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Abstract—This paper aims to identify central points in road
networks considering traffic demand. This is made with a
variation of betweenness centrality. In this variation, the graph
that corresponds to the road network is weighted according to
the number of routes generated by the traffic demand. To test
the proposed approach three networks have been created, which
are Porto Alegre and Sioux Falls cities and a regular 10 × 10
grid. Then, trips were microscopically simulated and the results
were compared with the proposed method.

Index Terms—Traffic assignment, complex networks, central-
ity, betweenness centrality.

I. INTRODUCTION

METROPOLITAN regions are currently facing major
problems regarding urban mobility. For example, in

2014 Brazil had 78.1 million private vehicles, which represents
an increase of 229.3% of fleet of vehicles. This means one
private vehicle per 2.6 inhabitants in comparison to 2004.

Dealing with such growth in the fleet requires duly planning
the highway system in order to reduce the effects of traffic on
population and environment. Planning transportation systems
involves, among other factors, analyzing the distribution of
traffic flow throughout road networks.

There is evidence that the measure of betweenness
centrality, as proposed by Freeman [1], is capable of predicting
traffic flow in road networks. However, this measure ought
to be adapted because it does not suitably represent the
distribution of demand [2], [3], [4]. The objective of this paper
is to analyze how betweenness centrality may be adapted and
used in identifying central points in a road network. In this
paper the term central points refers to those points that are
most often traversed by road users when traveling along their
routes.

II. DEFINITIONS

A. Transport Networks

Transport networks can be defined as networks that are
composed of roadways and junctions between roadways (e.g.
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intersections). Such networks are typically represented as
weighted directed graphs G = {V, E}, composed of a set
of vertices V (junctions) and edges E (roadways) and a cost
function C(e) which associates weight to each edge. In the
context of transport networks, the length, the travel time or
the capacity are commonly used as the weight of the edges.

Demand for traffic represents the behavior of users in using
the network infrastructure. By behavior, it is understood the
decisions made by the users that are relevant to the problem
which is being modeled (e.g. choice of routes).

The locations of origin and destination of demand are
grouped in districts. Districts can be defined based on
information obtained through sociodemographic studies, data
of georeferencing and urban statistics, so that these variations
may be the least possible within a given district [5]. In general,
and also in this work, each district is associated to a location
within the network and it is composed of a set of vertices and
edges without there being overlapping with other districts.

The demand of a network is commonly represented by a
matrix that relates districts of origin to destinations, associating
each possible combination, to a figure that corresponds to the
intensity in which these trips occur. As it relates origins to
destinations, it is called an origin-destination matrix, or OD
matrix.

A driver who wishes to travel from district s to district t,
represented by (s,t), may use more than one series of edges
that lead from s to t. Each these possible paths is called
a route. Since each of these edges has an associated cost,
there is particular interest in the path with the lowest cost,
which in this article is called the path with the least length,
or the shortest path. Therefore, creating the routes consists of
associating series of edges to trips that are specified by the
OD matrix.

B. Betweenness Centrality
Betweenness centrality is based on the idea that a vertex

is more central as more low cost paths pass through it. The
shortest paths between all pairs of vertices in the network
are considered in this calculation. The traditional method for
calculating betweenness, as well as other centrality measures,
were originally developed in the scope of studying social
networks, and they have recently been highlighted in the
literature [6].
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Betweenness for a vertex u is defined according to
Equation 1, in which σij is the number of shortest paths
between i and j, and σij,u is the number of these paths through
which u passes. The shortest paths are calculated on the basis
of cost of the edges, thus centrality is sensitive to the function
of cost that has been chosen.

Bu =
∑
i∈V

∑
j∈V \{i}

σij,u
σij

. (1)

III. METHODS

This section presents a method for calculating betweenness
by taking into consideration the demand that is going to use
the network. The method consists of constructing a graph
that represents the network and weighting it by using the
demand. In order to calculate betweenness, the occupation of
the roadways is taking into consideration and it results from
the demand that is represented by the OD matrix.

A. Assigning Weights to the Edges

Before considering betweenness by considering the demand,
it is necessary to determine the routes that correspond to the
demand. As an OD matrix has only origins and destinations,
calculating the routes is necessary for obtaining a table that
adds up the amount of routes that pass through each edge.
The routes were obtained by calculating the path of lowest
cost between the origin and the destination of each trip that is
presented in the OD matrix. That is why sequences of edges
that form the paths with the lowest cost were found for each
OD pair, by using the Dijkstra algorithm [7].

Once the routes that correspond to the demand have been
calculated, it is possible to construct a table of the occurrence
of the amount of routes which pass through each edge. This
procedure is a basic stage for defining the weights of the edges
in the network graph, since the amount of routes will serve as
input for the functions used to calculate the cost of the edges.
Weight to the edges can be carried out in distinct manners.
Several studies use the length of the roadway as the cost of
the edges [3], [8], [2], [9]. In this paper we have used the
occupation rate of the roadways as the weight of the edges, as
it is understood that it reflects the use of the network related
to the demand. Furthermore, the unitary function, in which the
lowest cost routes refer to the number of hops necessary to go
from the origin to the destination, was also considered.

In this study, we decided to use decreasing cost functions
to attribute costs to the edges. Figure 1 illustrates the situation
that brought about this decision. A network in which 10 routes
pass along each of the edges is shown in Figure 1a; the values
of betweenness for each of the vertices are shown in the same
figure. One may notice that the betweenness values are evenly
distributed since this is a regular network.

Supposing that the number of trips between vertices A and
B is increased by 5 trips, the natural logic is to increase the
number of trips on the edge to 15. Figure 1b illustrates whats
happens to the values of betweenness when the cost of edge

AB is increased. In this case, as the betweenness algorithm
considers the paths of lowest cost, paths that previously passed
through AB have ceased to do so. Thus, vertices C and D
have come to receive the greatest betweenness values, while
vertices A and B were those that received a real increase in
demand. This would require the reader to use and inverted
interpretation of the measure, so that the vertices with the
lowest betweenness values are central in relation to the
demand.

In order to solve this problem and have the greatest
values of betweenness be attributed to the vertices with the
greatest volume of demand, we decided to use decreasing cost
functions. In this case, an increase of demand between vertices
A and B causes a decrease in the weight of the edge, as this
was attributed by a decreasing function. Figure 1c shows that
in this case the vertices with the highest values of betweenness
coincide with the vertices that have the highest demand.

The experiments were guided by taking the following cost
functions into consideration:
F1: Decreasing Exponential It is possible to use an ex-

ponential function for modeling the cost of an edge
according to its occupation. Likewise, assuming that the
cost of an edge also decreases exponentially in relation
to its rate of occupation, the cost attributed to the edges
is defined as function C, as defined in range (0; 1]. This
weight is calculated in accordance with the decreasing
exponential function that is shown in Equation 2, a
particular case of the family of equations y = a(1− b)x,
and it only considers the amount of trips n that pass
through a given edge.

C(n) = (1− 0.001)n. (2)

F2: Rational Function The rational cost function shown in
Equation 3 was also considered in the experiments.
This function was chosen to explore the behavior of
betweenness distribution when cost decreases faster than
the exponential function had previously explained.

C(n) = 1/n. (3)

F3: Decreasing Linear Function The linearly decreasing
function exhibited in Equation 4, in which k > n, was
also considered in the experiments. The main objective
of using a linear cost function is to study the behavior
of the proposed method when edge costs are diminishing
more smoothly than the decreasing exponential function.

C(n) = k − n. (4)

F4: Number of Hops Considers the number of hops that
were performed. This function represents the number of
edges there are in the path with the lowest cost calculated
for an OD pair.

F5: Length of an Edge Considering that several studies
have used the length of a roadway as weight of the edges,
this was used in the cost function F5 as a way to compare
this study to previous studies.
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Fig. 1. Example of influence of the cost of the edges in betweenness.

B. Calculation of Betweenness Centrality Considering De-
mand

After the graph that represents roadways has been
constructed and its edges have been properly weighted by
using the routes generated from the OD matrix and cost
function, it is possible to calculate the betweenness. As the
interest here lies in identifying the central points, the results
of the betweenness algorithm shows high values for vertices
that have greater demand.

Algorithm 1 lists the steps involved in calculating
betweenness centrality considering the demand.

Algorithm 1 Betweenness considering demand
Require: Network R, OD Matrix M, Cost Function C
Ensure: Betweenness from all vertices

1: procedure DEMANDBETWEENNESSCENTRALITY(R,M,C)
2: Construct graph G with the same topology as R
3: Calculate the routes from M over G
4: Create a table T of routes passing through each edge
5: Attribute costs to the edges of G by using T and C
6: Calculate betweenness over G
7: return betweenness from the vertices

IV. EXPERIMENTS AND RESULTS

The proposed approach was tested by means of experiments
on three networks. Two of these are abstractions of real
networks in the cities of Porto Alegre and Sioux Falls, and
a third network consists of a regular 10x10 grid. All three
networks are shown in Figure 2. Furthermore, with the aim of
analyzing the behavior of betweenness at different occupation
levels, demands with volumes of 10%, 25%, 50% and 75% of
the total capacity of each network are used.

A. Traffic Demand

For the Porto Alegre Arterials network a pattern of demand
was specified with the aim of reproducing the flow patterns
of drivers that are observed in the city at the beginning of
the day, in which they leave the outskirts of the city and
go downtown. In this demand, which is called Non-Uniform
Outskirts→Downtown Demand (NUODD), seven distinct

points in the outskirts of the city and one point in the
central region of the city were used as origin and destination
respectively. Considering that the capacity of the Porto Alegre
Arterials network is 127,320 vehicles, demands of volume of
10% (12,372 trips), 25% (31,830 trips) and 50%1 (63,660
trips) were defined.

For the Sioux Falls network, the same model of demand
used in the paper by Chakirov and Fourie [10] was used. In
their study the authors based their work on census data to
create a de-aggregate demand and a microscopic model of the
Sioux Falls network, based on the network that was originally
used in the study by LeBlanc et al. [11]. In this study only
the volume of demand corresponding to the morning rush hour
was used. Thus, the demand used in this network has a volume
of 44,652 trips and it was generated by an iterative model in
order to achieve the stochastic user equilibrium. See [10] for
details.

For the regular 10x10 grid two regions were determined—
edge and center—on which three types of demand were
defined. The first of these, uniform demand (UD), shows
uniform distribution of the origins and destinations of the
trips that were generated, and its aim is to create random
trips within the 10x10 grid. The second, Non-Uniform
Edge→Center Demand (NUECD), is composed of trips that go
from the border toward the center of the grid, and which have
the aim of creating congestion in the central region. The third
type of demand which is called Non-Uniform Center→Edge
Demand (NUCED), is composed of trips that leave the center
and go toward the edge of the network. Considering that the
grid has a capacity of 4,890 vehicles, demands of volume
equivalent to 10% (489 trips), 25% (1,223 trips) and 50%
(2,445 trips) are used.

B. Comparing the Proposed Method to a Microscopic
Simulation

Since access to the real measurements that were carried
out on roadways of the cities of Porto Alegre and Sioux
Falls were not available, it was decided to test the proposed

1The total volume is equal to 50% of the maximum capacity of the network.
Demands with volumes over 50% higher were not simulated.
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(a) POA Arterials (b) Sioux Falls (c) 10x10 Grid

Fig. 2. Networks used in the experiments.

technique by means of comparing it to a simulation. In this
case, a microscopic simulation performed in the SUMO [12]
simulator was used, and it applies the routes calculated from
an OD matrix to a given network. Figure 3 shows the steps
involved in the microscopic simulation process and the steps of
the proposed method. Both methods receive the OD matrix and
the road network files as input and calculate the betweenness
of the vertices at the end. For the microscopic simulation,
additional steps for trips and routes generation are required to
produce the SUMO related files.

By using SUMO it was possible to obtain information about
occupation of the edges at the peak of the occupation of the
network. Figure 4 shows the mean occupation curve of the
Sioux Falls network along time, highlighting the time-step of
the peak of mean occupation. The rates of occupation obtained
were used to weight a graph that represents the network, on
which betweenness which serves as a basis for comparing
it to the model proposed was calculated. Table I shows the
vertex-by-vertex details of betweenness that were calculated
by the proposed method and the betweenness values calculated
at the peak of occupation of the network. The five most
significant values of each case study were highlighted to make
visualization easier.

C. Results

With the aim of comparing the results of betweenness
obtained by the proposed method to the results obtained
through simulation, Pearson’s correlation coefficient was used.
Thus, the correlation between the results generated by the
proposed method with the results obtained by the simulation
were calculated for each of the experiments. This correlation
was calculated between the results of betweenness over each
set set of vertices. Table II shows the results that were detailed
by the experiments and the cost function.

In the case of the Porto Alegre Arterials network, decreasing
linear function and rational function showed the best results.

Considering that hops and edge length functions disregard
demand, it is possible to note that even so, the former showed
results that were significantly better than the latter. It is also
possible to note that, for lower volumes, the correlation values
obtained were greater, which may be attributed to the fact
that microscopic simulation considers factors which the static
model does not consider.

In the experiment on the Sioux Falls network, the decreasing
exponential functions and the rational functions were those
that showed the best results. This experiment was the one that
showed the lowest rates of correlation. This can be attributed
to the fact that the routes of this demand were generated by
a different process than the others. In this case, the routes
were generated by the model developed by Chakirov and
Fourie [10], while in the other case studies, the routes were
calculated by considering the shortest paths.

In the case of the 10x10 grid, hops and edge length functions
were the ones that showed the best results. Specifically for this
case study, the fact that shortest paths with same value exist
between a given origin and destination showed a deviation that
may have distorted the results. Another point to be noticed is
the strong correspondence between the hops and edge length
columns, due to the regularity of the grid, which makes the
edge length function just as accurate to the hops function.

We observed that the decreasing exponential function and
the decreasing linear function showed the best results when
the instances of Sioux Falls and Porto Alegre Arterials were
considered. As the occupation peak of the network is being
considered, many edges have occupation rates that are near 1.
The hops function also showed significant results, exceeding
the others in some cases.

V. RELATED WORK

In Holme’s paper [6], he investigates the relation between
traffic flows in communication networks and centrality
measures. In this model, particles are moved along the
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Fig. 3. Steps involved in the betweenness centrality calculation using the proposed method and the microscopic simulation.

TABLE I
BETWEENNESS CALCULATED BY USING DIFFERENT FUNCTIONS FOR ATTRIBUTING COST AND THE SIMULATION OVER THE SIOUX FALLS NETWORK,

DETAILED BY VERTICES. THE TOP FIVE BETWEENNESS VALUES ARE SHOWN IN RED FOR EACH CASE.

Vertex Cost Function Simulation
F1 F2 F3 F4 F5

4 19,294 17,562 17,038 19,117 17,006 12,907
5 6,554 10,559 15,610 18,557 24,134 7,572
6 15,091 18,700 15,519 15,242 16,639 14,279
8 18790 18808 12784 12961 13774 16894
9 13,674 13,623 19,573 20,462 27,655 14,953
10 42,980 37,882 36,784 30,539 33,664 31,824
11 35,269 33,075 31,314 25,068 23,418 42,001
14 4,657 6,185 9,400 12623 15,148 29,303
15 16,300 15,283 17,327 18,509 17,621 29,817
16 25,777 21,679 12,148 12,148 13,699 29,798
. . . . . . . . . . . . . . . . . . . . .

TABLE II
CORRELATION BETWEEN BETWEENNESS CENTRALITY CALCULATED BY THE PROPOSED METHOD AND SIMULATION, DETAILED BY EXPERIMENTS AND

COST FUNCTIONS.

Instance Cost Function
F1 F2 F3 F4 F5

Sioux Falls 0.61 0.61 0.59 0.54 0.45
POA Arterials NUODD Vol. 10% 0.96 0.92 0.99 0.98 0.69
POA Arterials NUODD Vol. 25% 0.80 0.84 0.84 0.81 0.58
POA Arterials NUODD Vol. 50% 0.76 0.78 0.77 0.74 0.69
Grade 10x10 NUECD Vol. 10% 0.84 0.79 0.88 0.89 0.89
Grade 10x10 NUECD Vol. 25% 0.90 0.83 0.91 0.86 0.86
Grade 10x10 NUECD Vol. 50% 0.91 0.85 0.93 0.80 0.80
Grade 10x10 UD Vol. 10% 0.67 0.61 0.67 0.89 0.89
Grade 10x10 UD Vol. 25% 0.63 0.59 0.63 0.91 0.91
Grade 10x10 UD Vol. 50% 0.73 0.73 0.73 0.75 0.75
Grade 10x10 NUCED Vol. 10% 0.90 0.73 0.90 0.88 0.88
Grade 10x10 NUCED Vol. 25% 0.84 0.82 0.85 0.87 0.87
Grade 10x10 NUCED Vol. 50% 0.78 0.67 0.78 0.83 0.83

edges of a graph, constrained by the restriction that two
particles may not occupy the same vertex at the same time.
The particles move along between their randomly defined
origins and destinations, and three different updating policies
are considered, which are: random walk, in which particles
randomly choose a position; detour-at-obstacle, in which a
particle randomly chooses a position among their neighbors
that are nearest the destination; and wait-at-obstacle, in which
if no vertices are free near the destination, the particle does
not move.

In order to monitor the traffic density regarding between-
ness, the author chose the scale-free network model of
Barabási-Albert, because it shows a wide distribution of
betweenness values. Regarding betweenness, the author noted
that the vertices with low or average betweenness rates showed
steady occupation rates, and concluded that betweenness itself

cannot estimate the capacity of a vertex. At this point, our
work differs from Holme’s work since we use a microscopic
simulation to compare to the betweenness. We also consider
nonuniform demands that differ from randomly defined OD
pairs used in Holme’s work. Beyond that, the subject of
study in our work was road networks, while in Holme’s work
the author focused on communication networks. It influences
basically the network types studied: communication networks
can be explained by scale-free models, while road networks
can be better explained by random graphs.

In the study of Kazerani and Winter [2], the issue related to
the capacity of betweenness for explaining traffic flows was
analyzed. In their study, they came to the conclusion that the
traditional betweenness measure [1] is unable to explain traffic
flows significantly because it does not consider the traffic
demand that flows in a network, nor its dynamics.
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Fig. 4. Mean occupation of the Sioux Falls network related to time, with the
peak of occupation occurring at the time-step 32,671.

Still regarding the study of Kazerani and Winter, the authors
suggest that an adaptation of the traditional centrality measure
is necessary, in which the physical and temporal aspects would
be considered, so that a significant correlation with the traffic
observed in the network may be attained. In this work, we
proposed a variation of the betweenness that, by considering
traffic demand, achieved higher correlation with the observed
traffic in microscopic simulation.

In the study of Gao et al. [3], the authors investigate
the capacity of betweenness to preview traffic flows by
analyzing the correlation between the centrality measure and
real traces collected from GPS. For that, data collected from
GPS installed on 149 taxis of the city of Qingdao (China)
were used.From this analysis, the authors concluded that the
betweenness measure does not explains the traffic flows well,
and they attribute it two main reasons: first, when calculating
betweenness, origins and destinations of trips are vertices of
the graph, while in real OD pairs origins and destinations are
associated with edges; second, the OD pairs distribution is not
uniform, being associated to the distribution of human activity,
which, is influenced by factors like area occupation.

In a tentative to explain the differences between
betweenness and traffic flows, the authors established a
comparison between the centrality measure and a model
developed in three steps: in the first step it is assumed that
the demand occurred uniformly over geographic space; in the
second, the model was extended to consider the distribution of
human activity using data collected from the use of cellphones;
in the third step, the demand model developed in the previous
step was extended to support the distance decay factor, that
models the behavior of people of seeking resources in nearest
places.

When compared with betweenness values, the model
developed in the second step has shown the greatest
correlation. The study suggests that the betweenness presents
low correlation with the model developed in the third step
because it does not consider the distance decay factor.
However the authors do not suggest modifications to the
betweenness, which is known to consider uniform demand and
disregard distance decay factors.

In this sense, we have also addressed the problem of the
distance decay factor found in the model presented by Gao et
al. by using an OD matrix. Since the OD matrix represents
in fact the traffic demand, only the OD pairs related to the
desired trips will be found in this matrix.

In the study of Galafassi and Bazzan [4] a betweenness
variation that considers traffic demand is suggested.
Differently from the metrics proposed by Freeman [1], in
their study only the routes that belongs to the specified traffic
demand were considered. The authors compare the correlation
between the modified metrics of betweenness with the amount
of waiting vehicles on the edges, and show that the proposed
method explains traffic flows better than the original metrics.
The experiments were executed over a 6x6 regular grid and
Porto Alegre network, both considering different demand
volumes and types (uniform vs nonuniform).

The method proposed here is an extension of the study
developed by Galafassi and Bazzan. In this work we kept
the betweenness calculation module unchanged, modifying the
way of how weights are attributed to the edges to consider
the traffic demand. We also compare the proposed method
with the occupation of edges during simulation, instead of
the waiting vehicles’ queue and extended the experiments to
consider Sioux Falls network.

VI. CONCLUSIONS AND FUTURE WORK

The problem addressed along this work is central points
identification in road networks using betweenness centrality.
We have noticed that some authors tried to explain traffic
flows using betweenness and failed because this metric itself
assumes a uniform distribution of demand. Our method, on the
other hand, consisted in combining the betweenness algorithm
with the traffic demand so that higher values of betweenness
were attributed to the vertices with higher demand.

The proposed method was tested in three networks and
a microscopic simulation was performed for each one of
them. The occupation of the edges was extracted from
the simulations and the results were correlated with the
betweenness values calculated by the proposed method. In
general, the exponential decay and linear cost functions
showed the best results among the studied functions.

The improvement in the proposed method was basically
caused by two factors. First, the shortest paths calculated by
the betweenness algorithm were influenced by the demand
that uses a route. The second point is credited to the use of
decreasing cost functions, which caused the weight of an edge
to decrease as a function of the number of routes that pass
through it.

Despite the fact that the technique proposed in this study is
able to help identify central points in transport networks, it is
only a small step towards a larger goal, which is to improve
the road users’ travel times. Hence, a possible extension of
this study would be to assess whether traffic light operations
at points with high values of betweenness would improve the
average travel time for drivers, and whether these points are,
in fact, the most critical ones.

Another aspect that could be investigated is the use a
weighted correlation coefficient that is calculated considering
the capacity of each vertex. Vertex capacity could be estimated
by the capacities of its incident edges. Thus, vertices that have
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large capacity would receive greater weight in the calculation
of the correlation.

Another possible extension of this work is to analyze
the occupation of links individually during the microscopic
simulation, and to approximate a function that models its
behavior. This function could be used in the algorithm
proposed in this work so that its performance could be
compared with other functions considered here.
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