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Abstract. Wireless data broadcast is an effective approach to disseminate
information to a massive number of users. Indexing techniques for broadcasting
data can reduce the battery power consumptions of mobile terminals by
decreasing the tuning time. The organization of the indexes affects the
efficiency of data searching. We investigate how the degree of the index node
affects the tuning time, and thus minimize the power consumption of user’s 
terminals. We proposed a performance measurement for the tuning time and a
cyclic indexing algorithm. The numerical results suggest the degree of an index
node be 3 when the access probabilities of the data tend to be uniformly
distributed so that the expected tuning time is minimal. When the access
distribution of the data nodes is skewer, the tuning time can be minimized by
setting the degree in the index node 2.

Keywords: Broadcast, wireless, tuning time, tuning cost, access time, the Hu-
Tucker algorithm.

1 Introduction

Wireless data broadcast is an efficient technology to overcome the limited bandwidth
in the ubiquitous computing. Wireless data broadcast over radio channels allows users
to access data simultaneously at a cost independent of the number of users. It is a
powerful way to disseminate data to a massive number of users in the ubiquitous
computing. A centralized server periodically broadcasts the data to a large number of
mobile terminals through a wireless medium. The mobile terminals receive the
broadcasts and filter out the data that is not desired [2]. This service is especially
useful for disseminating data that are commonly accessed, such as traffic information
for navigation system and real-time stock information. The location-dependent web
service can also utilize wireless data broadcast. One disadvantage of the wireless data
broadcast is that the mobile terminals can only wait for the requested data.

Power-efficient wireless communication is another important issue for the wireless
data broadcast. A simple way to reduce the power consumption is to add auxiliary
information to enable the mobile terminals to receive only the data the user needs. A
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mobile terminal can be three power modes: transmission mode, receiving mode, and
doze mode.

There are two basic approaches for users to access data through radio channels [8].
One is push-based scheme, where the clients retrieve data by only listening to a
certain channel in the receiving mode. The clients cannot inform the broadcast server
about what they need due to the lack of uplink communication channels from the
users to the server. The other approach is pull-based scheme where the clients send
requests to retrieve data. There is an uplink channel through which a client can send
requests for specific data items to the broadcast server. The broadcast server may
arrange the broadcast sequence according to the request received. In the power
management view, the client saves power by avoiding transmissions and waking up
from the doze mode only when necessary. The push-based scheme is a better strategy
to overcome the limited battery power.

To evaluate the efficiency of the wireless broadcasting, two criteria are often used:
access time and tuning time [1]. The access time is the average time from the moment
a client requests data identified by a primary key to the point when the requested data
are received by the client. The access time determines the response time of data
access. The tuning time is the time spent by a client listening to the channel. The
tuning time determines the power consumed by the client to retrieve the requested
data. Indexing techniques insert auxiliary information indicating when each data item
will be broadcasted to reduce the tuning time [1][2][4][5]. After receiving the index, a
client waits for the requested data most of time in the doze mode in which low power
is consumed and only wakes up to receive data when the requested data is coming.
Therefore, the tuning time can be reduced and the battery power is conserved.

2 The System Architecture

A broadcast server broadcasts the data to the clients by radio channels. The clients
receive the broadcast data and the requested data are filtered. To consume less power
of the clients, the broadcast server inserts indexes before the broadcast data to indicate
the offsets to the requested data. The clients receive the indexes and go to doze mode.
When the requested data are broadcasted, the client wakes up to the receiving mode
and receives the requested data. Moreover, to provide efficient search of the indexes,
an alphabetic Huffman tree is used for the indexing tree. The clients using this scheme
should tune to the beginning of the indexes to get the offset to the requested data. The
waiting time between the start of tuning and the beginning of the indexes is half of a
broadcast cycle in average. This is referred to the distributed indexing scheme [1].

To reduce the access time of the distributed indexing scheme, the broadcast
bandwidth is spilt into several physical channels or logical channels [9]. All data are
assigned into a data channel. The indexes of the same level are proposed to occupy on
the same channel. Fig. 1 shows the indexing tree and the channel assignment of the
broadcast data.



I

I1 I2

I3D1 D2 D3

D4 D5

I I I I I II I I

I2 I1 I2 I1 I2 I1I1 I2 I1

I3 I3 I3 I3 I3 I3I3 I3 I3

D4 D5 D1 D2 D3 D4D1 D2 D3

C1

C2

C3

C4

Fig. 1. The indexing tree and the channel assignment of the broadcast data.

The distributed indexing scheme assumed the access probabilities of the data items
are the same. Shivakumar and Venkatasubramanian released the assumption [9]. Let n
be the number of data items. Every data item has the popularity probability to indicate
the expected number of access to the data items. We assume the popularity
probabilities of the data items be f1, f2,…, fn. If the tuning time for the data item i is Ti,
the average tuning time is
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The tuning time Ti is dependent on the depth of the data item in the indexing tree.
The problem to construct an indexing tree to minimize the average tuning time is
similar to the Huffman coding, but the alphabetic ordering of the data items is
preserved. Hu and Tucker proposed an algorithm to optimize the alphabetic-ordered
Huffman code [11][12]. Shivakumar and Venkatasubramanian suggested a k-ary Hu-
Tucker algorithm to minimize the average tuning time, but didn’t describe the
algorithm clearly [9].

An open problem is remained unsolved in the k-ary Hu-Tucker algorithm. For
some n, it is impossible to construct a tree that the branches of all internal nodes are
filled with k nodes. The k-ary Hu-Tucker algorithm constructs the internal nodes with
2 to k branches, but doesn’t specify exact rules to construct the internal nodes. A 
strategy to determine the branches of the internal nodes of an indexing tree to obtain
the minimal average tuning time is needed for the k-ary Hu-Tucker algorithm.

The tuning time is determined only by the depth of the indexing tree. If we increase
the branches of the index, the tuning time is reduced. However, increasing the
branches should increase the capacity of the index. For the wireless broadcasting, the
indexes can be broadcasted on the index channels. The size of the index represents the
bandwidth requirement of the radio channel. In wireless communications, a radio
channel is partitioned into slots of constant size. The 3rd generation personal
communication service provides the function to assign the fixed bandwidth of the
channel to a dedicated service [8]. Therefore, the size of the indexes should be the
same to fit in a time slot. The tuning time should count the number of indexes
received and the size of the index. Assume the depth of the data node i is di, and the
degree of the index is k. represents the length of the key and the offset. The average
tuning time can be expressed as:
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3 The Proposed Alphabetic Huffman Algorithms

Huffman tree and minimize the average tuning time. For n data nodes, it may not be
possible to construct an index tree where all indexes have exact k downward branches.
That is, empty branches are remained in some indexes. We call this category of index
as the incomplete index. In our proposed algorithm, we gather those empty links in
one index of the index tree, i.e., there is only an incomplete index in the tree. Under
this assumption, the number of the non-empty links of the incomplete index can be
determined from the number of data nodes, n, and the degree, k. Let a % b represent
the remainder of a/b, and k1 be the number of the non-empty links of the incomplete
index. k1 can be expressed as









1,0and)1(%for,

1or0and)1(%for),1(
1 bbknb

bbknkb
k . (2)

Using the techniques of the binary Hu-Tucker tree, we construct the k-ary index
tree by merging k nodes with the least access probability into an index node of the
index tree. The access probability of the index is the sum of the access probabilities of
its k children. The number of the non-empty links of the incomplete index is
calculated first. It is due to that we reduce the average tuning time by merging nodes
with less access probability into an index in the lower level of the tree. This algorithm
will be referred to as the k-ary Incomplete-index First Alphabetic Huffman Algorithm
(IFAH). The algorithm is shown in the following.

Step 1. Let S=(N1, N2, …, Nn), the ordered list consists of all data nodes sorted by
search key in increasing order. Ni=Di.

Step 2. Calculate the number of the non-empty links k1 of the incomplete index using
Equation 2.

Step 3. Construct the incomplete index node.
● Find k1 consecutive nodes in S whose sum of access probabilities is
minimum.
● Replace the k1 consecutive nodes with an index node in S. The access
probability of the index node equals to the sum of the access probabilities of
the replaced nodes.

Step 4. If |S|=1, then go to Step 7.
Step 5. Construct the k-degree index nodes.

● Find the k “consecutive” nodes, but index nodes can be bypassed, in S that
have the minimum sum of access probabilities.
● Replace the k “consecutive” nodeswith a new index node in S.

Step 6. If |S|=1, then go to Step 7.
Else go to Step 5.

Step 7. Determine the level of each data node in the index tree.



Step 8. Reconstruct the index tree according to the levels of the data nodes.
● Initialize the ordered list S as in Step 1.
● Find k1 consecutive data nodes whose levels are the same. The levels of k1

consecutive data nodes must be the maximum among the remaining nodes.
● Combine the k1 consecutive nodes to an index node. Replace the k1

consecutive nodes with the index node in S.
● Find k consecutive nodes whose levels are the same and the maximum
among the remaining nodes, and combine the k consecutive nodes at the
highest level first. Then, the nodes on the next-to-highest level are combined.
● The process continues until there is only one node left and its level must be
0.

Fig. 2 shows an example index tree obtained by the IFAH. The boxes represent the
data nodes and the numbers in the boxes represent the access probabilities of the data
nodes. The circles represent the index nodes and the numbers in the circles represent
the combined access probabilities of the linked nodes. i is the key for the data node Di.
The IFAH constructs index node I1 first, because D2 and D3 have the minimum sum of
access probabilities. In constructing index node I2, index node I1 is bypassed, because
D1, D4, and D5 are the 3 “consecutive” nodes that have the minimum sum of access 
probabilities. The index nodes construction process continues until only one node is
left in S. We assign level 0 to the root. According to the links of the indexes, we
assign the level values to all index nodes and data nodes. Then, the index tree is
reconstructed from the highest level of the data nodes.
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Fig. 2. An example of the IFAH

The format of an index is as follows,
Key 1 Offset 1 Key 2 Offset 2 Key 3 Offset 3

Key i is the boundary key value for searching requested data. If the key of the
requested data is larger or equal to Key i and less than Key (i+1), Offset i is the offset
for the index or data slot of the lower level in the index tree.



Note that the index tree in Fig. 3 places D1 in its left-most leaf, i.e., the index tree
starts from D1, the first data node. However, a k-ary alphabetic tree does not
necessarily start from D1; it can starts from any data node. Fig. 3 shows the index
trees starting from different data nodes. The numbers on the links under the index
nodes are the boundary key values of the index nodes. Fig. 3 (a) is an example of k-
ary alphabetic tree starting from D1. Fig. 3 (b) shows an example of k-ary alphabetic
tree starting from D2; the data node before the D2 is rotated to the end of the ordered
list. In this example, we show how to retrieve data node D1. The boundary key values
of the root index are 2, 5, and 6. The key of D1 is less than 2. Therefore, we chose the
offset of boundary key value 6 to obtain the index of the next level. The index of the
next level shows the offset of the requested data node D1. This shows that a k-ary
alphabetic tree can start from any data nodes. That is, the alphabetic order of the data
nodes in the index tree can be treated as a cycle. The average tuning times are 5.62 in
Fig. 3 (a) and 4.49 in Fig. 3 (b), respectively. We apply the rotatability to improve the
IFAH. The new algorithm will be referred to as the k-ary Cyclic Incomplete-index
First Alphabetic Huffman Algorithm (CIFAH). The CIFAH modifies Step 3 and 5 of
the IFAH. In CIFAH, we treat the ordered list as a cycle and find the minimum sum
of access probabilities.
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Fig. 3. The index trees with different alphabetic orders.

4 The Numerical Analysis

To simplify the analysis of the tuning cost of the proposed alphabetic Huffman
algorithms, we made the following assumptions:
 There is no fault in the broadcasting or reception.
 The initial probe is uniformly distributed in the broadcast cycle.

First, consider a special case where the access probabilities of the data nodes are
identical, and the optimal index tree is a full k-ary tree that has no incomplete index.
Let k be the degree in each index, and d be the depth of the index tree. The number of
data nodes is 1 dkn . The average tuning time is )1(  dkT . If k could be any real

number, the average tuning time can be minimized when 0
dk
Td .
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Since k is a natural number, the result suggests that the average tuning time may be
minimized when the degree of the index is 3.

Release the limitation of the full k-ary tree, we assume the probability distributions
of all data nodes are uniformly distributed. That is, nffff n /1321   and

 nd klog . The index tree is a full k-ary tree when dkn  . For
dd knkk  2 , all leaves are at the same level (level d). The average tuning

time is )1(  dkT . For 132  kknkk dd , there are one leaf at level
(d-1) and (n-1) leaves at level d. The average tuning time is ndnkT /)1)1((  . For

2243  kknkk dd , there are two leaves at level (d-1) and (n-2) leaves at level d.
The average tuning time is ndnkT /)2)1((  . For

)1()1()1( 1111   dddddd kkkknkkkk , there are k-1 leaves at level (d-1)

and (n-k+1) leaves at level d. The average tuning time is nkdnkT d /))1()1(( 1   .
Therefore, if iikknikik dd  )2()1( ,we have

nidnkT /))1((  , for i=0, 1, …, kd-1-1.

The average tuning time can be expressed as
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Fig. 4 shows the tuning time as functions of the number of data nodes and the
degree of the index node. The access probabilities of the data nodes are all equal. The
number of the data nodes varies from 2 to 1000. The five curves, in the figure,
represent the average tuning time for the cases where the degrees are 2, 3, 4, 5, and 6,
respectively. The average tuning time increases as the number of data nodes increases
due to the increasing height of the index tree. The tuning time increases as the degree
of the index is larger than 3. Therefore, when the access probabilities are uniformly
distributed, the index nodes of degree 3 tend to minimize the average tuning time.
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Fig. 1. The average tuning time for data with the uniform distribution.

Consider the case where the access probabilities are non-uniformly distributed. We
assume the distribution of the access probabilities is Zipfian [9][14][13]. For n data
nodes, the access probability of a data node Di is as follows,
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, where r is the rank of the distribution.
Note that, the larger the rank r is, the skewer the probability distribution is. In

addition, fi decreases as i increases. In this sector, we use the rank r to set the access
probabilities of data nodes. Then, reorder the sequence of the data nodes using a
random number generator. The number of possible sequence orders is n!. Therefore, it
is impossible to evaluate all possible sequence orders for a large number of data nodes.
To simplify the computation, the sequence order is randomly generated. In our
experiments, we generate 10000 random sequences for each Zipfian distribution, and
then generate the index tree for each random sequence order, and calculate the
average tuning time.

Fig. 5 shows the results of the average tuning time for different ranks of Zipfian
distribution. For a small rank (e.g., r=0.2) and a large number of data nodes, the
minimum average tuning time can be obtained when the degree is 3. The results are
consistent with that of the uniform distribution. It is because that a smaller rank for
Zipfian distribution results in the less skew probabilities distribution. For a large rank
(e.g., r=2) in Zipfian distribution, the minimal average tuning time is found when the
degree is 2. This is because the large number of branches increases the tuning time of
every data node in the index tree. Consider the index trees of a given degree. The
skewer the access probability distribution is, the less the tuning time is. This is
because as the access distribution gets skewer, fewer data nodes commands more
access probability. The data nodes of large access probabilities trends to be placed at
the lower levels of the index tree. As a result, the tuning time decreases.
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Fig. 2. The average tuning time of different number of the branches with r=0.2, 1.0, and 2.0
with the IFAH.

Fig. 6 shows that the average tuning time of the CIFAH is less than that of the
IFAH. The CIFAH is an efficient algorithm in reducing the average tuning time. It is
because we can find the minimum tuning time from the selected nodes in the cycle
sequence to build low cost indexes in the index tree. The improvement ratio of the
CIFAH with large rank r is larger than that with small rank. This is because there are
data nodes of larger access probabilities for the skewer access probabilities
distributions. The CIFAH has the capability to find an ordered list for the data nodes
to construct an index tree that places those frequently accessed data nodes in the
lower level. Therefore, the improvement ratio of the tuning time increases.
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Fig. 3. The average tuning time of the IFAH and CIFAH.

5 Conclusions

In this paper, we proposed indexing schemes to obtain minimal tuning time in the
wireless broadcast system. The IFAH is an algorithm similar to the Hu-Tucker
algorithm in organizing the indexes. To reduce the tuning time, the CIFAH can
improve the IFAH by rotating the sequence of the data nodes.



From the experiments, we have the following results for the indexing schemes.
 If the access probabilities of the data are uniformly distributed, the tuning time

is minimal when the degree of the index node is 3.
 For the data nodes whose access probabilities are Zipfian distributed, the

tuning time increases as the number of the data nodes increases. It is because
that the depth of the index tree increases as the number of the data nodes
increases.

 The CIFAH can effectively reduce the tuning time when the access
probabilities are of Zipfian distribution, since it is more likely to find
consecutive nodes with less access probability to be merged into an index
node in the rotatable data cycle.

 For the Zifian distribution, the improvement ratio of the CIFAH increases as
rank r increases, i.e., the distribution gets more distorted. It is because skewer
access probabilities let the CIFAH have more chances to find k consecutive
nodes of less tuning access probability in the rotatable broadcast cycle to
construct an index node in the index tree.

 The tuning time increases as the degree of the index increases, since index of
large degree increases the tuning time of every data node in the index tree.

We provide the cyclic indexing construction schemes to reduce the average tuning
time. To reduce the tuning time, the degree of the index in the index tree is suggested
to be 2 or 3. The frequencies of the broadcasted data may not be uniform in a
broadcast cycle. In the future, we can schedule the broadcast sequence according the
access probabilities and a new indexing scheme is required to reduce the tuning time.
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