the number of nodes in the map 
(in this case a hexagonal grid). A heuristic 
recommendation is to use ten times as many nodes 
as number of  input vectors. However, the map size 
was set in 20,000 neurons, which is the maximum 
number of  neurons possible in Viscovery. 
Heuristics for map display can be obtained from 
the userforum e-mail list from Eudaptics Gmbh 
(viscovery-userforum@eudaptics.com). 

The map ratio describes the relation between the 
width and the height of  the map. The map ratio 
was derived from the ratio of  the principal plane 
of  the source data set. The principal plane is 
spanned by the two longest eigenvectors of  the 
autocorrelation matrix of  the data distribution. The 
map ratio is chosen automatically by Viscovery. 

The map tension represents the reach of  the 
neighborhood function at the end of  the training 
process. Its value depends on the objectives of  the 
study. For instance, maps with low tension will be 
more detailed. An initial heuristic value of  0.2 was 
used. 

The variable priority gives additional weight to a 
component by multiplying its internal scale by that 
factor. If  the variable priority setting exceeds 
unity, the corresponding component will have 
more impact on the distance metric [ 11 ]. Priority 
factors were used for the objective letters and 
phonemes in order to bias the topological 
structure. For the maps presented in this paper, 
priority factors of  2 were used (Priority factor 
greater than 2 resulted in similar performance). 

A Kohonen self-organizing map (SOM) was 
trained using the 2000 most common words in 
American English by passing the words through a 
4-7 SAPW. As in the Backpropagation case, the 
f'n'st SOM distinguishes between phoneme cases 
and then two parallel SOMs handle each phoneme 
case separately. SOMs are unsupervised and often 
do not use separate training and validation sets. 
However, in order to test the phoneme map, 
random training and validation sets were generated 
(80% and 20%, respectively). 

The test set for the 2000 most common words was 
presented to the SOM. The phonemes will be 
estimated, once the SOM is generated, from the K 
nearest neighbors based on local learning or 
association. Starting from the reference point P, 
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the weights of  the K nearest neighbors ( W  1 . . . W l 0  

are used to determine the corresponding distances 
from the nearest neighbors (dl = Iwl - PII ..... dj ..... 
dK = IwK - Pkl), and which are then sorted in 
ascending order. A new distance weighted value 
for the phonemes are then estimated based on the 
distance-weighted responses of the K nearest 
neighbors. Viscovery provides several options for 
the weight function: uniform (i.e., all neighbors 
equally weighted), gaussian (i.e., neighbors with 
medium distance are weighted more), linear (i.e., 
neighbors are weighted according to the inverse of 
the distance) and, quadratic [ 11 ]. 

Viscovery uses a Gaussian weight function by 
default and reduces the size of  the neighborhood 
when the training progresses. The number of 
neighbors was selected using a visualization tool 
provided by Viscovery (i.e., the neighbor page, 
which shows the neighborhood for any cell in the 
map). Only neighbors within the same cluster were 
considered. 

Using the test set obtained from the 2000 most 
common words, for the first stage S O M a  100% 
recognition level was reached. For the dual 
phoneme case SOM in the second stage, also 
100% recognition was obtained. However, for the 
single phoneme case SOM (Fig. 3), only 87% 
recognition level was obtained. 

These results in the single phoneme case SOM are 
lower than those obtained using the 
Backpropagation NN and NetTalk. One reason for 
the poorest results might be the number of neurons 
used to create the map (less than 2 neurons per 
sample). 

' , : ,? i  ~ ° 

Fig. 3. Phoneme Self-Organizing Map 

Having lower amounts of neurons per sample 
might result in a decrease on the topological 
ordering capabilities of the SOM. Looking at Fig. 
3, there are many regions that might indicate the 
presence of inconsistencies in the information 
being used (i.e., similar letter patterns can lead to 
different phonemes). This can be clearly seen in 
the three regions marked in Fig. 3 (i.e., phonemes 
/AY/,/Y/, and/UW/are coming from similar letter 
structures, as well as phonemes/AH/, /AY/, / IH/ ,  
/OW/, /SH/and/ZH/) .  If  more neurons would be 
added to the SOM, the Kohonen algorithm would 
then create clusters for each case, avoiding these 
inconsistencies. 

The information being used in this paper does not 
include context and intonation. As it was noted by 
Bagshaw [2], many words share the same 
structure but they are pronounced different 
depending on their context. Therefore, it is 
possible also that these inconsistencies might be 
due to the no inclusion of the context. 

On the other hand, Fig. 4 shows the overall 
organization of the SOM. It can be seen that 
vowels are located in the left side and consonants 
in the right side of the map. The SOM, also, 
clearly distinguish phonemes only related with one 
letter ( i .e . , /DH/and/TH/are only related with 'T'). 
However, for some phonemes such as /AH/ , /UH/  
and/UW/, more than three different vowels can be 
related to them (i.e., all vowels are related to 
/AH/). Some vowel phonemes are not located 
inside the vowel region. These phonemes (/AY/, 
/IH/, /IY/, and /ER/), are related with the letters 
'Y', 'W', and 'R' so that there were correctly located 
in the SOM. 

Fig. 4. Distribution of  Vowels and Consonants 
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Finally, SOMs for the 5000, 7000 and 10000 most 
common words in American English could be not 
obtained due to the limitations in the number of 
neurons in Viscovery. However, the levels of 
recognition obtained using the 2000 most common 
words SOM were more consistent than those 
obtained using a backpropagation NN. The results 
are shown in Fig. 5. 
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Fig. 5. SBPNNs and SOMs Recognition Levels 

4 Conclusions 

This paper described two different 
implementations for text-to-speech conversion 
with a two-staged backpropagation neural network 
and Self-Organizing Maps. It is novel in the sense 
that staged neural networks were used and a better 
window alignment structure (SPAW) was applied. 
This staged approach first recognizes whether the 
letter shown has to be mapped into a single (one- 
to-one) or a dual (one-to-two) phoneme case and 
does the actual phoneme matching in the second 
stage. 

For the 2000 most common words in American 
English, 100 % recognition in the first stage and 
the dual phoneme case in the second stage was 
obtained for both neural network approaches. For 
the single phoneme case, 97% and 87 % of 
recognition were reached for the backpropagation 
and SOM, respectively. Good recognition levels 
(91% backpropagation approach), however, can 
be achieved for up to 7000 of the most common 
words in American English. For more than 7000 
words it was found that many of the new words 
either do not belong to the American English (i.e., 
are exotic) or show complicated structures and are 
therefore hard to learn by the ANN. SOMs, also, 
are more robust than SBPNNs. 
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