978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

IC3-Guided Abstraction

Jason Baumgartner, Alexander Ivrii, Arie Matsliah, Hari Mony
IBM Corporation

Abstract—Localization is a powerful automated
abstraction-refinement technique to reduce the complexity
of property checking. This process is often guided by SAT-
based bounded model checking, using counterexamples
obtained on the abstract model, proofs obtained on
the original model, or a combination of both to select
irrelevant logic. In this paper, we propose the use of
bounded invariants obtained during an incomplete IC3
run to derive higher-quality abstractions for complex
problems. Experiments confirm that this approach yields
significantly smaller abstractions in many cases, and that
the resulting abstract models are often easier to verify.

I. INTRODUCTION

Automated property checking techniques hold consid-
erable promise to mitigate what has become one of the
most important problems facing the semiconductor in-
dustry today: the verification crisis. Through the advent
of numerous advanced proof, falsification, abstraction
and reduction techniques, formal property checking has
scaled to the necessary level to address many practical
industrial applications, and has become an essential CAD
technology. However, many problems remain beyond the
capacity of current property checking algorithms, thus
continued advances are of critical importance.

Localization is a powerful abstraction technique which
reduces the size of a verification problem by replacing
gates by cutpoints, which act as unconstrained nondeter-
ministic variables. Because the cutpoints may simulate
the behavior of the original gates, this approach over-
approximates the behavior of a design hence is sound
yet incomplete. Refinement is used to eliminate spurious
failures on the abstract design by eliminating cutpoints
which are deemed responsible for the failure. Ultimately,
the abstract design is passed to a proof engine. It is
desirable that the abstract design be as small as possible
to enable more efficient proofs, while being immune to
spurious counterexamples.

Various techniques have been proposed to guide
the abstraction-refinement process of localization. Most
state-of-the-art localization implementations use SAT-
based bounded model checking to select the abstract
netlist upon which an unbounded proof is attempted,
given relative scalability of bounded model checking
vs. proof techniques. This abstraction process is either
based upon counterexamples obtained on the abstract

design [1], based upon proofs obtained on the original
design [2], or a hybrid of both [3]. It has been noted
that the latter approach tends to yield the smallest
abstractions, albeit at the cost of additional runtime.
Specifically, the abstraction-refinement process relies
upon heuristics and thus may include unnecessary logic,
in turn entailing unnecessary proof complexity. In hybrid
approaches, one approach is often used to re-process
the abstraction computed by the other, in an attempt to
eliminate this unnecessary logic. The additional runtime
spent on the abstraction-refinement process is often a
worthwhile strategy for overall minimal resources.

Various SAT-based unbounded proof techniques have
been developed which in cases are very scalable, such as
IC3 [4]. One powerful characteristic of IC3 is that when
successful, it may yield a proof or counterexample while
analyzing only a small approximation of the overall
behavior of the design under verification. In the case of a
proof, an often-compact inductive invariant is derived. In
the case of a counterexample, a directed search from the
initial states toward the property found a path, in cases
requiring less effort than bounded model checking.

While often efficient, the intrinsic complexity of prop-
erty checking explains why IC3 often fails to solve a
complex problem given practical resources. Furthermore,
while IC3 intrinsically attempts to analyze the design
in an abstract manner, it is well-known that abstrac-
tion may synergistically boost the scalability of various
verification algorithms, even approximate ones. In this
paper, we seek to exploit this synergy in two ways. (1)
We extract design insight from an incomplete IC3 run
via its (bounded) invariants. (2) We use the extracted
information to improve the quality of localization, and
thereby boost the scalability of subsequent verification
algorithms including IC3.

II. PRELIMINARIES

We focus on verification of safety properties on finite
state machines (FSMs). An FSM M is a tuple (X, I,T),
where X is a set of Boolean state variables, such that
each assignment s € {0, l}X corresponds to a state of
M, and the predicates I C {0,1}" and T C {0,1}* x
{0,1}% define its initial states and the transition relation,

182

provided by CiteSeerX

https://core.ac.uk/display/357224337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

respectively. A predicate P C {0, l}X defines a property
to be verified on M.

State variables and their negations are called literals,
and disjunctions (conjunctions) of literals are called
clauses (cubes). A CNF formula is a conjunction of
clauses. We follow the standard notation of X’ repre-
senting next-state variables, and derive CNF formulas
from FSMs in a straight-forward way.

A sequence 7 of states tg,...,t, is a path if for each
0 <i<mn, (tjtiy1) € T. If to is an initial state, the
path is called initialized. A state t is reachable if there
is an initialized path that ends in ¢. Let R denote the set
of all reachable states, and for k > 0, let R;, denote the
set of states reachable by initialized paths of length at
most k. The verification objective is to prove R C P.

A CNF formula ¢ is an invariant if s € R = s |=
. Furthermore, ¢ is a k-step invariant if s € R, —
s | ¢. A CNF formula ¢ is an inductive invariant if
I = gand ((sE @) A((s,s) €T)) = & = ¢.

If ¢ is an inductive invariant and ¢ == P, then
R C P and ¢ is called an inductive proof of P.

III. GENERATING HINTS WITH IC3

In this section we briefly describe IC3 [4], [5]. This
algorithm proceeds by incrementally refining and extend-
ing a sequence Fi,...,Fy of sets of clauses (termed
bounded invariants) referring solely to state variables.
For simplicity we define Fy, = I. Throughout the run of
IC3 the following invariants are preserved:

° J-"ié]-"iﬂ,forogigk—l,

o F; D Fiq1 as sets of clauses, for 1 <¢ <k —1,

o FiNT = Fi g, for0<i<k—1,

o Fr= P.

Initially £ = 1, and is increased whenever F AT = P’
holds. Note that each F; constitutes an overapproxima-
tion of R;, and Fi(= F1 U ... U Fy) implies that P
holds in the first k timesteps. While processing bound
k, the condition F; AT = P’ might fail to hold, and
then IC3 attempts to propagate additional information to
sets Fi<y to address this potential failure. If it cannot,
this signifies a true counterexample. Otherwise, each
added clause is pushed to the highest-possible F;. Some
bounded invariants may be determined to be unbounded
invariants, and when that set implies P an inductive
proof has been completed.

A. Hint Generation

Recall that the conjunction of clauses in F1U...UFy
implies that P holds for the first &£ timesteps. This leads
to the idea of creating a localization including only the
state variables appearing in these clauses. However, as

with traditional localization, some of these state variables
may be unnecessary to complete a proof of correctness.

Note that there is additional information one may
draw on the relevance of various state variables from
the IC3 invariants which may be used to improve the
abstraction quality. In particular, for each IC3 invariant
c one can consider whether it is an unbounded invariant,
the first bound k£ for which ¢ was introduced, and the
maximal frame ¢ that it can be pushed to relative to k. For
each state variable, one can analyze the number or the
proportion of bounded invariants or clause sets it belongs
to. In this section we address how to use the sets F; to
provide hints to localization on the relative priority of
various state variables, represented by integers with the
convention that a lower number reflects a higher priority.

We experimented with numerous heuristics for assign-
ing priorities, and our best method (PM1) is as follows.
The priority of each state variable is initially oo, and
may be decreased during the IC3 run. Whenever a new
bounded invariant clause c is produced, all state variables
referenced by c that have priority oo have their priorities
updated to the current bound k being processed. Le.,
after the run the priority of each state variable represents
the earliest bound requiring a corresponding clause for
a proof of validity of P, and the clauses for proofs of
smaller bounds have higher priorities. Also note that an
abstraction including the state variables with priorities
< ¢ will satisfy P for the first ¢ timesteps.

(PM2) In this variant, the priority of each state vari-
able is initially oo, and when a new bounded invariant
clause c is produced that is “pushable” to frame ¢ < k,
we update the priority of each latch participating in ¢ to
k — 1, unless a smaller number was assigned to it earlier.
If ¢ is an unbounded invariant, then the priorities of those
latches in ¢ are updated to 0.

(PM3) The priority of each state variable is initially
0o, and whenever a new invariant clause c is produced
(bounded or unbounded), we update the priority of each
latch participating in ¢ to 0.

(PM2) and (PM3) performed generally worse than
(PM1), hence we restrict our experimental focus to
(PM1). Continued experiments with alternate heuristics
is subject of ongoing research.

IV. LOCALIZATION WITH IC3 HINTS

In this section, we detail how the priorities assigned
on the state variables may be used to guide localization.
The localization abstraction is done by selection of state
variables: if included, its entire next-state function will
also be included, else the state variable will be replaced
by a cutpoint. The localization is performed by interleav-
ing counterexample based abstraction (CBA) and proof-

183

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

based abstraction (PBA) in a bottom-up manner [6]. We
start with no state variables included, and perform SAT-
based bounded model checking for one timestep on the
abstract design. Spurious counterexamples are analyzed
and the abstraction is refined by adding state variables
which are deemed adequate to rule out the spurious
behavior. Once there are no more counterexamples of
a given depth, we perform proof-based abstraction for
that depth to attempt to eliminate unnecessary logic. We
then increment the depth and repeat the process for a
configurable resource limit.

The key challenge in localization abstraction is the
refinement used to to eliminate the spurious counterex-
amples. Several approaches have been proposed to min-
imize the amount of logic added to refute a spurious
counterexample, e.g., [7], [1], [8]. Our approach relies
upon counterexample trace minimization to minimize the
number of cutpoints assigned in a spurious counterexam-
ple, using a combination of SAT and ternary analysis [7],
[6]. Once the counterexample has been minimized, all
cutpoints assigned in that trace are refined.

Even with aggressive trace minimization, this mini-
mization is heuristic and greedy, which may entail a
suboptimal abstraction. Furthermore, minimality is not
unique, and across multiple refinements it is likely
that cumulative refinement choices result in unnecessary
logic being included. This is the motivation for using
PBA to attempt to further reduce the CBA. We propose
to improve this process to a greater degree by using the
IC3 priorities to guide the abstraction via one of the
following refinement methods.

(RM1) Start CBA with empty abstraction. When refin-
ing the abstract model by adding state variables that are
assigned in the spurious counterexample during CBA,
we only add the subset of those with the highest IC3
priority.

(RM2) In addition to using (RM1), we begin with the
abstract model including all state variables of highest IC3
priority vs. starting with an empty abstraction.

The aim of (RM1) is to skew CBA to avoid includ-
ing state variables with lower IC3-assigned priorities
in the abstract model. Even though this may result in
an increased number of refinements during CBA, our
experiments demonstrate that this guidance results in
smaller abstractions in practice. (RM2) was developed
based on the observation that the abstract model often
ultimately includes all state variables with the highest
IC3-assigned priority regardless; beginning with this
set reduces abstraction-refinement runtime due to fewer
refinements, and fewer refinements entail fewer heuristic
mistakes which bloat abstraction size. We have experi-

1000

Abstraction without |C3 hints

100 4~
100 1000
Abstraction with IC3 hints

Fig. 1. Number of localized state variables with vs. without IC3 hints
mentally found that (RM2) yields smaller abstractions,

hence we restrict our experimental focus to (RM2).

V. EXPERIMENTS

In this section we present our experiments. All experi-
ments were performed on 2.0Ghz Linux-based machines
with 4Gb of RAM, using the techniques presented in this
paper as implemented in the IBM verification tool Sixth-
Sense [9]. We focused upon the single-target benchmarks
from HWMCC 2011 [10].

A. Effect on Abstraction Size

This first set of experiments compares abstraction
sizes generated with and without IC3 hints. Both include
an interleaved CBA/PBA localization for a time limit of
300 seconds. For the IC3 hint-guided abstraction, we
run IC3 for 120 seconds to generate the priorities, then
proceed with the abstraction-refinement loop (RM2).
294 instances that were solved by IC3 within the 120
seconds limit, or during localization, are excluded from
the analysis. In the remaining instances, the total number
of state variables in the abstracted models reduces from
47994 to 41036 when using IC3 hints: a cumulative
reduction of 14.5%, with median reduction of 6.8%.
Figure 1 depicts the reduction on instances with 100 to
1000 state variables after localization.

These results clearly show improved abstraction size
in most cases using IC3 hints. There are some which
yield worse abstractions, though we note that this is
likely inevitable in rare cases given the heuristic nature
of abstraction.

B. Effect on IC3 Resources

To demonstrate that the reduced abstract model size
improves verification resources, we used IC3 with a
900 second timeout on the localized design. Of the
171 HWMCC 2011 benchmarks which are unsolved
by the first 120-second IC3 or during localization, 15

184

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

Design Traditional IC3 Hint-Guided
Abstraction Abstraction
6s9 TO 357s
6519 TO 519s
6543 TO 236s
6s50 TO 484s
6s51 TO 198s
be57sensorsp0 TO 838s
pdtvsarmultip29 TO 473s
pdtswvtma6x6p2 TO 665s
pdtswvtma6x6p1 TO 333s
TABLE 1

IMPACT OF HINT-GUIDED LOCALIZATION ON SUBSEQUENT IC3
PROOF RUNTIME

were solved by the heavier-weight IC3 using traditional
abstraction-refinement without IC3 hints. In contrast, 24
were solved using abstraction with IC3 hints; a proper
superset. While this is only a modest improvement in
terms of conclusive solutions, we note that (1) 900
second IC3 runtime is not very substantial in terms
of a state-of-the-art industrial solver (see the following
section), though was motivated by the HWMCC timeout
period; (2) increasing the number of solved instances by
60% is a nontrivial improvement nonetheless. Table I
details the results of these additional solutions.

C. Effect on a State-of-the-Art Verification Tool

Due to space limits, our experiments do not detail
many algorithms which are commonplace in a state-of-
the-art verification tool. It is well-known that higher-
quality abstractions may boost the effectiveness of a
variety of these algorithms, such as the reduction ca-
pability of retiming [11]. The fact that our limited
experiments demonstrate verification benefits for IC3
alone is practically encouraging. When using a larger set
of algorithms and a larger runtime, the benefits of higher-
quality abstractions becomes even more pronounced. We
additionally note that an industrial-strength multiple-
algorithm tool likely would use a strategy of running
IC3 for a small time-bound early in its strategy, to
rule out simpler problems. Extracting localization hints
from those runs has virtually no overhead, yet may
immediately yield higher-quality abstractions. We also
note that we have tuned our bounded model checking-
based abstraction over years of industrial application,
whereas the use of IC3 hints is much less mature and
we are hopeful to discover improved invariants with
continued experience.

D. Justification for Effectiveness

A natural question is why IC3 hint-guided localization
yields better abstractions than bounded model checking
alone. We provide two insights: (1) just as CBA and PBA
complement each other to yield smaller abstractions,

IC3 offers yet another qualitatively-distinct heuristic
guidance to complement these techniques. (2) There
are commonalities in how bounded model checking and
IC3 attempt to justify a property failure via backward
analysis of the design. Some of these justification at-
tempts identify necessary logic; some spuriously involve
unnecessary logic. IC3 in a sense performs additional
filtering of the impact of the spurious justification at-
tempts, by requiring forward reachability analysis to
generate those invariants only where a potential failure
justification may be eliminated. In contrast, justifications
that cannot be eliminated by reachability analysis will
not yield invariants and thus be less likely to bloat the
abstraction.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate how the invariants
generated by an incomplete IC3 run may be used
to generate higher-quality localization abstractions. We
furthermore demonstrate that the improved abstractions
enhance verification using IC3 itself, and have noted
even greater benefits from the higher-quality abstractions
using heavier-weight verification flows. Areas of ongoing
work include improving heuristics for prioritizing state
variables given IC3 information, and to explore methods
to prune irrelevant invariants that IC3 is tuned to ag-
gressively propagate. Another direction is to additionally
explore the use of IC3 hints on proof-based abstraction.

REFERENCES

[1] P. Chauhan et al., “Automated abstraction refinement for model
checking large state spaces using SAT based conflict analysis,”
in FMCAD, 2002.

[2] K. L. McMillan and N. Amla, “Automatic abstraction without
counterexamples,” in TACAS, April 2004.

[3] N. Amla and K. McMillan, “A hybrid of counterexample-based

and proof-based abstraction,” in FMCAD, Nov. 2004.

A. Bradley, “SAT-based model checking without unrolling,” in

VMCAI, Jan. 2011.

N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementa-

tion of property directed reachability,” in FMCAD, Nov. 2011.

[6] N. Eén, A. Mishchenko, and N. Amla, “A single-instance in-
cremental sat formulation of proof- and counterexample-based
abstraction,” in FMCAD, 2010.

[7] D. Wang, P.-H. Ho, J. Long, J. H. Kukula, Y. Zhu, H.-K. T. Ma,
and R. F. Damiano, “Formal property verification by abstraction
refinement with formal, simulation and hybrid engines,” in DAC,
June 2001.

[8] B.LiandF. Somenzi, “Efficient computation of small abstraction
refinements,” in /CCD, Nov. 2004.

[9] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and

A. Kuehlmann, “Scalable automated verification via expert-

system guided transformations,” in FMCAD, Nov. 2004.

Hardware Model Checking Competition

http://fmv.jku.at/hwmec11.

J. Baumgartner and H. Mony, “Maximal input reduction of

sequential netlists via synergistic reparameterization and local-

ization strategies,” in CHARME, Oct. 2005.

4

=

[5

[t}

[10] 2011.

[11]

185

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

