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Abstract A two-dimensional model of an elastic body at nanoscale is considered as
a half-plane under the action of a periodic load at the boundary. An additional surface
stress, and constitutive equations of the Gurtin–Murdoch surface linear elasticity are
assumed. Using Goursat–Kolosov complex potentials and Muskhelisvili technique,
the solution of the boundary value problem in the case of an arbitrary load is reduced
to a hypersingular integral equation in an unknown surface stress. For the case of a
periodic load, the solution of this equation is found in the form of Fourier series. The
influence of the surface stress on the stresses at the boundary of the half-plane under
the tangential and normal periodic loading is analyzed. In particular, it is found out
the size effect which becomes apparent in the dependence of the stresses on a length
of the load period of the order 10 nm. Moreover, the tangential stresses appear under
the action of the normal loads.

1 Introduction

The near-surface effects which are intrinsic to nanomaterials can cause an essential
difference of physical properties of these nanomaterials from the same properties of
macroscale bodies. Thus, physical properties of a nanometer specimen depend on its
size (size effect). For example, Young’s modulus of a cylindrical specimen increases
significantly, when the cylinder diameter becomes very small [10].

As a rule, an ideal effect of a surface stress on the elastic body is not taken
into account at the macroscale because it is insignificant in comparison with the
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effect of external forces. The Gurtin–Murdoch theory of surface elasticity which has
obtained rapid development in recent years is extensively used to consider the surface
properties of nanoobjects [1, 7].

In this paper the Gurtin-Murdoch model is applied to a semi-infinite linear elastic
body with plane surface under plane strain conditions. The action of external forces at
the boundary and surface stresses is assumed. Based on Goursat–Kolosove complex
potentials and the Muskhelisvili approach, the boundary value problem is reduced
to a hypersingular integral equation. The solution of this equation in the case of a
periodic loading is used to analyze an influence of the surface stress on the stress
state of the boundary in relation to a change of the period and type of loading.

2 Basic Equations

Consider the elastic half-space its surface has elastic properties differing from those
in the bulk material. We assume that the media is in conditions of plane strain under
the action of an external surface load and the additional surface stress. Thus, we
come to the formulation of the boundary value problem for the half-plane Ω = {z :
Im z < 0, Re z ∈ R

1}, z = x1 + i x3,with the rectilinear boundary Γ .
In general case, the boundary condition is described by generalized Young–

Laplace law [7]
n · Σ − ∇s · τ = p, (1)

where n is the unit vector normal to the boundary surface, Σ is the tensor of volume
stress, τ is the tensor of surface stress, p is the vector of an external surface load. Equa-
tion (1) means that the action of the surface stress is replaced by the corresponding
load ts(z) =∇sτ defined by the surface gradient operator ∇s = ∇ − n∂/∂n, where
∇ is the Hamilton operator [2]

ts(z) = −
(
τ11

R1
+ τ22

R2

)
n+ e1

h1h2

(
∂

∂α1
(h2τ11)+ ∂

∂α2
(h1τ21)+ ∂h1

∂α2
τ12− ∂h2

∂α1
τ22

)

+ e2

h1h2

(
−∂h1

∂α2
τ11 + ∂

∂α1
(h2τ12) + ∂h2

∂α1
τ21 + ∂

∂α2
(h1τ22)

)
(2)

Here e1, e2 are the basis vectors of a curvilinear coordinate system α1 and α2;
h1, h2 are the corresponding metric factors, R1, R2 are the principal radii of the
coordinate lines curvature, τi j (i, j = 1, 2) are the components of the surface stress
tensor.

Let α1 = x1, α2 = x2 in the plane surface x3 = 0. For the plane strain, we have
h1 = h2 = 1, 1/R1 = 1/R2 = 0. As τ12 = 0, τ22 = τ22(x1), then according to
Eq. (2), the boundary condition (1) in complex variables takes the form

σ33(z) − iσ13(z) = −i p(x1) − i ts(x1), z ∈ Γ, (3)
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where p(x1) = p1(x1) + i p3(x1); p1, p3 are the projections of the load vector p on
the Cartesian coordinate axes x1, x3; ts = ∂τ11/∂x1. Note that Eq. (3) can be directly
derived considering an equilibrium of an element of a boundary surface under applied
forces [5].

Generally, we assume that p(x) is the periodic function with the period a

p(x1) = p(x1 + a),

x1+a/2∫
x1−a/2

p(t)dt = P, P = P1 + i P3, (4)

and satisfies the Hölder’s condition on whole Γ . The following conditions are
realized at infinity

lim
x3→−∞(σ33(z) − iσ13(z)) = −i P/a, lim

x3→−∞ σ11(z) = σ1, lim
x3→−∞ ω(z) = ω∞,

(5)
where ω is the rotation angle of material particles; σi j are the stress components in
the x1, x3 coordinate system.

The constitutive equations of linear elasticity for the surface [2, 7] and the bulk
material in the case of the plane strain are reduced to the following

τ11 = γ0 + (λs + 2μs − γ0)ε
s
11, τ22 = γ0 + (λs + γ0)ε

s
11, (6)

σ11 = (λ + 2μ)ε11 + λε33, σ33 = (λ + 2μ)ε33 + λε11,

σ31 = 2με31, σ22 = λ(ε33 + ε11),
(7)

where γ0 is the residual surface stress in an unstrained state; λs , μs are the moduli
of surface elasticity similar to the Lamé constants λ,μ for 3D elasticity; εi j are the
components of the strain in the bulk material; εs

11 is the component of the surface
strain.

3 Construction of Integral Equation

Proceeding from the volume Ω to the boundary Γ , we assume that the continuity
condition of displacements is satisfied

lim
z→x1

u j (z) = us
j (x1),

where us
j is the displacement of points at the boundaryΓ along the x j -axis ( j = 1, 3).

This equality yields the continuity condition for the strain ε11

lim
z→x1

ε11 = εs
11. (8)
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Relations (6) and (8) lead to the equation for finding the surface stress τ11

τ11(x1) = γ0 + (λs + 2μs − γ0)ε11(x1), (9)

Thus, the problem is reduced by defining a stress-strain state of the half-plane with
the rectilinear boundary Γ on which the surface stress τ11 is acting. Equation (9)
connects the unknown surface stress τ11 with the strain ε11 arising under external
loading and conditions at infinity (5).

The expression for the strain ε11 can be found by solving the boundary problem
(3), (5). The stress vector σn = σnn + iσnt on the area with the normal n and the
displacement vector u = u1 + iu2 of the point z are connected with the complex
Goursat–Kolosov potentials by following formulas [4]

σn(z) = Φ(z) + Φ(z) −
(
Φ (z) + Φ(z) − (z − z)Φ ′(z)

)
e−2iα, (10)

− 2μ
du

dz
= −κΦ(z) + Φ(z) −

(
Φ (z) + Φ(z) − (z − z)Φ ′(z)

)
e−2iα, (11)

where α is the angle between the area and the axis x1; κ = 3−4ν; ν is the Poisson’s
ratio. The derivative in Eq. (11) is taken along the area, i.e. in the direction of the
vector t which is perpendicular to basis vector n so that n and t define the right-hand
coordinate system.

The values of the function Φ at infinity follow from Eqs. (5), (10) and (11)

lim
x3→−∞ Φ(z) = σ∞

11 + σ∞
33

4
+ 2iμ

κ + 1
ω∞ = σ1

4
+ P3

4a
,

(12)

lim
x3→−∞ Φ(z) = lim

x3→−∞ Φ(z) − (σ∞
33 − iσ∞

13 ) = σ1

4
+ P3

4a
+ i P

a
.

Let z → x1 ∈ Γ and α = 0 in Eq. (10). Then subjecting to the boundary
conditions (3), we obtain Riemann–Hilbert’s jump problem

Φ+(x1) − Φ−(x1) = i ts(x1) + i p(x1), (13)

where Φ±(x1) = lim
Im z→±0

Φ(z). According to [9], the solution of the problem (13)

can be written as

Φ(z) − c± = 1

2π i

∞∫
−∞

i ts(t)

z − t
dt + 1

2π i

∞∫
−∞

i p(t)

z − t
dt = Iτ (z) + Ip(z). (14)

Here c± = lim
x3→±∞ Φ(z) ∓ i P/(2a), as lim

x3→±∞ Iτ (z) = 0 and lim
x3→±∞ Ip(z) =

±i P/(2a).
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Assuming α = π/2 in Eq. (10) and then α = 0 in Eq. (11), we obtain

σ11(x1) + iσ13(x1) = Φ−(x1) + 2Φ−(x1) + Φ+(x1), (15)

− 2μ
du

dx1
= −κΦ−(x1) − Φ+(x1). (16)

Substituting Eq. (16) into (9) yields

τ11 = γ0 + MRe
(
κΦ− + Φ+)

, (17)

where M = λs + 2μs − γ0

2μ
.

Using the Sokhotski–Plemelj formulas, one can show that (17) is the integro -
differential singular equation in surface stress τ11. After differentiating Eq. (17) and
using Eq. (14), we get the equation of the unknown function ts

ts(x1) − MRe
(
κ I ′−

τ (x1) + I ′+
τ (x1)

) = MRe
(
κ I ′−

p (x1) + I ′+
p (x1)

)
. (18)

In view of Eq. (14) and formulas Sokhotski-Plemelj, Eq. (18) yields

ts(x1)− M(κ + 1)

2π

+∞∫
−∞

ts(t)

(t − x1)2 dt = M(κ − 1)

2
p ′

3(x1)− M(κ + 1)

2π

+∞∫
−∞

p1(t)

(t − x1)2 dt .

(19)
This hypersingular integral equation is obtained without using periodicity conditions
of the function p(x1) and, therefore, it is valid for an arbitrary loading. In case of non-
periodic loadings, the function p should vanish at infinity and satisfy to conditions
of integral existence in the right hand side of Eq. (19) in sense of Hadamard’s finite
part [8].

It should be noticed that the homogeneous equation corresponding to Eq. (19) has
only zero solution. Otherwise, under the absence of external loadings, there would
be a surface stress τ11 differing from a constant that for an infinite plane surface
is unreal. Therefore, if a derivative of function ts satisfies to Hölder’s condition,
then Eq. (19) always has the unique solution for any continuous right hand side of
Eq. (19) [8].

4 Solution of Equation (19) in the Case of Periodic Loading

Find the solution of the integral Eq. (19) in the case of the action of a self-balanced
periodic loading at the boundary Γ , i.e. assume that P = 0 in Eq. (4). Consider a
special case when tangential load p1 is described by an odd function, and normal



74 M. A. Grekov and Y. I. Vikulina

load p3 – by an even one. Then function p can be expanded into the following Fourier
series

p(x) = p1(x) + i p3(x) =
∞∑

k=1

Ck sin bk x + i
∞∑

k=1

Dk cos bk x, (20)

where

Ck = 2

a

a/2∫
−a/2

p1(x) sin bk xdx, Dk = 2

a

a/2∫
−a/2

p3(x) cos bk xdx, bk = 2πk/a.

Hereinafter, we will denote x ≡ x1 instead of x1.
We also calculate the function ts in the form of Fourier series

ts(x) =
∞∑

k=1

Ak sin bk x + Bk cos bk x . (21)

It is possible to find unknown factors Ak, Bk from Eq. (19) by substituting the expres-
sions (20) and (21) into it and computing corresponding integrals. However, there
exists a more convenient method to find these factors. Using Eqs. (14), (20) and (21),
we derive the following expression for complex potential Φ

Φ(z) = σ∞
11

4
+ 1

2

∞∑
k=1

{
(Ck − Dk + Ak + i Bk)eibk z, Im z > 0,

(Ck + Dk + Ak − i Bk)e−ibk z, Im z < 0.
(22)

After substituting Eq. (22) into Eq. (18) and using definitions (14), we equate the
coefficients at the same harmonics that yields

Ak = −πk (Ck(κ + 1) + Dk(κ − 1))

a/M + πk(κ + 1)
, Bk = 0, k = 1, 2, . . . (23)

Thus, we have obtained analytical expressions for all coefficients in the Fourier series
(21) of function ts . In other words, we have got the exact solution of the integral
Eq. (19) in the form of Fourier series.

Integrating Eq. (21), we derive the expression for the surface stress

τ11(x) = −
∞∑

k=1

Ak

bk
cos bk x + τ0. (24)

The constant τ0 can be found from Eq. (17). For this purpose, substitute Eqs. (22)
and (24) into Eq. (17). Then, assuming Ck = Dk = 0 (k = 1, 2, . . .) in the derived
equation, that corresponds to a free boundary of the half-plane, we obtain
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τ0 = γ0 + M(1 + κ)

4
σ1. (25)

The quantity τ0 is the surface stress corresponding to a homogeneous stress-strain
state of bulk material with a plane boundary. As one can see from Eq. (25), τ0 = γ0
for an unloaded body. So if σ1 = 0, and the boundary is free from the external
loading, there are no deformations in the bulk material and in the surface as well.
In the general case, surface stress τ0 depends on both γ0 and σ1.

Substituting Eq. (22) into Eq. (15), we obtain expressions for longitudinal σ11 and
tangential σ13 stresses at Γ

σ11(x)|x3=0 =
∞∑

k=1

(
2Ck + Dk + 2Ak

)
cos bk x + σ1,

σ13(x)|x3=0 = −
∞∑

k=1

(
Ck + Ak

)
sin bk x .

(26)

5 Example

Let the external loads at the boundary of the half-plane be defined by one of the
following functions

p1(x) = q1Im f/ max |Im f |, p3(x) = q3Re f/ max |Re f |, (27)

where f (x) = − sh−2 (y + iπx/a) ; q1, q3 are the dimension factors equal to max-
imum of absolute values of corresponding loads; the parameter y defines a form of
corresponding curves. The plots of functions (27) for y = 0.5 are represented in
Fig. 1 by continuous lines. As it follows from Eq. (27), p1(x) → q1 sin (2πx/a),
p3(x) → −q3 cos (2πx/a), when y → ∞.

Approximating each of functions (27) by a piece of the corresponding Fourier
series (20) with prescribed accuracy ε, one can obtain the numerical solution of the
problem with the same accuracy. As a criterion of accuracy, we accept an integral
criterion. According to it, a ratio of the difference between the integral of function
p j and of its approximation over an interval of positive changing to the first one does
not exceed a given value ε.

The results of calculations show that the number of members of the corresponding
series required for an achievement of the prescribed accuracy depends on the value
of parameter y. This number increases if y decreases. In particular, when y = 0.5,
five members of the series are enough to approximate the function p1(x1) with the
accuracy ε = 0.01.

For comparison, we also consider the action of tangential and normal loads defined
by the first member of Fourier series (20) and represent them by dashed lines in Fig. 1.
They also can be defined by the corresponding functions (27) if y → ∞
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Fig. 1 Two types of tangential p1 and normal p3 external loads for y = 0.5 (continuous lines) and
y = ∞ (dotted) in (27)

p1(x) = q1 sin b1x, p3(x) = −q3 cos b1x . (28)

Using formulas (20), (23) and (26), we calculated stresses at the boundary for var-
ious values of geometrical parameters a and y with and without surface stress τ11.
Loads are defined by functions (27) when y = 0.5 and functions (28). Besides, for
simplification of an analysis, it is assumed that σ1 = 0. The Poisson’s ratio ν = 0.3.

The plots of dependencies of the maximum absolute values of longitudinal and
tangential stresses on the period of loadings a are displayed in Fig. 2. Continuous
lines correspond to loadings (27), dotted - to (28). These dependencies illustrate the
so-called size effect noticed at the nanoscale in many works (see, for example, [1, 3,
6, 11]) if the surface stress is taken into account.

From Fig. 2 one can conclude that the most significant influence of the period
of loading a on stresses is in the limits of changing a approximately from 10 M to
300 M . For aluminum M = 0.113 nm [2], and this period is in the interval from 1 to
34 nm. If a > 1000 M , the size effect almost disappears and the stress-strain state of
a body does not depend on the surface stress.

Note that the size effect becomes more apparent for the tangential loads (curves 1)
than for the normal (curves 2). Besides, the maximum values of stress σ11 are less for
sinusoidal loadings (28) than for loadings (27). For the maximum values of stress σ13,
the behavior is opposite. The plots of stresses at the boundary of the half-plane are

Fig. 2 The maximum of the absolute value of the longitudinal stress s11 = max |σ11| and tangential
stress s13 = max σ13 versus the period a for tangential loadings (curves 1) and normal loadings
(curves 2)
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Fig. 3 The distribution of longitudinal σ11 and tangential σ13 stresses on the half-plane boundary
in the range of one period for tangential loadings and a = 10 M

Fig. 4 The distribution of longitudinal σ11 and tangential σ13 stresses on the half-plane boundary
in the range of one period for normal loadings and a = 10 M

represented in Figs. 3 and 4 by continuous and dashed lines calculated with and with-
out the surface stress respectively. Curves 1 corresponds to the action of loads (28),
curves 2—loads (27) if y = 0.5. The plots are constructed for a = 10 M . For
such value of a, the difference between the solution with the surface stress and the
traditional solution is clearly expressed.

It is apparent from the dependencies given in Figs. 3 and 4 that the existence of a
surface stress reduces the concentration of longitudinal and tangential stresses. As a
result, changing of these stresses becomes more smooth than it predicts the solution
in traditional statement. It is remarkable that, owing to the surface stress, normal
loadings cause tangential stresses at the boundary (Fig. 4). This fact follows directly
from boundary conditions (3) which mean that if the surface stress is not constant,
then the tangential stress will always be at the half-plane boundary independently of
the type of loading.

It is interesting to estimate an influence of the surface stress on the relative changes
of extremal values of stresses at the boundary for loadings defined by function (27)
with y = 0.5 and function (28). This influence can be seen from Table 1 in which
these extremal values corresponding to graphs in Figs. 3 and 4 are given.
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Table 1 Extreme values of stresses at the boundary versus type of loading for a = 10, M = 1.13 nm

Type of loading Tangent loading p1/q1 Normal loading p3/q3

Type of function Func. Eq. (27) Func. Eq. (28) Func. Eq. (27) Func. Eq. (28)

max σ11 τ11 = 0 2.855 2 0.064 1
τ11 	= 0 1.120 1.064 0,047 0.733

min σ11 τ11 = 0 −0.668 −2 −0.272 −1
τ11 	= 0 −0.394 −1.064 −0.177 −0.733

max σ13 τ11 = 0 0.882 1 0 0
τ11 	= 0 0.401 0.532 0.034 0.134

6 Conclusion

The stress state of an elastic half-plane under the action of periodic surface forces at
the nanoscale is investigated. Based on the Gurtin–Murdoch model of surface elas-
ticity, complex potentials of Goursat–Kolosov, the Muskhelishvili representations
and boundary properties of analytical functions, the solution of the boundary value
problem in the general case of arbitrary loading at the boundary is reduced to the
hypersingular integral equation. The exact solution of this equation in the form of
Fourier series is obtained in the case of periodic loading. The numerical results for
aluminum show that the highest influence of the surface stress on the stress state of
the boundary takes place when the loading period does not exceed approximately
40 nm. As follows from the solution (23), this influence depends on elastic constants
of the surface and bulk material, by which the parameter M is expressed.

It is important to note one feature of the considered boundary problem. The
surface stress arises in a planar surface as a reaction on the changing the external
load along the surface. So far, the existence of the surface stress has been considered
in a curved boundary surface that is free from external loading (see, for example,
[2, 3, 5–7, 11]). In this sense, there is a steady opinion that the surface stress appears
only on a curvilinear surface, and the size effect is expressed in a dependence of
physical properties and stress-strain state of a body on the change of the surface
curvature.

In this work, the surface of the body has a zero curvature and a geometrical linear
dimension to which the size effect is related is the period of the load. Another feature
of the solution obtained is that the surface stress appears from the action of normal
loads and this leads to arising tangential stresses. As in the case with size effect,
these stresses become negligible when the period a is 100 nm. or more.
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