
In Situ Reuse of Logically Extracted Functional Components ∗

Craig Miles Arun Lakhotia
Center for Advanced Computer Studies

University of Louisiana at Lafayette
craig@craigmil.es arun@louisiana.edu

Andrew Walenstein
School of Informatics and Computer Science

University of Louisiana at Lafayette
walenste@ieee.org

Abstract
Programmers often identify functionality within a compiled pro-
gram that they wish they could reuse in a manner other than that in-
tended by the program’s original authors. The traditional approach
to reusing pre-existing functionality contained within a binary ex-
ecutable is that of physical extraction; that is, the recreation of the
desired functionality in some executable module separate from the
program in which it was originally found. Towards overcoming the
inherent limitations of physical extraction, we propose in situ reuse
of logically extracted functional components. Logical extraction
consists of identifying and retaining information about the loca-
tions of the elements comprising the functional component within
its original program, and in situ reuse is the process of driving the
original program to execute the logically extracted functional com-
ponent in whatever manner the new programmer sees fit.

1. Introduction
There exists many possible situations where a programmer may
need to reuse capabilities embedded within a binary executable for
which the source code is not available. Such a need arises when
porting applications from older architectures and operating systems
to newer environments. There are also times when a compiled com-
ponent may contain certain capabilities that are desired to be used
in another context, outside of the original system. Similar needs
arise when performing security audits of third party applications to
determine the existence of undesired behaviors or during forensic
analysis of a potentially hostile program to exercise its capabilities
under a different control environment.

When the need arises to implement a new system that will in-
clude one or more functionalities that have equivalent semantics
to those in a previously existing binary executable for which the
source code is not available, those functionalities are generally re-
developed ex novo. However, such ex novo redevelopment is un-
necessary and inefficient because code that performs the desired
functionality already exists within the original binary executable.
In lieu of ex novo redevelopment, we propose a system for reusing
pre-existing functionalities without separating them from the bi-
nary executables in which they were originally found.

The term functional component has been defined as a collec-
tion of programmatic constructs (instructions, data structures, etc.)
that accomplish a particular function [4]. Extraction of such func-
tional components is generally thought of in the “physical” sense;
that is, to extract a functional component from a compiled pro-

∗ c©Springer-Verlag France, 2012. This is the author’s version of the
work. It is posted here with permission of Springer-Verlag France for
your personal use. Not for redistribution. The definitive version was pub-
lished in Journal in Computer Virology, Volume 8, Number 3 (2012),
73-84, DOI: 10.1007/s11416-012-0167-y. The final publication is avail-
able at www.springerlink.com. URL: http://www.springerlink.com/
content/j9015921584h07g7/

gram, the code and data that comprise that functional component
are identified and separated from the original program into a stand-
alone executable module. However, the physical model is not the
only paradigm available for the extraction and subsequent reuse of
functional components. Rather than physically extracting a func-
tional component from its original disk image or process space,
a functional component may be extracted “logically”. Logical ex-
traction is the process of making a functional component available
for reuse in situ; that is, within its original context. Such a logical
extraction is achieved not by separating the functional component
from the program in which it resides, but rather by identifying and
retaining the locations of all of the elements within the original
program that comprise the functional component. We refer to that
retained information as the “descriptor” of the logically extracted
functional component (LEFC). Reuse consists of programming to
the exported interface described by the descriptor. Given a descrip-
tor containing the relevant information about a functional compo-
nent within a compiled program, that program may be loaded into
memory and driven in some manner so as to execute the desired
functional component.

We propose a taxonomy of LEFCs: cold, hot, warm, and truly
hot. The category to which a LEFC is classified indicates the
manner in which it may be reused by a programmer or reverse
engineer. In order to reuse a hot LEFC in situ, the program in which
the functional component resides must first be put into a particular
state prior to running the LEFC. Cold LEFCs, on the other hand,
are those that may be run regardless of the program’s state. Warm
LEFCs are a special subset of hot LEFCs which may be converted
into cold LEFCs, and truly hot LEFCs are hot LEFCs which are not
warm.

To demonstrate the usage of LEFCs, we have designed and im-
plemented a proof-of-concept software system capable of facili-
tating their in situ reuse. The system provides the ability to reuse
both hot and cold LEFCs in situ. The software system, called LEFC
Reuser, reads in descriptors of LEFCs and provides a programmatic
interface whereby they may be executed. The user provides argu-
ment values to be passed to the LEFC when appropriate, and LEFC
Reuser facilitates the return of computed information back to the
caller after the LEFC has finished executing.

The goal we envision for logical extraction and in situ reuse
of functional components is the ability to treat any compiled ex-
ecutable as a library of exportable functional components in the
same manner that Windows DLLs are libraries of exported func-
tions. A programmer should be able to quickly and easily identify
and extract the interesting functional components from a compiled
program such that they then may be called by his or her own pro-
gram. The present work is the first step in that direction.

Through this work, we make both theoretic and empiric contri-
butions relating to logically extracted functional components and
their in situ reuse. The primary contributions of this work follow:

• We propose in situ reuse of logically extracted functional com-
ponents.

• We formally define logical extraction of functional components.
• We formally define categories into which logically extracted

functional components may be classified, and we discuss how
the process for reusing logically extracted functional compo-
nents differs depending on their categories.

• We further the state of the art by developing and describing
the implementation of a software system, called LEFC Reuser,
that allows for in situ reuse of logically extracted functional
components.

2. Motivation
In this section, we describe a real scenario experienced by the
authors in which we found ourselves wanting to use functionality
of a program in a manner unavailable to us through the program’s
UI. We first detail the steps we followed to “physically extract”
the functionality, and later we show how we may more easily and
efficiently achieve our reuse objective by logically extracting the
functionality and reusing it in situ.

The authors were recently asked to help reverse engineer a
Windows PE. The executable was provided as a reverse engineering
challenge at a Capture the Flag type contest. In order to proceed in
the competition, contestants were required to recover and submit a
password embedded within the program. The user interface of the
application consists of a single form with a Get My Fortune! button
and a text field. Upon clicking the button a random fortune cookie
message is displayed in the text field, and a delay is set such that
the button may not be clicked again for a few seconds. New fortune
cookie messages continue to be displayed, even after clicking the
button many times.

The organizers of the competition indicated that one of the
randomly displayed fortune cookie messages would contain the
password. With luck, a contestant could repeatedly click the button
and possibly have the password displayed to him. However, with
the appearance of so many unique fortune cookie messages, it
seemed evident that such an approach would take much longer than
would be desirable. A better approach is to obtain all of the fortune
cookie messages at once.

Through much reverse engineering, it was determined that all
of the possible fortune cookie messages are embedded in the PE in
an encrypted form. Each time the button is pressed, one of the en-
crypted messages is decrypted by the Windows API function Crypt-
Decrypt() and displayed to the user. Figure 1 shows the display of
the Windows debugger OllyDbg1 with the execution of the Fortune
Cookie program stopped one instruction past the call to CryptDe-
crypt(). The arguments to the CryptDecrypt() system call have been
added as comments. We see that the CryptDecrypt() function takes
both encrypted data pointed to by the register EDI and a descriptive
hKey structure which contains information about the encryption al-
gorithm employed and the decryption key to be used. Finally, we
see that the previously encrypted data pointed to by EDI has been
decrypted in place, as the location now contains the decrypted for-
tune cookie message that will be displayed to the user.

In order to read all of the embedded fortune cookie messages at
once, we first extracted the entire block of encrypted fortune mes-
sages from the binary executable to a file. With the block of en-
crypted strings in hand, we were left to re-implement the decryption
algorithm. By consultation of the MSDN, we found that the con-
struction of the hKey structure occurs by calling several Windows
cryptographic functions sequentially. CryptAcquireContext() cre-
ates our cryptographic environment, and CrypteCreateHash() in-

1 http://www.ollydbg.de/

serts a hash object into that environment. Once the object is created,
a plain-text decryption key is hashed by CryptHashData() and is in-
serted into the hash object. Finally, the actual hKey decryption key
structure is generated from the hash object by CryptDeriveKey().
With the knowledge of how to generate the proper hKey decryption
key structure and how to call CryptDecrypt(), we re-implemented
the decryption routine and made it decrypt each of encrypted for-
tune cookie messages we had extracted. The Fortune Cookie pro-
gram and the physically extracted C++ source code of our decryp-
tion program is available online2. Amongst the decrypted messages
was found the password for the challenge: “YoU g0t It!! This 1s d4
K3Y :p”.

The tedious process of reconstructing the Fortune Cookie pro-
gram’s decryption code that we have just detailed is an example of
physical extraction. Some functionality was located within a pro-
gram that we wished to leverage in a way unintended by the origi-
nal authors; thus the semantics of the functionality were understood
and reimplemented externally. Though in this case the functionality
was reimplemented in C++, it also could have been physically ex-
tracted by separating the actual X86 assembly code that performed
the functionality we desired (the set up for and calls to the five Win-
dows encryption functions) from the executable, and organizing it
into a standalone executable module.

The question now becomes, why must we care how the decryp-
tion key structure is set up? Why must we create a new program
with the ability to decrypt the encrypted messages when all of that
functionality is already present within the Fortune Cookie program
itself? These questions form the crux of our argument for logical
extraction and in situ reuse of functional components. Such logical
extraction allows for a functional component to be reused without
extracting it from its original context. If we could logically extract
the functional component that does just the actual decryption, then
we could start up the Fortune Cookie program, let it construct its
hKey decryption key structure as it normally would, and finally take
control of its execution and cause it to run the decryption functional
component on each of encrypted messages.

3. Logically Extracted Functional Components
A functional component is a collection of programmatic constructs
(instructions, data structures, etc.) that accomplish a particular
function [4]. Such a functional component may be logically ex-
tracted from a binary executable (the target program) by identify-
ing and retaining information about it, thereby creating a logically
extracted functional component (LEFC). The information that must
be retained includes the address of the functional component’s en-
try point within its target program, and the address(es) of the exit
point(s). Also necessary are the parameters of the functional com-
ponent, the locations where the functional component’s return val-
ues are stored, and possibly the state that the target program must
be in prior to running the LEFC.

From this definition, it is evident that a functional component is
not the same thing as a C-like function. The first instruction of a
functional component need not correspond to the entry point of a
compiled C-like function. For example, the entry point of a func-
tional component might be in the middle of some loop body. Fur-
thermore, a functional component does not necessarily end on a
ret instruction, but rather it ends on any instruction that has been
specified by the definer of the functional component to be an exit
instruction. In our view, a functional component is a collection of
instructions, with one specified as the entry point, through which
control flows until an instruction specified as an exit point is exe-
cuted and/or an exit condition is met.

2 http://www.cacs.louisiana.edu/~csm9684/Fortune_Cookie_
Program_and_Decrypter.zip

Figure 1. Display of OllyDbg showing the Fortune Cookie program paused after the call to CryptDecrypt(), and “physically extracted” C++
source code of the same call in our physically extracted decryption program.

In terms of how they may be reused, particularly differentiating
amongst LEFCs is whether or not their target program must first be
put into some state prior to being able to run the LEFC. Referring
back to Section 2, the functional component that does the actual
decryption of the encrypted fortune cookie messages (and nothing
more) is dependent on the prior construction of the hKey decryption
key structure. Prior initialization of the hKey structure constitutes
the state of the target program on which the decryption functional
component depends. A LEFC may be classified into two broad
categories depending on whether or not its target program must
first be put into some state before the LEFC may be executed.

A LEFC that does not depend on its target program first setting
up some state is a cold LEFC. An example of a cold LEFC is a
procedure that takes two integer arguments and returns their sum.
Such a LEFC is cold because no state need be set up prior to
running the functional component in order for it to perform the
desired action; it must simply be provided the two integers to be
summed.

A hot LEFC is a LEFC that depends on its target program
being put into some state before the LEFC may be run; in other
words, the LEFC may depend on data initialized by code of the
target program that is not part of the LEFC. For example, consider
again the decryption functional component of the Fortune Cookie
program. The functional component has a data dependency on the
prior initialization of the hKey decryption key structure. In order to
make use of the decryption LEFC, the Fortune Cookie program in
which it resides must first be driven to some state where it is known
that the key structure initialization has already taken place.

We may further partition the universe of hot LEFCs into those
that are warm and those that are truly hot.

A warm LEFC is one that depends on its target program being
put into some state which must always be exactly the same in order
for every execution of the LEFC to exhibit the desired behavior.
Once more, consider the fortune cookie decryption LEFC. If it
can be shown that the initialized hKey decryption key structure
on which it depends is always initialized in the same way (every
initialization of it results in an hKey data structure comprised of the
exact same bytes as the previous initialization), then the decryption
LEFC is a warm one.

Hot LEFCs that are not warm are said to be truly hot. A truly
hot LEFC depends on its target program being put into a state that
is not always the same. For example, consider a LEFC that sends
an encrypted message to a recipient. Assume that the transmission
of the encrypted message must be preceded by a cryptographic

handshake between the sender and the recipient, thus the LEFC
that sends the encrypted message depends on a state of the target
process in which the cryptographic handshake has already taken
place. A LEFC of this nature is truly hot because the result of the
cryptographic handshake, which is the primary component of the
state on which the LEFC depends, differs each time the handshake
takes place.

Warm LEFCs are differentiated from truly hot LEFCs because
warm LEFCs can be converted into cold LEFCs. To do so, the
initialized data comprising the state on which the warm LEFC
depends can be identified and retained in the descriptor of the
LEFC. Prior to running the LEFC, that state can be artificially
constructed within the target program’s process space, rather than
relying on the target program’s code to set it up. In this manner, the
warm LEFC would have been converted into a cold LEFC, as it no
longer relies on the target program’s code to construct the state on
which it depends.

The question may arise as to why the code that sets up the
state on which an LEFC depends would not also just be included
within the LEFC. Because LEFCs are defined as starting from
a singular entry point from which execution flows until an exit
point or condition is reached, no ability to jump from one arbitrary
chunk of code to another is present. As such, if execution does
not flow from the code that sets up the state to the code that
comprises the rest of the functional component, then there is no
way to combine those two segments of code into a single LEFC.
In order to meaningfully include two segments of code within a
single LEFC, control must flow from the first to the second of its
own accord. Referring once again to the Fortune Cookie program
to provide an example, through our analyses we determined that
the code which initializes the hKey decryption key structure is
executed only once when the Fortune Cookie program is initially
loading, whereas the code the performs the actual decryption of
encrypted message executes each time the Get My Fortune! button
is pressed. As control does not flow from the hKey initialization
code to the message decryption code, the two sections of code
cannot be extracted as a single LEFC. They could, of course, both
be extracted into two individual LEFCs.

4. In Situ Reuse
In situ is a Latin phrase that, when literally translated, means “in
place”. In archeology, in situ refers to an artifact that has not been
moved from its original place of deposition. We employ the phrase
in a manner similar to how it is used by archaeologists. In partic-

ular, we use in situ to qualify the manner in which we program-
matically reuse LEFCs; in our work, we execute (reuse) LEFCs
without separating them from their original places. In contrast and
as was described earlier, a functional component may instead be
physically extracted from it’s original program into some stand-
alone executable module. We call execution of such a physically
extracted functional component to be a case of ex situ reuse.

For some LEFC extracted from a target program, in situ reuse
of the LEFC is accomplished by driving the execution of the target
program via some mechanism such that the instructions specified
by the LEFC are executed. The described driver must have the
ability to modify the instruction pointer of the target program so
that it can be set to the LEFC’s entry point, and it must also be
able to monitor the target program’s subsequent execution such
that it can be stopped upon reaching an exit point and/or meeting
a specified exit condition. Additionally, the driver must be able to
write to and read from memory within the target program’s process
space in order to pass argument values, artificially construct states
on which the LEFC depends, and read values from return locations
to be sent to the user once the LEFC has finished executing.

As will be discussed in much greater detail in Section 7, we
have chosen to construct our driver on top of a debugger. A debug-
ger has all of the previously discussed requisite abilities necessary
to implement a LEFC in situ reuse driver. Specifically, modern de-
buggers for the the X86 platform allow for (1) direct modification
of the EIP register (the X86 instruction pointer), (2) continued exe-
cution until a specific address is reached (via breakpoints), and (3)
for read/write access to the debugee’s memory. We have also spec-
ulated that such a driver could be constructed by injecting a new
thread directly into the target program’s process space, however
that line of research has not yet been explored.

5. Formalization
A logically extracted functional component (LEFC) is a collection
of information about a functional component. This collection of
information is referred to as the LEFC’s descriptor. A descriptor for
an LEFC consists of the following (uncommon terms are formally
defined shortly hereafter):

• Entry Point - The address of the first instruction of the LEFC
within the target program.

• Exit Points and Conditions - A set of addresses within the target
program through which the LEFC may exit and/or conditions
which, when met, indicate that the LEFC should exit.

• State Elements - A set of 2-tuples of {location, value}, where
the locations must be initialized to the corresponding values in
order to artificially construct some or all of the state on which
the LEFC depends. State Elements are used to decouple the
LEFC from the target program.

• Parameters - A set of the locations into which values should be
placed such that the behavior of the LEFC may be applied on
those values.

• Return Locations - A set of locations whose contents should be
returned to the caller after the LEFC has exited.

The LEFC metadata (name, description, etc.) and the specific
low-level information that must be retained concerning the pro-
grammatic items just described (data types of parameters and return
values, accessing locations by address versus stack pointer offset,
etc.) is further detailed in Section 7.

In order to formalize the definitions of cold, warm, and hot
LEFCs, we first appropriate some terms from data flow analysis
and the lambda calculus. Though the lambda calculus terminology
maps well to the current context when viewed at a slightly abstract
level, we stipulate that our use of it is perforce an abuse of jargon.

Let M be a LEFC consisting of instructions, at least some of
which refer to one or more locations. A location is simply a place
where bits are stored; that is, the registers, stack locations, heap
addresses, and the locations to which any of those point (and so
on, recursively). Let REF (M) be the set of locations accessed in
M , and let LIV E(M) be the set of locations used in M before
being defined. Specifically, a location x is in LIV E(M) if there
exists a path from the entry point of M over which x is used
without first being assigned to. Let PARAM(M) be the union
of the parameters and the locations in the state element 2-tuples of
M . From the lambda calculus terminology, it is illustrative to let
FREE(M) = LIV E(M) and BOUND(M) = REF (M) \
LIV E(M). M is then said to be closed if FREE(M) = ∅, and
M is a closure if FREE(M) ⊆ PARAM(M).

A cold LEFC is a LEFC that is either closed or a closure. A hot
LEFC is a LEFC that is neither closed nor a closure. A hot LEFC
M is also a warm LEFC if ∀ l ∈ LIV E(M) \ PARAM(M),
l must always be initialized to the same value in order for in situ
reuse of the LEFC to result in the desired behavior. A truly hot
LEFC is a hot LEFC that is not warm.

6. Example LEFCs
We now detail the logical extraction of a functional component
from a contrived sample program. Consider the following C++
program:

bool add;

int _tmain(int argc, _TCHAR* argv[])
{

add = true;
Add_Or_Subtract(10, 20);
return 0;

}

int Add_Or_Subtract(int operand1, int operand2)
{

if(add)
return operand1 + operand2;

else
return operand1 - operand2;

}

An IDA Pro disassembly of the Add Or Subtract() function,
compiled with no optimizations enabled and linked with debug
information, is shown in Figure 2.

Suppose we wish to extract from this contrived program a
functional component that computes and returns the sum of two
integers. To do so, we may construct a LEFC with entry point
0x401010, exit point 0x401024, parameters at esp+8 and esp+C,
and no state elements. Such an LEFC is hot because it depends on
a state (the prior initialization of the Boolean global variable add to
true), but that state information is not available in the LEFC’s de-
scriptor. In order to run this LEFC, the target program must first be
driven to execute the statement “add = true;” in tmain(). We also
note that this LEFC is warm because the state on which it depends
is always the same for every execution of the LEFC. Because it is
warm, we can convert it into a cold LEFC by adding a Boolean
state element 2-tuple of {0x403000, true} to the descriptor. The
state on which the LEFC depends, which is now fully described in
the LEFCs descriptor, can be artificially constructed by the LEFC
Reuser driver rather than relying on the target program’s code to
construct it. The modified LEFC is now an example of a cold LEFC
because the target program itself is no longer used to set up the state
on which the LEFC depends.

Figure 2. Disassembly of the Add Or Subtract() function.

7. Implementation
LEFC Reuser is a software system that provides for the in situ reuse
of LEFCs. Three major architectural components comprise LEFC
Reuser:

1. LEFC Descriptors - XML files which contain descriptors of
LEFCs and conform to LEFC Reuser’s schema.

2. LEFC Descriptor Compiler - A program that compiles the high-
level XML descriptor of a LEFC into a set of low-level com-
mands that instruct the LEFC Executing Debugger how to exe-
cute the LEFC.

3. LEFC Executing Debugger - We interface with the OllyDbg
debugger via a modified version of the ODBGScript OllyDbg
plugin in order to drive execution of the target program.

7.1 LEFC Descriptors
For each target program from which functional components have
been logically extracted, an XML file conforming to LEFC Reuser’s
schema is generated and retained. Each such XML file contains one
or more LEFC descriptors, where a descriptor contains all of the
information required to reuse a LEFC in situ. A grammar for de-
scribing LEFCs, which is both derived from and maps directly to
LEFC Reuser’s schema, is shown in Figure 3. The terminals of the
grammar are defined as follows:

• Name - User specified name for the LEFC.
• Description - User specified description of the LEFC.
• Hotness - Either “Hot” or “Cold”.
• Hotness Required State - If Hotness is “Hot”, a description of how

to put the target program into the state on which the LEFC depends;
otherwise, the field is unused.

• Point - An address of an instruction in the target program’s process
space.

• Condition - A predicate to be evaluated when the Point is reached. If all
Conditions associated with the Point evaluate to true (or if there are no
Conditions), then the LEFC exits.

• Position From Top - An integer specifying the position from the top of
the stack in which to store a Value, where the top is position 0, the next
location is position 1, and so on.

• Value - The State Element’s value.
• Reg - An X86 register (“eax”, “ebx”, “esp”, etc.).
• Address - An address of a memory location within the target program’s

process space.
• ID - A unique integer identifier for each parameter. Used to identify the

parameter being referred to when multiple sets of argument values to
run the LEFC against are provided via a parameter input file.

• P Name - User specified name for a Parameter.
• P Description - User specified description for a Parameter.
• Pointer Depth - An integer specifying the depth of the pointers pointing

to the Parameter. For example, if the Parameter is of type int, then
Pointer Depth should be 0, however if the Parameter’s type is **int,
then Pointer Depth should be 2.

• R Descr - User specified description of the return value.
• ESP Offset - An integer offset to be added to esp, such that esp + offset

contains a value to be returned to the user (or a pointer to it).
• Deref Count - An integer specifying the number of times the pointer

stored at the location of the Return (either its esp + ESP Offset, Reg,
or Address) should be dereferenced to access the actual return value;
should be 0 if it is not a pointer.

• Size - The size in bytes of the value to be retrieved from the specified
location.

Figure 3. Grammar for LEFC descriptors derived from LEFC Reuser’s schema.

7.2 LEFC Descriptor Compiler
The LEFC Descriptor Compiler, implemented in C# .NET, takes
an LEFC Descriptor as input and compiles it into a set of low-
level commands that instruct the LEFC Executing Debugger how
to execute the LEFC. The LEFC Descriptor Compiler consists of:
(1) A parser that reads in LEFC Descriptors and validates them with
respect to LEFC Reuser’s schema, (2) A mechanism to compile the
high-level XML into low-level commands to be sent to the LEFC
Executing Debugger, and (3) A communication mechanism that
allows the compiler to send its commands to and receive return
values from the LEFC Executing Debugger.

A user may provide the LEFC Descriptor Compiler its input
LEFC Descriptors either manually, by way of the Compiler’s GUI,
or programmatically. Providing a LEFC Descriptor to the Compiler
programmatically consists of dropping the descriptor XML file and
a file containing the desired argument values (see the ArgumentSet
example in Section 8) into a pre-specified directory. In this manner,
a programmer may make reuse of LEFCs in situ directly from
within his or her own program.

The parser is implemented using the XML parsing and validat-
ing functionality provided by .NET. Once parsed, the high-level
XML descriptor is compiled into low-level debugger commands
which instruct the LEFC Executing Debugger how to execute the
LEFC. An example illustrating the compilation of a high-level
XML descriptor into low-level debugger commands is given in the
following section. Finally, the LEFC Descriptor Compiler opens
the target program in the LEFC Executing Debugger and sends the
compiled commands to it. When the LEFC Executing Debugger is
done running the commands (when the LEFC has exited), the re-
turn value(s) are communicated back to the LEFC Descriptor Com-
piler which subsequently returns them to the caller. Communication
between the LEFC Descriptor Compiler and the LEFC Executing
Debugger is facilitated by dropping files containing debugger com-
mands or return values at pre-determined locations.

7.3 LEFC Executing Debugger
The LEFC Executing Debugger is comprised of the OllyDbg
Win32 debugger and a modified version of its ODBGScript plugin.
OllyDbg3 is a 32-bit assembler level analyzing debugger for Mi-
crosoft Windows. ODBGScript4 is a plugin for OllyDbg that pro-
vides a scripting interface to the debugger. It is into ODBGScript’s
low-level scripting commands that the LEFC Descriptor Compiler
compiles XML descriptors.

The ODBGScript plugin provides all of the requisite functional-
ity necessary to reuse a LEFC in situ. Specifically, it provides direct
access to the X86 instruction pointer EIP, the ability to drive the tar-
get program until a specified exit point is reached and to evaluate

3 http://www.ollydbg.de/
4 https://github.com/epsylon3/odbgscript/

if exit conditions are met, and the ability to read from and write to
memory addresses, stack locations, and registers. Furthermore, it
provides the ability to allocate memory within the target program’s
process space, which we often make use of when we artificially cre-
ate a state specified by the State Elements of an LEFC descriptor.

In order to facilitate communication between the LEFC De-
scriptor Compiler and the LEFC Executing Debugger, the ODBG-
Script plugin was modified such that it may receive scripting com-
mands programmatically; in the unmodified version, a user must
open a script manually via OllyDbg’s menu system. The modified
ODBGScript plugin was originally written in C++, and the neces-
sary modifications were made therein. The modified ODBGScript
plugin listens for commands sent by the LEFC Descriptor Com-
piler and runs them upon receipt. After ODBGScript finishes run-
ning them, it communicates the requested return values back to the
LEFC Descriptor Compiler by dropping a file containing them at a
pre-determined location.

7.4 Summary of LEFC Reuser Work-flow
Figure 4 illustrates the work-flow of logical extraction and in situ
reuse using our LEFC Reuser system. Descriptions of each of the
numbered edges follow:

1. The Target Program is analyzed by the LEFC Identifier and
Extractor which identifies functional components in the Target
Program and logically extracts them into the collection of LEFC
Descriptors. No such LEFC Identifier and Extractor software
or algorithms have yet been developed. In the present work,
all functional components have been identified and extracted
manually. Creation of an LEFC Identifier and Extractor that
requires only minimal human interaction forms the basis for
our future work.

2. The User, either a human or a program, obtains a LEFC descrip-
tor from the collection of LEFC Descriptors.

3. The User sends to the LEFC Descriptor Compiler (1) the se-
lected LEFC descriptor and (2) a collection of arguments for
the functional component to be run against.

4. The LEFC Descriptor Compiler (1) compiles the LEFC descrip-
tor and the arguments into ODBGScript commands, (2) opens
the Target Program in the LEFC Executing Debugger, and (3)
sends the compiled commands to the LEFC Executing Debug-
ger.

5. The LEFC Executing Debugger runs the compiled commands,
thereby driving the Target Program to execute the functional
component described by the selected LEFC descriptor against
the provided arguments.

6. Once all of the compiled ODBGScript commands have been
run, the values at the return locations specified by the LEFC de-
scriptor are communicated back to the LEFC Descriptor Com-
piler.

Figure 4. Work-flow of the LEFC Reuser system.

7. The LEFC Descriptor Compiler conveys the return values on to
the User.

7.5 Evaluation of LEFC Reuser
The described LEFC Reuser software system has been successfully
tested on a set of LEFCs that collectively make use of all of the var-
ious elements made available by LEFC Reuser’s LEFC descriptor
schema. A mixture of both hot and cold LEFCs have been tested
successfully. Such tested LEFCs included those with multiple ex-
its, those whose parameters, state elements, and returns make use
of all three of the location types (heap, stack, and register), and
those whose return values are obtained by dereferencing pointers.
Some of the sample LEFCs also required that their arguments and
state elements be stored in newly allocated memory within the tar-
get program’s process space.

For a LEFC with descriptor D, LEFC Reuser’s parsing and
compilation algorithms run in O(n) where n is the number of
XML elements in D. Of course, the complexity of actually running
(in situ reusing) a LEFC is determined by the instructions that
comprise it.

8. Fortune Cookie Revisited
Having described the LEFC Reuser system, we now show how it
may be applied to the purpose of decrypting all of the encrypted
messages in the Fortune Cookie program. Recall from Section 2
that we do not want to waste time figuring out how to construct
the necessary hKey decryption key structure ourselves. Because
the functionality to properly construct the hKey is already present
within the Fortune Cookie program, we wish to let it do so for
us. Once the Fortune Cookie program has constructed the hKey,
we want to hijack the Fortune Cookie program’s control in order
to make it iterate over and decrypt all of the encrypted messages
within itself.

Figure 5 shows one possible LEFC Reuser descriptor for the de-
cryption functional component of the Fortune Cookie program. The
structure of the LEFC descriptor maps perfectly to the BNF gram-
mar of Figure 3. Referring back to Figure 1, we see that the call to
CryptDecrypt() is at 0x4016E0, which we specify as the decryption
LEFC’s entry point in Figure 5. 0x4016E6, the address of the in-
struction immediately after the call to CryptDecrypt(), is specified
as the LEFCs exit point with no associated exit conditions. The
State Elements given in the descriptor partially describe (less the
Parameters) the setup of the stack necessary for the call to Crypt-
Decrypt() to correctly decrypt the encrypted fortune cookie mes-
sages. Regarding the State Element with Position From Top=0, on
our test system 0x15D660 is always the user-space handle into
the kernel-space hKey structure constructed by the Fortune Cookie

program and pushed onto the stack (via EAX) at line 0x4016DB
of Figure 1. Of course, the location at which the hKey structure is
constructed might be different on another system or if ours were re-
booted, but the address is easily re-determinable by observing the
call to CryptDecrypt() when the Get My Fortune! button is pressed.
The given Parameters specify that two arguments, a pointer to an
encrypted fortune cookie message and a pointer to the size of that
encrypted message, complete the decryption LEFC’s setup. Finally,
the single Return specifies that the decrypted fortune cookie mes-
sage will be pointed to by ESP-8 after the LEFC has exited.

Following is an abstracted snippet of the input file to be pro-
vided, along with the decryption LEFC’s descriptor, to LEFC
Reuser:

ArgumentSet:
Arg_0: {ID: 0, IsAddressInTarget: true,

Value: 0x542760, Size: 40}
Arg_1: {ID: 1, IsAddressInTarget: false, Value: 40}

ArgumentSet:
Arg_0: {ID: 0, IsAddressInTarget: true,

Value: 0x5427A4, Size: 30}
Arg_1: {ID: 1, IsAddressInTarget: false, Value: 30}

...

The input file contains all of the sets of arguments (addresses of
the encrypted fortune cookie messages within the Fortune Cookie
program and their respective sizes) for the decryption LEFC to
iterate over and decrypt.

As specified by the decryption LEFC’s descriptor, an Argu-
mentSet in this instance consists of two Arguments corresponding
to the two given Parameters. The Argument with ID=0 (referred to
as Arg 0) corresponds to the “Encrypted Data” Parameter in Fig-
ure 5 and Arg 1 corresponds to the “Size of Encrypted Data” Pa-
rameter. The IsAddressInTarget field of the input file is a Boolean
which specifies whether or not the subsequent Value of the Argu-
ment is the actual value or the address of the value within the tar-
get program’s process space. Finally, if IsAddressInTarget for an
Argument is true, then Size specifies the number of bytes at that
address which comprise the argument’s value. We see that the first
encrypted fortune cookie message, 40 bytes in size, is located at
address 0x542760 in the Fortune Cookie program. One such Ar-
gumentSet for each encrypted fortune cookie message is present in
the actual input file.

Once LEFC Reuser is provided the decryption LEFC’s descrip-
tor and the corresponding input file, the LEFC Descriptor Compiler
compiles the descriptor into ODBGScript commands and opens the
Fortune Cookie program in the LEFC Executing Debugger. Notifi-
cation is provided to the user that the present LEFC is hot, and that
in order to construct the state necessary for the LEFC to run cor-
rectly the Fortune Cookie program must first be allowed to run un-

Name: "Decrypt"
Description: "Decrypts an encrypted fortune cookie message."

Hotness: "Hot"
Hotness_Required_State: "The state is constructed once the GUI is displayed."

Entry: 0x4016E0
Exit: 0x4016E6

SE_Stack: {Position_From_Top: 0, Value: 0x15D660}
SE_Stack: {Position_From_Top: 1, Value: 0}
SE_Stack: {Position_From_Top: 2, Value: 1}
SE_Stack: {Position_From_Top: 3, Value: 0}
P_Stack: {ID: 0, P_Name: "Encrypted Data",

P_Description: "Encrypted fortune cookie message.",
Position_From_Top: 4, Pointer_Depth: 1}

P_Stack: {ID: 1, P_Name: "Size of Encrypted Data",
P_Description: "Size in bytes of Encrypted Data.",
Position_From_Top: 5, Pointer_Depth: 1}

R_Stack: {R_Descr: "Decrypted message.", ESP_Offset: -8,
Deref_Count: 1, Size: 0x48}

Figure 5. Descriptor for Fortune Cookie program decryption LEFC.

til its GUI is displayed to the user (see the Hotness Required State
field in Figure 5). Once the user notifies LEFC Reuser that the For-
tune Cookie program GUI is displayed, the compiled commands
are sent to the debugger where they cause the Fortune Cookie pro-
gram to iterate over and decrypt all of the encrypted fortune cookie
messages. Once all of the commands have been run, the debugger
returns the location where the decrypted results may be found and
LEFC Reuser displays that location to the user. The password for
the Fortune Cookie Challenge, “YoU g0t It!! This 1s d4 K3Y :p”,
is found in the decrypted results.

Using the LEFC Reuser system, we have shown how all of
the encrypted fortune cookie messages within the Fortune Cookie
program can be decrypted in a single shot with only a minimal
understanding of how the actual decryption takes place.

9. Related Work
Reuse has long been considered to be a desirable alternative to de-
veloping new code. Efforts toward providing reuse of functional-
ities from compiled programs have included work in the field of
COTS (commercial off-the-shelf) software integration. Such inte-
gration involves the inclusion of some other party’s commercial
software within your own software system. COTS software inte-
gration has often been limited due to a lack of provided interfaces
(APIs) to the COTS software functionality. Egyed and Balzer [5]
make the case for reusing what we call functional components from
COTS software, however they only target reuse for functional com-
ponents which already have interfaces provided by the original au-
thors. Their major contribution is the description of a wrapper for
provided interfaces which extends those interfaces to allow for bet-
ter synchronization between the caller and the callee. In general,
the theme of this past work in COTS software integration has been
to make usage of provided COTS software interfaces (APIs) less
messy. Our work, on the other hand, can be characterized as cre-
ating and exporting interfaces for functionalities to which no inter-
faces previously existed.

Instrumentation is a technique for inserting extra code into an
application to observe its behavior, and dynamic instrumentation is
simply the application of the instrumentation technique on a run-
ning process. Dynamic instrumentation tools such as Pin5 [8] and
DynInst6 [1, 9, 11] provide C++ API’s that allow a user to insert
snippets of code into a target program to be executed when speci-

5 http://www.pintool.org/
6 http://www.dyninst.org/

fied points are encountered during its execution. The chosen instru-
mentation framework places trampoline code at the points specified
by the user. When one of these points is encountered during the tar-
get program’s normal flow of execution, the trampoline code stores
the state of the target process and then transfers control to the snip-
pet. When execution of the snippet has concluded, the trampoline
code restores the process to its prior state and transfers control back
to the next instruction of the target program. Profilers, cache simu-
lators, trace analyzers, and memory bug checkers have all been im-
plemented as dynamic instrumentation snippets. Dynamic instru-
mentation and in situ reuse are similar in that they both allow for
execution of a target program in ways unintended by the target pro-
gram’s original author, however they go about that goal in quite
different ways. While dynamic instrumentation relies on the tar-
get program’s normal flow of control to initiate execution of newly
inserted snippets of code, in situ reuse takes complete command
of the target program’s control in order to drive it to execute code
that was already present in new ways. However, we recognize that
the aforementioned dynamic instrumentation tools already contain
many primitive functionalities that, if recombined with LEFCs in
mind, could provide much of the basis for a system capable of pro-
viding in situ reuse. Specifically, the Dyner [11] add-on to DynInst
could quite possibly be extended to work in a fashion similar to our
LEFC Reuser. Furthermore, the abilility to construct conditional
breakpoints within the target program’s process space using dy-
namic instrumentation [1, 11] would allow for a much more effi-
cient implementation of LEFC exit point and exit condition check-
ing than is currently available to us via our OllyDbg back-end.

Cifuentes and Fraboulet [3] and Kiss et al. [6] adapted Weiser’s
high-level language slicing techniques [10] (and those technique’s
descendants) to the purposes of inter- and intra-procedural slicing
on compiled binaries. However, such slices are taken with respect
to either an individual register or a set of registers at a given
instruction, and therefore they are not analogous to the functional
components with which we are concerned. While these slicing
techniques may aide in the identification of state elements, they
cannot directly be used for the purpose of logically extracting
executable functional components. Slicing on binaries also presents
other severe problems, including the need for accurate procedure
and call information.

Kolbitsch et al. [7] extract externally observable behaviors,
rather than functional components, from compiled executables.
After selecting some externally observed behavior reported by a
run-time monitor, their technique uses dynamic slicing to extract
a ‘gadget’ that comprises all of the code and a memory snapshot

needed to recreate the selected behavior. The gadget can then be
replayed by a gadget player, thereby recreating the exact behavior
of the originally observed program. Because these techniques are
primarily concerned with behavior replay rather than component
reuse, conditional branches in the extracted code are modified in
order to force the flow of execution to always follow the originally
observed path. As such, the extracted behavior is fixed to corre-
spond to a single set of inputs, and cannot generally be used as a
reusable component. For example, sometimes a behavior is only
triggered under specific conditions, such as an update mechanism
that only runs on a specific day of the week. Because their tech-
nique is able to identify and subsequently extract only behaviors
whose executions are observable by their dynamic analysis com-
ponent, if they are not observing the program on the day that it
conducts its update check, then they cannot identify and subse-
quently extract a gadget that replays that behavior.

Caballero et al. [2] proposed techniques to identify and physi-
cally extract callable functions using interface abstraction methods.
Primary contributions of their work include the development of a
mechanism to identify the prototype of a binary code fragment and
a technique for extracting its code and data dependencies. Extracted
functional components consist of a C function that contains the ex-
tracted code as inline assembly and a header file that contains the
required data. Limitations of Caballero et al.’s approach include: (1)
components with parameters that are recursive structures, such as
trees, cannot be extracted, (2) in order to extract a function, it must
first be observed executing natively at least once (if some specific
input is needed for control to reach the function, they assume it is
provided), (3) functions with variable-length parameter lists such
as printf cannot be extracted, and (4) a component to be extracted
may not contain any code that explicitly makes use of knowledge
of its own location.

Logical extraction, in lieu of physical extraction, is able to over-
come each of the aforementioned limitations under certain condi-
tions. While it may be difficult to identify the exact structure of a
complex argument, if the structure is known a priori and because we
leverage functional components within their original context, then
there is no reason that such a component could not be made ex-
ternally reusable. Furthermore, while the ability to observe a func-
tional component execute in its native context is certainly advan-
tageous when attempting to identify the elements comprising its
would-be descriptor, it is not absolutely necessary; the requisite
information could alternatively be ascertained via static analysis.
Even if a functional component’s parameter list is identified as be-
ing of variable length, because it will be executing within its native
context there is no reason why a system using logical extraction
could not interface with it if the structure of that parameter list were
known. Finally, since our LEFCs are reused in situ, there are never
limitations on their ability to make use of the knowledge of their
own locations within the target program.

10. Directions for Future Work
Throughout this work, the process of identifying functional com-
ponents that may be logical extracted and reused in situ has taken
place manually. This included manually searching for interesting
segments of code within compiled programs that could be logi-
cally extracted as useful and reusable functional components, as
well as manually determining those functional components’ state
elements, parameters, and returns via both static and dynamic anal-
ysis. Towards the goal of making the present work more useful,
many directions for future work exist. Primarily, automation of the
process for identifying and learning about functional components is
a fertile and interesting research area. Such work might entail usage
of novel combinations of machine learning and classification tech-
niques to automatically identify code that may comprise interest-

ing or useful functional components, program slicing and data flow
analysis techniques to automatically determine a functional com-
ponent’s state elements and parameters, and variable identification
and type inferencing techniques to more accurately determine the
prototypes of functional components. Another possible interesting
direction for future work would be to prove that the set of elements
included in LEFC Reuser’s LEFC descriptor schema comprises the
sufficient set of such elements required to adequately describe all
possible functional components.

11. Conclusion
Prior approaches for extracting functional components from com-
piled programs have been physical in nature; that is, they generally
relied on physically separating the code and data comprising the
functional component from the target program in which it origi-
nally resided. We have shown that not only does another paradigm
exist, that of logical extraction, but that extracting functional com-
ponents in this new manner overcomes some of the limitations of
past approaches.

We have described the process of logical extraction and the nec-
essary information that must be stored in order to logically extract
most (and possibly all) functional components, and we have both
described how such a LEFC may be reused in situ and have de-
veloped a proof-of-concept implementation of this process. Formal
definitions have been presented for the different types of LEFCs,
cold, hot, warm, and truly hot, and the process for converting a
warm LEFC into a cold LEFC has been described. Results from
using our implementation, LEFC Reuser, have been positive; it has
been shown to be capable of in situ reuse of many logically ex-
tracted functional components of varying complexity.

With the present work, we have taken a step towards meeting
the final goal of being able to treat any compiled executable as a
library of exportable functional components that are reusable by a
programmer within his own programs.

12. Acknowledgments
The authors gratefully acknowledge the contributions of Chris
Parich. This research was sponsored in part by the Air Force Re-
search Laboratory and DARPA (FA8750-10-C-0171) and the Air
Force Office of Scientific Research (FA9550-09-1-0715).

References
[1] B. Buck and J. Hollingsworth. An API for runtime code patching.

International Journal of High Performance Computing Applications,
14(4):317–329, 2000.

[2] J. Caballero. Binary code extraction and interface identification for
security applications. Technical report, DTIC Document, 2009.

[3] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary
executables. In Software Maintenance, 1997. Proceedings., Interna-
tional Conference on, pages 188–195. IEEE, 1997.

[4] Defense Advanced Research Projects Agency. Research Announce-
ment - Binary Executable Transforms (BET) - DARPA-RA-11-56.
Technical report, Defense Advanced Research Projects Agency, 2011.

[5] A. Egyed and R. Balzer. Unfriendly COTS integration-instrumentation
and interfaces for improved plugability. In Automated Software En-
gineering, 2001.(ASE 2001). Proceedings. 16th Annual International
Conference on, pages 223–231. IEEE, 2001.

[6] A. Kiss, J. Jász, G. Lehotai, and T. Gyimóthy. Interprocedural static
slicing of binary executables. In Source Code Analysis and Manip-
ulation, 2003. Proceedings. Third IEEE International Workshop on,
pages 118–127. IEEE, 2003.

[7] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector Gadget:
Automated extraction of proprietary gadgets from malware binaries.

In 2010 IEEE Symposium on Security and Privacy, pages 29–44.
IEEE, 2010.

[8] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Reddi, and K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In ACM SIGPLAN No-
tices, volume 40, pages 190–200. ACM, 2005.

[9] G. Ravipati, A. Bernat, N. Rosenblum, B. Miller, and J. Hollingsworth.
Toward the deconstruction of Dyninst. Technical report, Com-
puter Sciences Department, University of Wisconsin, Madison
(ftp://ftp.cs.wisc.edu/paradyn/papers/Ravipati07SymtabAPI.pdf),
2007.

[10] M. Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press,
1981.

[11] C. Williams and J. Hollingsworth. Interactive binary instrumentation.
Intl. Works. on Remote Anal. and Measurement of Softw. Sys, pages
312–327, 2004.

