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Riassunto: Nel presente lavoro viene proposto un approccio per la individuazione di
break strutturali in serie temporali quando si dispone di serie esplicative. Il metodo si
articola in uno schema iterativo basato sull’uso alternatodella analisi canonica e della re-
gressione ad albero. In particolare, l’informazione contenuta nelle serie esplicative viene
sintetizzata, a mezzo della analisi canonica, in combinazioni lineari. Queste ultime sono
successivamente impiegate come covariate nella regressione ad albero in cui la variabile
di rispostaè la serie temporale di cui si desiderano identificare i breakstrutturali. La
proposta sar̀a illustrata mediante uno studio di simulazione.
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1. Introduction

This paper continues the streamline of graphical modellingapplications to time series,
(see for example Reale and Tunnicliffe Wilson, 2001) focusing on the problem of struc-
tural break detection in univariate time series. We proposea novel approach based on the
use of canonical variate analysis and regression trees which are a special class of directed
acyclic graphs.
Let xjt with j = 1, . . . , p be a set of covariates deemed useful to explain an observed
seriesyt. A structural break occurs when there is a change in the data generating process
of yt. This happens when the role played by the explanatory variables in different regimes
changes or there is a change in the model parameter values. The econometric literature
on structural breaks is vast; a review of the main contributions can be found in Hansen
(2001).
In this paper we examine the problem of multiple changes at unknown times by making
use of covariates. The need for explanatory variables although limitative in one way is a
useful framework to test alternative hypotheses.
The effect of the covariates is summarized by linear combinations obtained by means of
the canonical variate analysis. Then, the linear combinations are used as new covariates in
a regression tree procedure. The underlying idea is that thestructural break is contained
in one of the linear combinations and the tree procedure willreveal the existing breaks
and their dates. Indeed, the tree procedure chooses at each step the combination that splits
the series so that the observations in the two subperiods areas distinct as possible.
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2. Trees to Detect Structural Breaks

This section shows how the detection of structural breaks can be set within the framework
of canonical variate analysis and regression trees.
Suppose that a time series is characterized byg − 1 structural breaks. We can assume
accordingly that the data have been drawn byg distinct multivariate populations. Then,
a categorical variable withg levels can be created to indicate the population each obser-
vation belongs to. We do not know neither the number of structural breaks nor their date
of occurrence and our aim is to determine both. We start by creating binary indicator
variables considering possible splits of our series into two disjoint groups (subperiods).
Notice that in this case we need to preserve the temporal structure since the observations
are not mutually exchangeable. Hence we will consider only sequential splits. In other
words we consider theT − 1 dichotomous partitions of the seriesyt = {y1, . . . , yT} of
the form:

P1,m = {y1, . . . , ym} and P2,m = {ym+1, . . . yT},

.
whereT is the number of observations. Then, we create an indicator variableIm, m =
1, . . . , T − 1 such that:

Im = 0 if yt ∈ P1,m,

Im = 1 otherwise.

TheIm’s will be used as grouping variables in the canonical variate analysis that, in the
broad class of discriminant analysis techniques, is a nonparametric approach useful for
dimension reduction (McLachlan, 1992).
In practice, the relevant covariates in the different regimes are unknown, so meaningful
combinations of all of them are considered.
According to the proposed approach the original covariatesxjt, j = 1, . . . , p, are replaced
by the canonical variates, i.e. the eigenvectors associated with the eigenvalues of the prod-
uct matrixS

−1
B, whereS−1 is the (common) within group covariance matrix andB the

between group variance matrix. Therefore, the canonical variates are linear combinations
of the covariates that identify the directions of maximum separation among the groups in
the space spanned by the covariates.
Indeed, when a structural break occurs, populations labelled by a grouping variable are as
distinct as possible and the intuition is that the structural break is contained in one of the
linear combinations.
The canonical variates are used as new covariates in a regression tree procedure where the
response variable is the original series which breaks are under investigation.
In a tree algorithm, the data are successively split along coordinate axes of the covariates
so that, at any node, the split which maximally distinguishes the response variable in the
left and the right descendants is selected. Therefore, the data partitioning aims to reduce
the heterogeneity in theyt’s. In least squares regression trees (Breimanet al. 1984), het-
erogeneity at a given nodek is measured by the sum of squaresSS =

∑
yt∈k(yt − ȳ(k))2

whereȳ(k) is the average of theyt’s falling into nodek. Then, the decrease in hetero-
geneity induced by a candidate splits of nodek into its left and right descendants (kl and
kr respectively) is evaluated as follows

∆SS(s, k) = SS(k) − [SS(kl) + SS(kr)]. (1)



The algorithm searches over all permissible splits and chooses the best split to be the one
that maximizes equation (1).
Since any best split divides the series into two subperiods as distinct as possible, it is ex-
pected that the split points reveal the breakdates.
Let t∗ be the time of occurrence of the detected structural break, the procedure is recur-
sively applied to the sibling nodes, containing1, . . . , t∗ and t∗ + 1, . . . , T observations
respectively, until no further splitting is possible.
Note that, given the equivalence of maximum likelihood estimation with least square es-
timation in normal linear models, a maximum likelihood splitting criterion chooses the
same split as the criterion in equation (1) does. Therefore, if normality (or asymptotic
normality) can be assumed, to avoid the well known problem ofoverfitting, the Chow test
(Chow, 1960) can be adopted as stopping rule. For a priori known breakdate, the Chow
test is useful to verify the hypothesis of equality of two sets of parameters. Indeed, in a
tree regression, a split (candidate breakdate) of a given nodek divides the sample data,
belonging to the node, into two subperiods. In the testing procedure we use the tree resid-
uals. If the null hypothesis of constancy of the parameters is not rejected, the procedure
declares the corresponding node as terminal.

3. Simulation

Preliminary results from a simulation study to assess the performance of the proposed pro-
cedure are now shown. We consider 100 simulations from the following model including
two structural breaks:

Regime1 : yt = 0.6x1t + 0.2x2t + 0.2x3t + ǫt t = 1, . . . , 50

Regime2 : yt = 0.2x1t + 0.6x2t + 0.2x3t + ǫt t = 51, . . . , 100

Regime3 : yt = 0.2x1t + 0.2x2t + 0.6x3t + ǫt t = 101, . . . , 150

whereǫt ∼ NID(0, 100) and

x1 = ν1

x2 = trend + ν2

x3 = trend2 + ν3,

where theνi’s, i = 1, . . . , 3, are drawn fromNID(0, 100).
The difference in the regimes is given by the intercept and the trend: there is no trend in
the first regime, a linear trend in the second and a quadratic trend in the third; the constants
also differ from one regime to another.
Table 1 gives some summary statistics from the simulation results. For each break the
actual date and the lower and upper detected times of occurrence, and the modal date over
the 100 simulated time series are presented.

Table 1. Actual breakdate, lower and upper time of occurrence and mode
Actual breakdate Lower time Upper time Mode

Break 1 51 56 67 60
Break 2 101 103 106 105



Over all the 100 runs the procedure has detected always two structural breaks. It is note-
worthy that the tree identifies in first place the second structural change as it is more
apparent and also, the tree is much quicker in recognizing it: over the 100 runs at most at
time 107 this break is identified. Also, notice that the actual breakdate is not within the
interval between the lower and upper time of occurrence detected in the simulation study.
This is not surprising because a break can be recognized onlyafter its occurrence.
Further insights into the simulation results arise from figure 1 that depicts the histograms
of the frequencies for the first and the second candidate breaks as detected by the tree.

Figure 1: Histograms of the detected times of occurrence of break one and two.

The histograms emphasize that the second structural changeis more evident and therefore
it is easier to detect. Indeed, for this break the detection times are less disperse and hence
more precise, with a unimodal and symmetric distribution.
These preliminary results are encouraging and suggest extending the simulation study to
understand the sampling properties in order to provide a diagnostic for breakdates.
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